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A B S T R A C T

Context: Software Product Line (SPL) testing is challenging mainly due to the potentially huge number of products under test. 
Most of the research on this field focuses on making testing affordable by selecting a representative subset of products to be 
tested. However, once the tests are executed and some failures revealed, debugging is a cumbersome and time consuming task 
due to difficulty to localize and isolate the faulty features in the SPL.
Objective: This paper presents a debugging approach for the localization of bugs in SPLs.
Method: The proposed approach works in two steps. First, the features of the SPL are ranked according to their suspiciousness 
(i.e., likelihood of being faulty) using spectrum-based localization techniques. Then, a novel fault isolation approach is used to 
generate valid products of minimum size containing the most suspicious features, helping to isolate the cause of failures.
Results: For the evaluation of our approach, we compared ten suspiciousness techniques on nine SPLs of different sizes. The 
results reveal that three of the techniques (Tarantula, Kulcynski2 and Ample2) stand out over the rest, showing a stable 
performance with different types of faults and product suite sizes. By using these metrics, faults were localized by examining 
between 0.1% and 14.4% of the feature sets.
Conclusion: Our results show that the proposed approach is effective at locating bugs in SPLs, serving as a helpful complement for 
the numerous approaches for testing SPLs.

1. Introduction

Software Product Line (SPL) engineering focuses on the systematic
development of related software products from a set of reusable fea-
tures [1]. A feature is defined as any increment in product function-
ality [2]. Features and their possible interactions are commonly de-
picted in a feature model. A Feature Model (FM) represents all the
possible products of a SPL in terms of features and constraints among
them [3]. In this context, a product is a set of features satisfying all the
constraints of the FM. Fig. 1 depicts a sample FM representing a sim-
plified product line of mobile phones.

Most SPL testing approaches focus on deriving and testing each
product individually [4,5]. Since the number of potential products in a
SPL is typically huge, several sampling techniques have been proposed
to derive a manageable subset of products to be tested (e.g., [5–7]).
Salient among them are Combinatorial Interaction Testing (CIT) techni-
ques, whose goal is to select products where every combination of t
features appears at least once, this is also called t-wise testing [8].
Another line of research addresses the problem of test case

prioritization, where products are scheduled for testing in an order that
attempts to increase their effectiveness at meeting some performance
goal, typically detecting faults as soon as possible [9–12]. Both strate-
gies, sampling and prioritization, are complementary and are often
combined.

Developing high-quality software requires not only effective testing
methods to uncover failures, but also debugging techniques to locate
and fix the bugs that trigger them. Debugging is mostly a manual
process where testers must identify the defective code using techniques
such as tracing, memory dumps or step-by-step execution. More so-
phisticated techniques include Spectrum-Based Fault Localization (SBFL),
which ranks code components (e.g., statements) according to their
probability of having faults, so-called suspiciousness [13–16].

Debugging SPLs is challenging due to the difficulty to find and
isolate the faulty features in the SPL. Also, even if a suspicious feature
or set of features are detected, it might still be difficult to generate small
valid products (i.e., satisfying the constraints of the feature model)
where the failure is reproduced and the defective assets can be pin-
pointed. Some works have proposed techniques based on machine
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learning to locate faults in configurable software in the past [17].
However, the recent advances on SPL testing contrast with the low
number of studies that support SPL debugging, which remains a manual
and time-consuming endeavour.

In this paper, we propose an approach to SPL debugging. The ap-
proach works in two steps. First, the outcomes of testing (test coverage
and test outputs) are used to rank features according to their probability
of having faults, so-called suspiciousness score. The suspiciousness score
of each feature (or set of features) is calculated using SBFL techniques
adapted for the SPL domain. Then, a fault isolation approach is pro-
posed to generate, by automatically analysing the feature model, pro-
ducts of minimum size containing the most suspicious features, in order
to facilitate the isolation of the failure causes. A key contribution of our
approach is the application of SBFL at the feature level (key atomic
element in SPLs), rather than at the statement level, as in conventional
SBFL approaches (e.g., [13,14,18–20]). In particular, we follow a
model-based approach where the complexity of the code dependencies
is managed through a simpler high-level representation of the features
and the constraints among them: a feature model. This also permits to
abstract the complexity of the underlying implementations such as the
use of different programming languages or the combination of hard-
ware and software features, e.g., cyber physical systems [21]. For the
evaluation of the approach, we compared ten state-of-the-art SBFL
techniques on nine SPLs of different sizes. Results reveal that SBFL
performs well at locating faults in SPLs. More specifically, we found
that three of the techniques under evaluation (Kulcynski2, Tarantula
and Ample2) stand out over the rest, being able to localize the bugs by
examining between 0.1% and 14.4% of the feature sets.

This paper is structured as follows. Section 2 presents general
background related to SPL engineering and SBFL. Section 3 presents our
approach for fault localization in SPL and the fault isolation algorithm.
An empirical evaluation of our approach is performed in Section 4.
Section 5 highlights the main issues that threaten our empirical eva-
luation. Section 6 positions our work with the current literature.
Section 7 concludes the study and highlights future work.

2. Background

2.1. Feature models

Feature models (FMs) are the de-facto standard for modelling
commonality and variability in SPLs [3,22]. Structurally, a feature
model is a tree-like structure in which nodes represent features and
edges represent constraints among the features. A feature represents an
increment in product functionality [2]. Each feature is related to a set of
assets that implement the feature’s functionality, i.e., code, doc-
umentation, test cases, etc. A product is a set of features satisfying the
constraint of the feature model. Products are implemented by in-
tegrating the assets of the features that are part of them.

Fig. 1 depicts a sample feature model representing a SPL of mobiles
phones. Child features can be divided into mandatory and optional

features. Mandatory features must be included in all the products in-
cluding its parent feature, e.g., all mobile phones in Fig. 1 must provide
support for Calls. Optional features can be optionally included in those
products containing its parent feature, e.g., phones can optionally
provide support for GPS. Additionally, child features can be grouped
into alternative and or relationships. A set of child features has an al-
ternative relationship with their parent feature when only one of them
can be selected when its parent feature is part of the product, e.g.,
phones can only support one type of screen: Basic, Colour or High
resolution. Finally, in or relations at least one of the child features
must be included in the products containing its parent feature, e.g.,
phones supporting media content must include the features Camera,
MP3 or both of them.

In addition to the parental relationships among features, feature
models can include cross-tree constraints among features. Typical
constraints model dependencies such as “A requires B”, indicating the
products containing the feature A must also include the feature B, or “A
excludes B”, indicating that the features A and B cannot be part of the
same product, i.e., they are incompatible features. In the example,
phones including the feature Camera must include support for a High
resolution screen.

The analysis of feature models deals with the automated extraction
of information from feature models. The analysis is performed in terms
of analysis operations. Among others, these operations allow finding out
whether a feature model is void (i.e., it represents no products) whether
it contains errors (e.g., dead features) or what is the number of products
represented by the model. Catalogues with up to 30 different analysis
operations on feature models have been reported in the literature [22].
A number of tools support the analysis of feature models including
FaMa [23], SPLAR [24] and FeatureIDE [25].

In the following, we define some of the terms that will be used
throughout the rest of the paper. For the definitions, let F be the set of
features in a feature model.

• Feature set. Non-empty set of features S, S⊆ F, with |S|≥ 1, e.g., S=
{Media, MP3}.

• Configuration. A configuration is a 2–tuple of the form (S, R) such
that S, R⊆ F being S the set of features to be selected and R the set
of features to be removed such that ∩ = ⌀S R and ∪ =S R F . If
S ∪ R⊂ F the configuration is called partial configuration [22]. For
instance, the following is a partial configuration of the model in
Fig. 1: (S,R) = ({Media,MP3},{GPS}).

• Product. A product is equivalent to a configuration where only se-
lected features are specified and omitted features are implicitly re-
moved [22], e.g., see products in Table 1.

• Product suite. Set of products under test. Table 1 shows the set of
products obtained when applying 2-wise testing to the model in
Fig. 1. The product suite is reduced from 13 products (total number
of products in the SPL) to 8 products containing all the possible
feature pairs, 41 in total.

• Core features. These are the set of features included in all the pro-
ducts of the SPL [22]. In the example the core features are Mobile
phone, Calls and Screen.

Fig. 1. Example of a product line from the mobile phone industry [22].

Table 1
Product suite (2-wise).

ID Product

P1 {MobilePhone, Screen, Calls, High resolution}
P2 {MobilePhone, Screen, Calls, Colour, Media, MP3}
P3 {MobilePhone, Screen, Calls, Colour, GPS}
P4 {MobilePhone, Screen, Calls, High resolution, Media, MP3, Camera}
P5 {MobilePhone, Screen, Calls, High resolution, Media, Camera, MP3, GPS}
P6 {MobilePhone, Screen, Calls, Basic, Media, MP3}
P7 {MobilePhone, Screen, Calls, Basic}
P8 {MobilePhone, Screen, Calls, High resolution, Media, Camera}



2.2. Spectrum-based fault localization

Spectrum-Based Fault Localization (SBFL) is a technique to assist on
the location of program bugs [13,26]. SBFL uses the results of test cases
and their corresponding code coverage information to estimate the risk
of each program component (e.g., statements) of being faulty. A pro-
gram spectrum refers to a collection of data that provides a specific view
on the dynamic behavior of a software program such as statement or
branch coverage [13,27]. Various forms of program spectra have been
proposed [14]. For example, block-hit is a commonly used program
spectra, where the program code is divided into statement blocks [26].
When SBFL with block-hit spectra is used, the result of the technique is
an ordered list of code blocks sorted by their likelihood to cause the
failure, so-called suspiciousness score.

Table 2 illustrates an example of SBFL with block hit spectra in a C
program. To avoid confusion, we remark that Table 2 illustrates an
example of SBFL, but in our case we do not apply this technique at the
code level, but at the feature level; for further information of the ap-
plication of SBFL at the feature level, refer to Section 3.1. Horizontally,
the table shows the five code blocks in which the program has been
divided, i.e., the components. Note that the code has a bug in block b3.
Vertically, the table shows four test cases of the program. For each test
case (i.e., T1, T2, T3 and T4), a cell is marked with “•” if the program
block of the row has been exercised by the test case of the column,
creating what is known as the coverage matrix [18]. Additionally, the
final row depicts the so-called error vector, which contains the outcome
of each test case, either successful (“S”) or failed (“F”). Based on this
information, the suspiciousness score of each block can be calculated
using more than 30 different techniques proposed in the literature [15].
One of the most well-known techniques to calculate the suspiciousness
score is named Tarantula, which, for a program component (in our

example a statement block), is computed as follows [26].
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where NCF is the number of failing test cases that cover the block, NF is
the total number of failing test cases, NCS is the number of successful
test cases that cover the block, and NS is the total number of successful
test cases. The suspiciousness score of each block is in the range [0,1],
i.e., the higher the suspiciousness score of the block, the higher the
probability of having a fault. The values of NCF, NCS, NS, NF and the
Tarantula suspiciousness value of each code block are given in Table 2.
The last column indicates the position of the statement in the suspi-
ciousness-based ranking where top-ranked blocks are more likely to be
faulty. In the example, the faulty block (b3) is ranked first.

Suspiciousness techniques may often provide the same value for
different components, being these tied for the same position in the
ranking, e.g., blocks b2, b4, and b5 in Table 2. Under this scenario,
different approaches are applicable such as measuring the effectiveness
in the best and worst scenarios, using an additional technique to break
the tie, or using some simple heuristics such as alphabetical or-
dering [16].

3. Approach

In this section, we present a two-step approach for locating bugs in
SPLs. First, SBFL-based techniques are used to calculate the suspi-
ciousness of each feature set based on the testing outcomes, namely
code coverage data and testing results (passes and failures). Second, the
obtained suspiciousness scores are processed by a novel fault isolation
approach to generate the smallest valid product containing the faulty
feature set, helping to isolate the cause of the failure, and thus the bug
causing it.

We may recall that this paper focuses on debugging and not testing.
Thus, we assume the existence of a product suite (e.g., pairwise suite)
and their corresponding testing results, obtained using any state-of-the-
art testing technique, e.g., manual integration test cases. Note that a key
requirement for the application of SBFL is that multiple failed and
multiple successful test cases are available [16]. In what follows, our
approach is described in detail, including the overall methodology for
its application.

Table 2
An example showing the suspiciousness value computed using the Tarantula technique.

ID Program block T1 T2 T3 T4 NCF NCS NS NF Suspiciousness Ranking

b1 int count n; • • • • 1 3 3 1 0.5 2
Ele *proc;
List *src_queue, *dest_queue;
if (prio > = MAXPRIO) { /*MAXPRIO=3*/

b2 return; • 0 1 3 1 0 3
}

b3 src_queue = prio_queue[prio]; • • • 1 2 3 1 0.6 1
dest_queue = prio_queue[prio+ 1];
count = src_queue->mem_count;
if (count > 1) {
/* BUG: It should be if (count > =1) */

b4 n= (int) (count*ratio + 1); • • 0 2 3 1 0 3
proc = find_nth(src_queue,n);
if (proc) {

b5 src_queue = del_ele(src_queue,proc); • • 0 2 3 1 0 3
proc-> priority = prio;
dest_queue = append_ele(dest_queue,proc);

}
}

Execution results S S S F

• Propagate operation. This operation (also called dependency analysis 
operation [22]) receives a partial configuration as input, and it 
automatically selects and unselects the necessary features to create a 
valid product according to the constraints of the model (if such 
product exists). For example, suppose that we run the propagate 
analysis operation on the selected features {GPS, Camera}. The 
operation would propagate the decisions returning the product 
{Mobile Phone, Calls, Screen, High resolution, Media, 
Camera, GPS}. Notice that the product includes the core features, 
plus the features Media and High resolution (both required by 
Camera). 
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3.1. Spectrum-based fault localization in SPLs

We propose to adapt SBFL techniques to measure the suspiciousness
score of each feature set in a SPL. Fig. 2 depicts the overview of the
approach from a black-box perspective. Our approach receives a feature
model and a product suite as inputs, and it returns a ranking of all the
feature sets in the SPL, ordered by their suspiciousness value in des-
cendent order, according to a given suspiciousness technique, e.g.,
Tarantula. The process to calculate the suspiciousness scores and to
break ties in the final ranking is detailed next.

3.1.1. Constructing the coverage matrix and error vector
Based on the SBFL theory (explained in Section 2.2), we consider

the SPL products under test as the test cases, and the feature sets as the
components where faults must be located. As an example, consider the
feature model in Fig. 1 and the product suite in Table 1. Table 3 depicts
the coverage matrix, where the products under test are placed in col-
umns, and the feature sets are listed in rows (note that a bug is simu-
lated in the feature MP3). For the sake of simplicity, only feature sets
composed of one or two features are considered, although the approach
could be generalized to feature sets of any size. In the example, only
some feature pairs are shown to keep this paper at a reasonable size. For
each product under test (i.e., P1, P2, ... , P8), a cell is marked with “•” if it
contains the feature set of the row. Additionally, the final row depicts
the error vector, that is, the test outcome of each product, either suc-
cessful (“S”), if all the test cases associated to the product passed, or
failed (“F”), if at least one of the test failed. We may recall that test
cases related to each product can be executed using any state-of-the-art
testing technique, e.g., ASTERYSCO for CPS product lines [21]. Also,
we reiterate that an underlying assumption in SBFL is that multiple
failed and multiple successful test cases are available [16].

Based on the information collected in the coverage matrix and the
error vector, the suspiciousness score of each feature set can be calcu-
lated using any of the state-of-the-art suspiciousness techniques pro-
posed in the literature [15]. To this purpose, we propose a slight
modification of the meaning of the classical notation used in SBFL
formulas, where test cases are replaced by products and components are
replaced by feature sets, namely:

Table 3 shows the values of NCF, NCS, NF and NS for each feature set.
Based on this information, the suspiciousness of each feature set using
Tarantula is depicted in the column “Suspiciousness”, followed by the
position of each feature set in the ranking. As illustrated, the feature
sets MP3 (where a fault was seeded) and MP3-Colour are placed at the
top of the ranking, followed by Media and Camera, with a suspi-
ciousness score of 0.8 and 0.75 respectively. The rest of single features
have a suspiciousness score of 0.5 according to Tarantula. Finally, the
feature set GPS-Colour has a suspiciousness score of 0.

3.1.2. Breaking ties
The last column in Table 3 indicates the suspiciousness ranking of

each feature set. As illustrated, the suspiciousness score of some feature
sets are identical. We have taken three different strategies to break ties:

• Core features: If a core feature is faulty, all products will fail, and
thus, for some techniques (e.g., Tarantula) all the feature sets will
have the same suspiciousness score. If this occurs, our SBFL ap-
proach places core features at the top of the suspiciousness ranking.
Notice that this does not happen with all techniques (e.g., Wong).

• Feature interactions: Faults in isolated features may distort feature
groups suspiciousness scores. Take as an example the simulated fault
in MP3. All feature sets including the feature MP3will fail, which will
result, for some techniques (e.g., Tarantula), in all feature sets in-
cluding MP3 having the same suspiciousness score, e.g., the
Tarantula scores of MP3 and MP3-Colour in Table 3 are equal.
Under this scenario, when a feature set S has the same suspicious-
ness that any of its feature subsets S′⊂ S, then S′ is ranked over S.

• Parental relations: If a parent feature is faulty, all the products con-
taining one or more of its subfeatures will also be faulty, since
parent and child features must appear together in products. Hence,
for instance, a bug in the feature Media would make all the products
including any of its child features to fail, that is, those including
Camera, MP3, or both. To address this issue, when a parent feature
has the same suspiciousness score as its child features, the parent
feature is ranked first.

All ties obtained after applying the previous strategies are broken
randomly. We remark, however, that other strategies would also be
feasible and studying their effectiveness remains for future work.

Fig. 2. Overview of our approach on SBFL for SPL.

Table 3
An example showing the suspiciousness value computed using the Tarantula technique in the Mobile Phone SPL.

ID Feature Set P1 P2 P3 P4 P5 P6 P7 P8 NCF NCS NF NS Suspiciousness Ranking

F1 MobilePhone • • • • • • • • 4 4 4 4 0.5 5
F2 Screen • • • • • • • • 4 4 4 4 0.5 5
F3 Calls • • • • • • • • 4 4 4 4 0.5 5
F4 High resolution • • • • 2 2 4 4 0.5 6
F5 Basic • • 1 1 4 4 0.5 6
F6 Colour • • 1 1 4 4 0.5 6
F7 GPS • • 1 1 4 4 0.5 6
F8 Media • • • • • 4 1 4 4 0.8 3
F9 Camera • • • 2 1 4 4 0.75 4
F10 MP3 (BUG) • • • • 4 0 4 4 1 1
F11 GPS-Colour • 0 1 4 4 0 7
F12 MP3-Colour • 1 0 4 4 1 2
Execution results S F S F F F S S

NCF number of failed products that cover a feature set.
NUF number of failed products that do not cover a feature set. 
NCS number of successful products that cover a feature set.
NUS number of successful products that do not cover a feature set. 
NC total number of products that cover a feature set.
NU total number of products that do not cover a feature set.
NS total number of successful products.
NF total number of failed products.
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3.2. Fault isolation

Even if we have a list of the most suspicious feature sets, it could
still be challenging to find a product, hopefully as small as possible,
where the fault can be easily located. This is the goal of techniques like
delta-debugging [28], which aims to generate minimal inputs inducing
the failure in the program under test (see related work section). Based
on this idea, in this section, we present a debugging approach for the
isolation of bugs in SPLs. The goal is to generate a minimal product, in
terms of number of features, where the fault(s) can be easily located.
For the generation of the product, we leveraged advanced tools for the
automated analysis of feature models. More specifically, we used the
analysis operations on feature models integrated into the tool
SPLAR [24].

The overall overview of the approach for generating the minimal
product is depicted in Fig. 3. The debugging approach receives a sus-
picious feature set (FS), a feature model (with a set of features F), and
the failing product being debugged (P) as inputs. Then, a partial con-
figuration is created in three steps, namely: (1) unselect the features
that are not part of the product being debugged, (2) select the core
features (C), and (3) select the features in the suspicious feature set (out
of the remaining features). Formally, let S and R be the sets of selected
and removed features in the partial configuration respectively. The
partial configuration is defined as follows.

∀ ∈ ∉ ⇒ ∈ ∧

∈ ⇒ ∈ ∧

∈ ⇒ ∈

f F f P f R
f C f S
f FS f S

•

(2)

The partial configuration is then provided as an input to the pro-
pagate operation, which generates a minimal valid product including
the suspicious feature set. It is noteworthy that the minimal product
generated is composed of a subset of the features in the product being
debugged, and thus no new features are considered, which could result
in unexpected results, e.g., new faults being introduced.

Continuing with the previous example, let us assume that the fea-
ture MP3 has the highest suspiciousness score, and P5 =
{MobilePhone, Screen, Calls, High resolution, Media,
Camera, MP3, GPS} is the faulty product being debugged. A partial
configuration would be created by unselecting the features not con-
tained in the product (Colour, Basic), selecting the core features
(Mobile phone, Calls, Screen), and selecting the suspicious feature
set (MP3). This configuration would be then provided as input to the
propagate operation, together with the feature model and the product
under debug (i.e., P5). The propagation function would return the
following product {Mobile phone, Calls, Screen, High resolu-
tion, Media, MP3}. Note that the features Media and High re-
solution are automatically selected, whereas the feature GPS is not
selected. On the one hand, the feature Media would be included be-
cause it is the parent feature of the MP3 feature. On the other hand, the
feature High resolution is selected because the product under debug
employs this feature as an alternative child of the Screen feature,
which is one of the core features of the product line. We may remark
that the products generated by the propagate operation are always
minimal, i.e., only those features strictly necessary to make a valid
product are selected. Therefore, the debugger is provided with the
smallest product including the suspicious feature set, contributing to
reduce the effort required to locate the bug.

The reason for proposing an incremental approach instead of a de-
cremental approach is complexity. Minimizing a product is an ex-
ponential problem: given a product P with t features, the potential
number of sub-products of P (products composed of a subset of the
features of P) is −2 1t . Of course, not all feature combinations are valid
and, thus, the feature model must be taken into account, which includes
further constraints. In addition to this, a decremental approach may
require re-testing many large products until finding the faulty feature
(s). Instead, the incremental approach proposed would be faster since it
requires a single SAT propagation and, more importantly, it guarantees
that a minimal product is generated. As a further benefit, the generated
products are as small as possible (since they only include the core
features and the first suspicious feature set in the ranking), which is
good in the case that several iterations are needed before locating the
faulty feature sets (i.e., a product with less features requires less test
effort [29,30]).

3.3. Methodology

Fig. 4 depicts the overall methodology to apply our SPL debugging
approach. First, the suspiciousness scores of each feature sets are cal-
culated based on the coverage information and test results, as explained
in Section 3.1. Then, for each faulty product, the most suspicious fea-
ture set is selected and a minimal product is generated and tested. We
reiterate that the tests can be performed using any state-of-the-art
testing technique and it is out of the scope of this paper. If the test

Fig. 3. Overview of our approach for fault isolation in SPL.

Fig. 4. Overview of the methodology for SPL fault isolation.



features GPS and MP3.
In addition to the fault simulator, we developed a test system to

simulate the test outcomes of each product using a simple oracle: if a
product contains any of the features labelled as faulty, the execution of
the product is classified as failed, otherwise it is classified as successful.
This is an intuitive approach that assumes that the test cases of each
product are good enough to reveal failures in the products under test.
Note that this is a key requirement for the application of SBFL: if test
cases are not able to identify failures, they will certainly not be helpful
in identifying faults. Both, the fault simulator and the test system, have
been previously used in the literature [11].

As for the UAV case study, the experiments were performed em-
ploying a Simulink model in charge of simulating the UAV. We em-
ployed a test suite composed of 120 test cases. A test case in our case
was a set of signals stimulating the inputs of the SUT over a specific
amount of time. The test execution time for each test case lasts from
30 s to 3000 s.1 Furthermore, we employed mutation testing to simulate
faults. Mutation testing was employed since it has been demonstrated to
be a good substitute of real faults [42]. For each fault in a specific
feature set, a mutant was created, performing the mutation in one of the
assets of that feature sets. This mutant was later selected when a pro-
duct included the faulty feature set. We employed the mutation op-
erators proposed by Hanh et al. for Simulink models [43]. To speed up
the evaluation process, we prioritized the test cases with an additional
greedy algorithm that used historical data of the test cases. This algo-
rithm demonstrated to be effective in a previous work at detecting
faults as fast as possible [32]. Since SBFL only uses information whether
the test execution passed or failed, once the test cases detected a fault,
the test execution was stopped with the aim of speeding up the eva-
luation process.

4.2.3. Suspiciousness techniques
We assessed the effectiveness of ten state-of-the-art suspiciousness

techniques for the isolation of faults in SPLs. The chosen techniques
were Tarantula, Ochiai, Dstar, Naish2, Wong and Russel-Rao, as pro-
posed in [26]. We also included Kulcynski2, Arithmetic mean, Ample2
and M2, as they showed promising results in preliminary experiments
[15]. The algebraic form of the chosen techniques are shown in Table 5
using the notation presented in Section 3.1. In the Dstar technique’s
formula, the * is an exponent of NCF. We set * equal to 2 based on the
original paper [20] and other relevant ones (e.g., [19]).

4.2.4. Evaluation metrics
The following metrics were used to measure the effectiveness of the

approach.
Percentage of examined features (EXAMF). The EXAM score is one of

the most common metrics to evaluate the effectiveness of fault locali-
zation techniques [16,19,44,45]. It is calculated as the number of
statements examined with respect to the total number of statements in
the program. In our approach, the number of statements examined

Table 4
Subject feature models.

Case study Features CTC Products 2-wise 3-wise

Drupal V3 21 9 96,768 11 37
Weather station 23 2 1056 14 40
Eclipse 29 3 983,150 17 54
Android 45 5 36,240 18 67
UAV 46 4 2.3E6 22 74
Dell Laptop 47 109 2319 47 142
Arcade 62 35 3.3E9 18 65
HIS 68 4 6400 12 41
Model transformation 88 0 1.6E13 28 133

1 Notice that this is the simulated test execution time.

outcome is successful, the next most suspicious feature set is selected 
and another minimal product is generated. Conversely, if the product 
fails, the suspicious feature set is reported to the engineer to fix it. This 
process is repeated until all faults have been fixed. Notice that every 
time a faulty product is selected, the tests must be executed again to 
confirm that the product is still buggy, since the faults could have been 
fixed while debugging previous products. Finally, it is noteworthy that 
the calculation of the suspiciousness scores is only performed once, 
unlike related approach where it is calculated every time a bug is 
fixed [31]. Although this may affect the accuracy of our approach, we 
believe that this is a sensible strategy for SPLs where re-executing all 
the tests is usually very costly [12,29,32].

4. Evaluation

4.1. Research questions

In order to evaluate the effectiveness of feature-based SBFL in SPLs 
we aim to answer the following Research Questions (RQs):

RQ1: What is the effectiveness of different state-of-the-art suspiciousness 
techniques at isolating the causes of failures in SPLs?

RQ2: How the size of the product suite affects the performance of the 
techniques under study?

RQ3: How the number and type of faults (single or interaction) affect 
the performance of the techniques under study?

4.2. Experimental design

4.2.1. Subject models and product suites
We selected nine feature models representing SPLs of different sizes 

for the evaluation. Seven of the models were taken from the SPLOT 
repository [24]. Furthermore, we used the feature model of the Drupal 
framework, a realistic case study to evaluate variability testing tech-
niques proposed by Sanchez et al. [33]. Additionally, we included a 
case study of an Unmanned Aerial Vehicle (UAV) that we previously 
used in other evaluations (e.g., [21,30,34]). For each subject model, the 
SPLCAT tool [35] was used to generate two product suites using 2-wise 
and 3-wise coverage criteria [36]. Table 4 depicts the characteristics of 
the selected models including number of features, number of cross-tree 
constraints (CTCs), total number of products, and number of products 
in the 2-wise and 3-wise product suites respectively.

4.2.2. Fault seeding and test execution
We faced two obstacles in the selection of case studies for the eva-

luation of our approach. First, we found a lack of case studies with 
available feature models, source code, and test cases. Second, based on 
our experience with industrial partners [37], the execution of test cases 
in real setting is usually a time-consuming process, which hinders the 
use of real test cases in a large-scale evaluation as the one required in 
our paper. To address both obstacles, we resorted to a fault simulator in 
eight of the subject case studies (where no code nor test cases were 
available), as previously done in related papers [9,11,38–40]. Ad-
ditionally, we used a real-world case study with available feature 
model, source code and test cases (Unmanned Aerial Vehicle), in order 
to evaluate the approach in realistic settings.

For the simulation of faults (in all case studies except UAV), we 
developed a fault generator to simulate different number and types of 
faults in the SPLs under test. The fault generator is based on the one 
proposed by Ensan et al. [38] and it has been used in several works to 
evaluate the fault detection rate of SPL test suites (e.g., [11,38,41]). The 
fault generator simulates faults in single features as well as faults 
caused by the interaction of two features. More specifically, our gen-
erator receives a feature model as an input and returns a random list of 
faulty feature sets as an output. For instance, the following list simu-
lates two faults in the SPL in Fig. 1: {{Colour}, {GPS, MP3}}, a fault in 
the feature Colour and another fault caused by the interaction of the



could be intuitively substituted by the number of feature sets examined,
and the total number of statements by the total number of features sets.
Given a product p being debugged and a faulty feature set f, we propose
a variant of the EXAM score, called EXAMF, calculated as follows:

= ×EXAMF p f
NF
NF

( , ) 100%f

p (3)

Where NFf is the number of feature sets examined to isolate the fault
in f, and NFp is the total number of feature sets in p. Since we are aiming
at faults caused by a single feature or interaction between two features,
NFp is equal to all the valid possible combinations of one or two of the
features of p. This was calculated using the SPLCAT tool. The lower the
EXAMF score is, the more effective is the technique.

As an example, consider a fault in the feature MP3, and P5 =
{MobilePhone, Screen, Calls, High resolution, Media,
Camera, MP3, GPS} the faulty product being debugged. Let us suppose
that GPS is the most suspicious feature and MP3 the second most sus-
picious feature, according to a certain technique. Accordingly, the de-
bugger would examine first the GPS feature, proceeding later to ex-
amine the MP3 feature. Considering that the total number of valid
feature sets (i.e., single features and pairs of features) in P5 is 28, this
metric is calculated as = × =EXAMF P MP( 5, { 3}) (2/28) 100 7.14. This
means that 7.14% of the feature sets in P5 had to be examined in order
to locate the fault in MP3.

The EXAMF metric measures the effectiveness of a fault localization
technique at detecting a single fault. In the cases where several faults
are present, the effectiveness of each fault localization technique was
evaluated as the average EXAMF score. Thus, the average EXAMF score
for multiple faulty feature sets F in a product p that is being debugged is
calculated as follows:

∑ =
EXAMF p F

F
( , )i

F
i1

(4)

As an example, let us suppose two faults in the MP3 and GPS fea-
tures, and P5 the faulty product being debugged. Let us suppose that 4
feature sets were examined before isolating the fault in MP3, and
5 feature sets were checked before isolating the bug in GPS,
i.e., = × =EXAMF P MP( 5, { 3}) (4/28) 100 14.2 and EXAMF P G( 5, {

= × =PS}) (5/28) 100 17.8. The average EXAMF is calculated as
+ =(14.2 17.8)/2 16. That is, 16% of the feature sets need to be ex-

amined on average to locate each faulty feature set in P5.

4.2.5. Experiments
In order to answer our research questions, we performed five in-

dependent experiments with different number and types of simulated
faults. Each experiment was conducted on the subject models depicted
in Table 4 assessing the effectiveness of the ten suspiciousness techni-
ques depicted in Table 5. Table 6 shows the number of simulated faults
in single and pairs of features in each experiment. As proposed by
Sanchez et al. [11], the maximum number of faults in each model was

set to n/10, being n the number of features in the SPL. For the fifth
experiment, where faults due to single features and interaction of two
features are combined, the distribution of the simulated faults was the
same for both type of faults, as proposed in [11]. For each experiment
and case study, five different distributions of faults were randomly
generated, so-called test scenarios, in order to calculate averages. In
total, 40 different test scenarios were run on each experiment and
product suite: 8 case studies × 5 test scenarios.

4.3. Experimental results

4.3.1. Experiment 1: a fault in a single feature
This experiment aims at evaluating the approach when the SPL has

one fault in a single feature. Tables 7 and 8 report the EXAMF values of
each suspiciousness technique under evaluation on the data collected
from the 2-wise and 3-wise product suites respectively. The best value
on each column is highlighted in boldface. We reiterate that the shown
values are the average of five different scenarios with a randomly si-
mulated fault on each of them. The EXAMF score ranged between
0.07% and 7.6% for the 2-wise product suite, and between 0.07% and
8.43% for the 3-wise suite. That is, both product suites yielded similar
results, with only slight differences in favor of the 2-wise suite. This
means that having more test data information was not necessarily
helpful in this experiment.

The performance of all the techniques was consistent in all the case
studies, and in both product suites. The faulty feature was successfully
ranked as the most suspicious feature in 100% of the test scenarios for
Ample2, Dstar, Kulcynski2, M2, and Ochiai, i.e., these were the tech-
niques showing the best performance. In the case of Tarantula, the most
suspicious feature was ranked first in 98% (88 out of 90) of the test
scenarios. The technique performing worst was Arithmetic mean, fol-
lowed by Naish2, Russel-Rao, and Wong.

4.3.2. Experiment 2: multiple faults in single features
This experiment evaluates the approach when the SPL contains

multiple faults in two or more single features. Tables 9 and 10 show the
average EXAMF value of each technique under evaluation on the data
collected from the 2-wise and 3-wise product suites respectively. As
illustrated, the results obtained with the 3-wise suite (between 0.10%
and 8.89%) were slightly better than those obtained with the 2-wise
suite (between 0.22% and 12.38%). More specifically, the EXAMF
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Table 6
Types of faults simulated in each experiment (n = number of features in the SPL).

Experiment Single faults Interaction faults

1 1 0
2 [2, n/10] 0
3 0 1
4 0 [2, n/10]
5 [1, n/5] [1, n/5]

Table 5
Algebraic form of the suspiciousness techniques under evaluation.



values of the 3-wise suite outperformed those of the 2-wise suite in 69
out of the 90 measures (10 techniques× 9 case studies). This means
that the use of more test data improved the performance of the fault
isolation techniques in this particular experiment.

Overall, the technique performing best with both product suites was

Tarantula, followed by Kulcynski2, and Ample2. Conversely, Russel-
Rao, Wong and Naish2, which showed exactly the same results in all
case studies, resulted in the techniques with worst performance in this
experiment.

Table 7
EXAMF scores obtained using the 2-wise product suite in Experiment 1. Best values on each column are highlighted in boldface.

Technique Drupal V3 Weather St. Eclipse Android UAV Dell L. Arcade HIS Model T. Mean

Ample2 1.24 1.20 1.04 0.30 0.31 0.77 0.14 0.07 0.12 0.58
Arithmetic M. 7.64 2.14 4.2 1.27 2.62 3.86 0.97 0.64 2.06 2.82
Dstar 1.24 1.20 1.04 0.30 0.31 0.77 0.14 0.07 0.12 0.58
Kulcynski2 1.24 1.20 1.04 0.30 0.31 0.77 0.14 0.07 0.12 0.58
M2 1.24 1.20 1.04 0.30 0.31 0.77 0.14 0.07 0.12 0.58
Naish2 1.73 1.20 1.94 0.30 0.36 1.71 0.24 0.16 0.34 0.88
Ochiai 1.24 1.20 1.04 0.30 0.31 0.77 0.14 0.07 0.12 0.58
Russel-Rao 1.73 1.20 1.94 0.30 0.36 1.71 0.24 0.16 0.34 0.88
Tarantula 1.24 1.20 1.17 0.30 0.31 0.77 0.14 0.07 0.12 0.59
Wong 1.73 1.20 1.94 0.30 0.36 1.71 0.24 0.16 0.34 0.88
Mean 2.03 1.29 1.64 0.34 0.56 1.36 0.25 0.15 0.38 0.90

Table 8
EXAMF scores obtained using the 3-wise product suite in Experiment 1. Best values on each column are highlighted in boldface.

Technique Drupal V3 Weather St. Eclipse Android UAV Dell L. Arcade HIS Model T. Mean

Ample2 1.92 1.11 0.91 0.29 0.31 0.76 0.13 0.07 0.10 0.62
Arithmetic M. 8.43 1.83 3.83 1.31 2.83 3.82 1.00 0.61 1.98 2.85
Dstar 1.92 1.11 0.91 0.29 0.31 0.76 0.13 0.07 0.10 0.62
Kulcynski2 1.92 1.11 0.91 0.29 0.31 0.76 0.13 0.07 0.10 0.62
M2 1.92 1.11 0.91 0.29 0.31 0.76 0.13 0.07 0.10 0.62
Naish2 2.48 1.11 1.73 0.29 0.36 1.71 0.24 0.16 0.28 0.93
Ochiai 1.92 1.11 0.91 0.29 0.31 0.76 0.13 0.07 0.10 0.62
Russel-Rao 2.48 1.11 1.73 0.29 0.36 1.71 0.24 0.16 0.28 0.93
Tarantula 1.92 1.11 0.99 0.29 0.31 0.76 0.13 0.07 0.10 0.63
Wong 2.48 1.11 1.73 0.29 0.36 1.71 0.24 0.16 0.28 0.93
Mean 2.74 1.18 1.46 0.39 0.58 1.35 0.25 0.15 0.34 0.94

Table 9
EXAMF scores obtained using the 2-wise product suite in Experiment 2. Best values on each column are highlighted in boldface.

Technique Drupal V3 Weather St. Eclipse Android UAV Dell L. Arcade HIS Model T. Mean

Ample2 3.27 1.37 6.26 0.90 0.77 1.11 1.27 0.60 1.42 1.88
Arithmetic M. 7.32 2.95 6.26 1.10 2.36 2.79 0.98 0.35 1.32 2.82
Dstar 3.74 1.41 11.50 3.00 3.42 2.04 2.98 0.89 4.99 3.78
Kulcynski2 3.10 1.21 3.74 0.40 0.46 0.98 0.49 0.22 0.39 1.22
M2 3.74 1.71 12.06 3.16 3.97 2.28 3.04 0.89 5.60 4.05
Naish2 4.59 2.01 12.38 3.33 4.57 2.54 3.10 0.94 5.79 4.36
Ochiai 3.58 1.41 10.13 2.48 2.69 1.40 2.66 0.89 3.89 3.23
Russel-Rao 4.59 2.01 12.38 3.33 4.57 2.54 3.10 0.94 5.79 4.36
Tarantula 3.10 1.21 3.59 0.37 0.46 0.98 0.49 0.22 0.36 1.20
Wong 4.59 2.01 12.38 3.33 4.57 2.54 3.10 0.94 5.79 4.36
Mean 4.16 2.73 9.07 2.14 2.78 1.92 2.12 0.69 3.53 3.12

Table 10
EXAMF scores obtained using the 3-wise product suite in Experiment 2. Best values on each column are highlighted in boldface.

Technique Drupal V3 Weather St. Eclipse Android UAV Dell L. Arcade HIS Model T. Mean

Ample2 2.1 1.10 1.67 0.72 0.62 1.12 1.14 0.34 0.80 1.06
Arithmetic M. 8.55 2.80 6.00 1.23 2.21 2.85 0.91 0.38 1.08 2.89
Dstar 3.66 1.20 7.14 2.65 2.66 2.23 2.91 1.22 4.41 3.12
Kulcynski2 2.50 1.10 1.33 0.34 0.29 0.95 0.38 0.10 0.22 0.80
M2 3.93 1.26 7.72 2.88 3.00 2.40 3.03 1.25 4.72 3.36
Naish2 4.13 1.66 8.89 3.09 3.36 2.60 3.10 1.27 5.24 3.71
Ochiai 2.61 1.10 5.37 2.20 1.91 1.47 2.62 1.11 3.55 2.43
Russel-Rao 4.13 1.66 8.89 3.09 3.36 2.60 3.10 1.27 5.24 3.71
Tarantula 2.50 1.10 1.21 0.31 0.29 0.95 0.38 0.10 0.20 0.78
Wong 4.13 1.66 8.89 3.09 3.36 2.60 3.10 1.27 5.24 3.71
Mean 3.82 1.46 5.71 1.96 2.11 1.98 2.07 0.83 3.07 2.56



4.3.3. Experiment 3: fault in a feature interaction
This experiment evaluates the approach under the presence of one

fault due to the interaction of two features. Tables 11 and 12 show the
mean EXAMF value of each technique over the five test scenarios. As in
the previous experiment, the results obtained with the 3-wise suite were
significantly better than those obtained with the 2-wise suite. More
specifically, the EXAMF values of the 3-wise suite outperformed those
of the 2-wise suite in 82 out of the 90 measures. Interestingly, the mean
EXAMF values were significantly higher (up to 47.57%) than those
observed in the previous experiments, which suggests that, as expected,
locating bugs caused by the interaction of features is harder than iso-
lating bugs in single features. Also, analogously to Experiment 1, where
a single fault was also simulated, the performance of the techniques was
consistent across all the case studies showing identical conclusions for
both product suites. More specifically, the techniques performing best
were Ample2, Dstar, Kulcynski2, M2, and Ochiai, all of them with the
same average score. Conversely, the technique Arithmetic mean per-
formed significantly bad in comparison with the rest of techniques, with
a mean score over 21% with both product suites.

4.3.4. Experiment 4: multiple faults in feature interactions
This experiment aims to evaluate our approach when the SPL has

multiple faults caused by feature interactions. Tables 13 and 14 show
the average EXAMF values obtained in each of the case studies for five
different test scenarios. As in the previous two experiments, the tech-
niques showed significantly better performance with the 3-wise suite
compared to the 2-wise suite. This improvement was significant in the
case of Tarantula where the overall average EXAMF value decreased
from 5.13% with the 2-wise suite to 0.93% with the 3-wise suite.
Overall, the EXAMF values of the 3-wise suite outperformed those of
the 2-wise suite in 68 out of the 90 measures. It is also noteworthy that
the average EXAMF scores in this experiment are noticeably higher than
in the previous ones. This suggests that isolating multiple interaction
faults imposes a significantly hard problem for the techniques under
evaluation.

From the results, it is observed that Tarantula is the most effective
technique to isolate multiple interaction faults, achieving the lowest
average EXAMF value in 8 out of the 9 case studies with both test suites.
Conversely, Arithmetic mean was the technique that showed the worst
performance, followed by Russel-Rao, Naish2 and Wong.

Table 11
EXAMF scores obtained using the 2-wise product suite in Experiment 3. Best values on each column are highlighted in boldface.

Technique Drupal V3 Weather St. Eclipse Android UAV Dell L. Arcade HIS Model T. Mean

Ample2 2.2 1.24 1.22 0.27 0.3 0.97 0.32 0.16 0.31 0.77
Arithmetic M. 36.41 17.05 47.35 13.59 13.57 15.7 13.34 5.34 22.37 20.52
Dstar 2.2 1.24 1.22 0.27 0.3 0.97 0.32 0.16 0.31 0.77
Kulcynski2 2.2 1.24 1.22 0.27 0.3 0.97 0.32 0.16 0.31 0.77
M2 2.2 1.24 1.22 0.27 0.3 0.97 0.32 0.16 0.31 0.77
Naish2 13.89 5.28 23.2 3.16 4.98 11.59 2.44 2.19 6.51 8.14
Ochiai 2.2 1.24 1.22 0.27 0.3 0.97 0.32 0.16 0.31 0.77
Russel–Rao 13.89 5.28 23.2 3.16 4.98 11.59 2.44 2.19 6.51 8.14
Tarantula 4.93 4.2 3.27 1.29 0.65 1.66 2.56 0.34 1.06 2.21
Wong 13.89 5.28 23.2 3.16 4.98 11.59 2.44 2.19 6.51 8.14
Mean 9.40 4.32 12.63 2.57 3.07 5.70 2.48 1.30 4.45 5.10

Table 12
EXAMF scores obtained using the 3-wise product suite in Experiment 3. Best values on each column are highlighted in boldface.

Technique Drupal V3 Weather St. Eclipse Android UAV Dell L. Arcade HIS Model T. Mean

Ample2 1.42 1.05 0.73 0.21 0.26 0.71 0.20 0.07 0.10 0.53
Arithmetic M. 38.86 17.73 47.57 12.43 13.89 15.80 14.58 5.47 22.9 21.03
Dstar 1.42 1.05 0.73 0.21 0.26 0.71 0.20 0.07 0.10 0.53
Kulcynski2 1.42 1.05 0.73 0.21 0.26 0.71 0.20 0.07 0.10 0.53
M2 1.42 1.05 0.73 0.21 0.26 0.71 0.20 0.07 0.10 0.53
Naish2 5.94 3.14 5.30 2.01 1.68 6.35 1.49 1.16 1.19 3.14
Ochiai 1.42 1.05 0.73 0.21 0.26 0.71 0.20 0.07 0.10 0.53
Russel–Rao 5.94 3.14 5.30 2.01 1.68 6.35 1.49 1.16 1.19 3.14
Tarantula 1.42 1.86 0.73 0.21 0.26 0.71 0.47 0.07 0.10 0.65
Wong 5.94 3.14 5.30 2.01 1.68 6.35 1.49 1.16 1.19 3.14
Mean 6.52 3.43 6.78 1.97 2.05 3.91 2.05 0.94 2.71 3.37

Table 13
EXAMF scores obtained using the 2-wise product suite in Experiment 4. Best values on each column are highlighted in boldface.

Technique Drupal V3 Weather St. Eclipse Android UAV Dell L. Arcade HIS Model T. Mean

Ample2 8.93 3.93 14.47 2.35 3.69 2.38 4.93 1.49 5.15 5.25
Arithmetic M. 44.69 19.86 52.54 11.52 17.44 14.96 10.90 5.39 23.23 22.28
Dstar 13.06 7.39 27.70 4.97 6.17 8.85 7.14 3.40 15.06 10.42
Kulcynski2 14.92 5.19 14.49 3.23 2.27 1.79 3.69 1.48 5.38 5.83
M2 13.19 6.14 27.57 5.89 6.9 5.23 7.91 3.42 15.29 10.17
Naish2 23.13 13.01 37.55 8.72 12.45 9.53 9.86 4.20 18.56 15.22
Ochiai 11.91 4.51 23.26 3.52 3.78 1.96 5.99 2.97 11.16 7.67
Russel–Rao 23.13 13.01 37.55 8.72 12.45 9.53 9.86 4.20 18.56 15.22
Tarantula 12.96 3.73 13.78 2.10 1.75 1.66 3.66 1.45 5.09 5.13
Wong 23.13 13.01 37.55 8.72 12.45 9.53 9.86 4.20 18.56 15.22
Mean 18.90 8.98 28.65 5.97 7.93 6.54 7.38 3.22 13.60 11.34



4.3.5. Experiment 5: faults in single features and feature interactions
This experiment assessed the proposed approach in SPLs containing

faults in single features as well as faults due to the interaction of two
features. Tables 15 and 16 show the average EXAMF values obtained in
this experiment for the eight case studies. As in the previous experi-
ments, the overall performance of most techniques was better when
using the 3-wise suite than when using the 2-wise suite. More specifi-
cally, the EXAMF values of the 3-wise suite outperformed those of the 2-
wise suite in 62 out of the 90 measures. In contrast to the previous
experiments, the results with each suite revealed slight differences,
although they overall agree that the techniques performing best were
Tarantula, Kulcynski2 and Ample2. Conversely, and in line with the
previous experiments, the technique showing the worst performance is
Arithmetic mean, followed by Russel-Rao, Naish2 and Wong.

4.3.6. Statistical analysis
Results of the performed experiments were analyzed by means of

statistical analysis. Specifically, for each experiment of each case study,
each pair of the metrics were analyzed with a post-hoc analysis em-
ploying the Kruskal–Wallis test [46], which is a non-parametric

method. This returned a p-value for each pair of metrics. The p-value
indicates whether there is a statistically significant difference between
two different SBFL techniques or not. As the statistical significance level
was set to 95%, we considered that there was statistical significance
between two different techniques when the p-value < 0.05. When the
p-value of the Kruskal-Wallis test returned a value below 0.05, the
Vargha and Delaney test was employed to obtain the Â12 value [47,48].
The Â12 value determines the difference between two techniques and
see which of the two techniques is better.

Tables 17 and 18 summarize the results for the statistical analysis
related to the performed experiments for the 2-wise and 3-wise suites.
These tables indicate the number of times, out of 45 (5 experiments× 9
case studies), in which the technique in the row outperformed the
technique in the column with statistical significance (i.e., p-value <
0.05 and the Â12 in favor of the technique in the row). After the sta-
tistical analysis, it can be appreciated that the best metric was Kul-
cynski2. In fact, this metric was not statistically outperformed by any of
the other metrics. However, the rest of metrics were outperformed by
Kulcynski2 at least in one of the experiments for both, the 2-wise and 3-
wise suite.

Table 14
EXAMF scores obtained using the 3-wise product suite in Experiment 4. Best values on each column are highlighted in boldface.

Technique Drupal V3 Weather St. Eclipse Android UAV Dell L. Arcade HIS Model T. Mean

Ample2 2.16 1.28 2.03 0.96 0.69 1.43 2.36 0.47 1.56 1.44
Arithmetic M. 45.80 20.39 51.16 12.26 11.61 16.30 11.02 5.46 22.98 21.89
Dstar 6.14 2.50 18.51 5.44 4.27 3.37 10.95 3.73 14.09 7.67
Kulcynski2 3.06 1.29 2.11 0.83 0.55 0.87 0.98 0.25 0.39 1.15
M2 11.6 4.63 23.00 7.08 5.41 4.22 11.66 4.19 15.14 9.66
Naish2 18.33 7.63 28.92 8.95 6.85 6.59 12.36 4.92 12.37 13.06
Ochiai 2.18 1.54 7.71 2.78 2.22 1.28 8.03 2.86 4.19 4.44
Russel–Rao 18.33 7.63 28.92 8.95 6.85 6.59 12.36 4.92 12.37 13.06
Tarantula 2.17 1.10 1.68 0.71 0.43 0.87 0.85 0.22 0.29 0.93
Wong 18.33 7.63 28.92 8.95 6.85 6.59 12.36 4.92 16.81 12.37
Mean 12.81 5.56 19.30 5.69 4.57 4.81 8.29 3.19 11.40 8.40

Table 15
EXAMF scores obtained using the 2-wise product suite in Experiment 5. Best values on each column are highlighted in boldface.

Technique Drupal V3 Weather St. Eclipse Android UAV Dell L. Arcade HIS Model T. Mean

Ample2 11.29 1.55 4.66 1.55 0.97 1.79 2.13 1.28 2.71 3.10
Arithmetic M. 15.42 8.16 16.47 6.15 4.75 4.92 4.48 1.28 5.42 7.44
Dstar 10.21 3.68 9.94 4.41 3.99 3.15 4.71 1.85 7.47 5.48
Kulcynski2 9.45 1.85 4.71 2.01 0.82 1.09 2.26 0.73 1.94 2.76
M2 10.17 3.54 9.73 4.44 3.86 2.75 4.94 1.89 8.00 5.48
Naish2 9.70 4.57 13.31 5.36 5.04 4.05 5.3 1.98 8.73 6.44
Ochiai 11.68 2.95 7.92 3.31 2.37 1.85 4.02 1.83 5.98 4.65
Russel–Rao 9.70 4.57 13.31 5.36 5.04 4.05 5.30 1.98 8.73 6.44
Tarantula 12.06 1.85 4.39 2.01 0.82 0.96 2.26 0.73 1.94 3.00
Wong 9.70 4.57 13.31 5.36 5.04 4.05 5.30 1.98 8.73 6.44
Mean 10.94 3.73 9.77 4.00 3.27 2.87 4.07 1.55 5.96 5.12

Table 16
EXAMF scores obtained using the 3-wise product suite in Experiment 5. Best values on each column are highlighted in boldface.

Technique Drupal V3 Weather St. Eclipse Android UAV Dell L. Arcade HIS Model T. Mean

Ample2 2.46 1.27 1.99 0.89 0.5 1.22 1.5 0.74 1.69 1.36
Arithmetic M. 13.91 7.83 18.29 6.02 5.59 5.43 5.46 1.33 5.26 7.68
Dstar 4.92 3.05 8.13 4.51 3.61 3.52 5.45 2.45 8.24 4.87
Kulcynski2 2.11 1.27 1.97 1.08 0.38 0.91 1.58 0.33 0.75 1.15
M2 5.93 3.73 9.31 4.61 3.89 3.03 5.66 2.56 8.56 5.25
Naish2 7.58 4.22 12.2 5.14 4.44 3.97 5.85 2.61 9.26 6.14
Ochiai 3.57 1.72 4.08 3.21 2.2 1.49 4.86 2.07 6.40 3.28
Russel–Rao 7.58 4.22 12.2 5.14 4.44 3.97 5.85 2.61 9.26 6.14
Tarantula 2.35 1.27 1.72 1.08 0.38 0.78 1.58 0.33 0.75 1.14
Wong 7.58 4.22 12.2 5.14 4.44 3.97 5.85 2.61 9.26 6.14
Mean 5.80 3.28 8.21 3.68 2.99 2.83 4.36 1.76 5.94 4.31



Apart from Kulcynski2, two techniques can be considered as valid
ones as compared to the rest for solving the fault localization problem
in SPLs: Tarantula and Ample2. Kulcynski2 statistically outperformed
Tarantula only in one test scenario for each of the product suites,
whereas it statistically outperformed Ample2 in one test scenario for
the 2-wise suite and in five test scenarios for the 3-wise suite.

4.4. Discussion

We now summarize the results and what they tell us about the re-
search questions.

RQ1: effectiveness of different suspiciousness techniques
The results of the experiments and the corresponding statistical

analysis reveal that the approach is effective, with some of the tech-
niques allowing to detect the faulty features by examining, on average,
5.13% feature set in the hardest scenarios (i.e., faults caused by mul-
tiple feature interaction). The results of the experiments and the cor-
responding statistical analysis of the data reveal that the techniques
Kulcynski2, Ample2 and Tarantula are the most effective suspiciousness
techniques for fault isolation in SPLs. It is remarkable that these three
techniques showed a very stable performance with different types of
faults and suite sizes. In contrast, the results of Ochiai, Dstar and M2
were more sensitive to the type of faults, and diverged significantly
among the different experiments. The techniques Arithmetic mean,
Russel-Rao, Naish2, and Wong performed badly in all experiments. In
the light of these results, RQ1 is answered as follows:

Different suspiciousness techniques may perform very differently in
the context of SPLs. Based on the results of our study, the most
effective suspiciousness techniques are Kulcynski2, Tarantula and
Ample2. Conversely, the techniques Arithmetic mean, Wong,
Russel-Rao and Naish2 perform badly and they should be avoided.

RQ2: size of the suite
The results obtained with the 3-wise suite were consistently better

when compared with those obtained with the 2-wise suite. The only
exception was Experiment 1 where both suites yielded similar results.
We suspect that this was due to the simplicity of the problem, which
made both suites to obtain the optimal result easily. Overall, however,
the experimental results were expected and in line with the theory
behind SBFL, which states that the accuracy of the techniques is better
as the size of the test suite increases. Based on our results, RQ2 is an-
swered as follows:

The accuracy of the fault localization techniques gets better as the
number of products in the suite increases.

RQ3: types and number of faults
The experimental results show that isolating a single fault

(Experiments 1 and 3) is significantly easier than isolating multiple
faults (Experiments 2, 4, and 5). This was expected because multiple
faults may interfere among them making the results of the suspicious-
ness metrics less accurate. The results also suggest that detecting mul-
tiple interaction faults (Experiment 4) is significantly harder than de-
tecting multiple single and interaction faults, either in isolation
(Experiment 2) or combined (Experiment 5). In the view of these re-
sults, RQ3 is answered as follows:

The number and type of faults have a strong impact in the effec-
tiveness of the suspiciousness techniques. Isolating single faults is
significantly easier than locating multiple bugs. Locating multiple
bugs caused by the interaction among different features is the
hardest scenario.

Ample2 Arithmetic Dstar Kulcynski2 M2 Naish2 Ochiai Russel-Rao Tarantula Wong

Ample2 – 36 13 0 12 28 8 29 1 29
Arithmetic 0 – 3 0 3 6 2 6 0 6
Dstar 0 28 – 0 0 9 0 9 1 9
Kulcynski2 1 39 12 – 12 29 9 29 1 29
M2 0 27 0 0 – 9 0 9 1 9
Naish2 0 7 0 0 0 – 0 0 0 0
Ochiai 0 32 1 0 0 16 – 16 1 16
Russel–Rao 0 7 0 0 0 0 0 – 0 0
Tarantula 1 33 12 0 13 22 9 21 – 21
Wong 0 7 0 0 0 0 0 0 0 –

Table 18
Summary of the results for the statistical analysis for the 3-wise suite.

Ample2 Arithmetic Dstar Kulcynski2 M2 Naish2 Ochiai Russel-Rao Tarantula Wong

Ample2 – 42 23 0 24 40 17 40 1 40
Arithmetic 0 – 5 0 5 7 4 7 0 7
Dstar 0 34 – 0 1 23 0 23 1 23
Kulcynski2 6 45 20 – 24 39 17 39 1 39
M2 0 33 0 0 – 17 0 17 1 17
Naish2 0 23 0 0 0 – 0 0 0 0
Ochiai 0 37 10 0 12 35 – 35 1 35
Russel–Rao 0 23 0 0 0 0 0 – 0 0
Tarantula 6 45 22 0 23 38 17 38 – 38
Wong 0 23 0 0 0 0 0 0 0 –

Table 17
Summary of the Results for the Statistical Analysis for the pairwise suite.



5. Threats to validity

The factors that could have influenced our work are summarized in
the following internal and external validity threats.

Internal validity: Are there factors that might affect the results of this
evaluation? The number of simulated faults in each feature model could
introduce a bias in our evaluation. To mitigate this threat, we experi-
mented with different numbers of simulated faults, up to a maximum of
10% of the number of features, as proposed in [11]. Similarly, it could
be the case that simulated faults affect different types of features dif-
ferently, or that the debugging approach performs differently on pro-
ducts of different sizes. To address these threats, we created five dif-
ferent test scenarios with different simulated faults and two different
product suites in each case study. Finally, another threat is related to
the developed test system simulator, which assumes that test cases and
test oracles are always capable of differentiating a faulty product from a
non-faulty one. We reiterate, however, that a key requirement for the
successful application of SBFL is that test cases are able to reveal the
faults to be located. To mitigate this threat, we also evaluated our ap-
proach using a real-world case study with real test cases and mutation
testing. The results are consistent with those obtained using simulated
faults.

External validity: What are the main limitations of the approach? As
mentioned in Section 3.1.2, if a core feature is faulty, all products will
fail, and thus the results of suspiciousness techniques will not be ac-
curate enough to locate the bug. This is an intrinsic problem of SBFL
techniques which depend on the existence of both successful and failing
tests to identify the suspicious components. To alleviate this threat,
when all the products in the product suite fail, core features are placed
at the top of the suspiciousness ranking. As another limitation, we
considered faults in single features and faults caused by the interaction
between two features, as these are common types of faults in software
programs [49]. Thus, evaluating the effectiveness of the approach in
isolating faults caused by the interaction among three or more features
remains for future work.

In our evaluation, we assumed that the test suite of each faulty
product is always able to reveal a failure. We think that this is sensible
since the test suite of each product is typically composed of a large
number of test cases. If at least one of the test cases exercising the faulty
feature(s) reveals the failure, the product is correctly marked as faulty.
Thus, we think that this is a minor threat since it is highly unlikely that
none of the test cases exercising the faulty feature(s) reveal the failure.

To what extent is it possible to generalize the findings? We used eight
case studies, which might not be enough to conclude that some tech-
niques are better than others. To mitigate this threat, we chose case
studies from different domains with different sizes and characteristics
to assure a sufficient degree of heterogeneity.

Conclusion validity: A possible conclusion validity threat could be
the configuration for the Dstar technique. Notice that this technique can
be adjusted by setting the *, which is the exponent of NCF. To reduce
this threat, we set * to 2 based on previous studies [19].

6. Related work

In this section, we overview those works closely related to our ap-
proach in the fields of SPL testing, SBFL and fault isolation.

6.1. Software product line testing

Recent surveys and mapping studies reveal an increasing interest in
SPL testing [6,50–52]. Lopez–Herrejon et al. conducted a systematic
mapping study on combinatorial interaction testing for SPLs [8]. They
identified over forty approaches using different techniques such as ge-
netic and greedy algorithms. They also found that a majority of papers
focused on deriving products from variability models (typically a FM)
using pairwise testing [5,53,54]. Similar to those papers, we leverage

the tools for the automated analysis of feature models. In particular, we
propose to use the propagate analysis operation, typically used during
product configuration, to generate minimal products including the
suspicious feature set, easing the isolation of faults. In contrast with
previous work, however, this paper focuses on debugging, not testing.
Thus our approach does not aim to reveal failures but to locate the bugs
that trigger them.

Similarly, a number of papers addressed the problem of product
prioritization in SPLs. Most are based on the use of heuristic [11,55]
and search-based algorithms [6,12,56,57] for reordering the products
derived from a feature model according to different criteria (e.g.,
complexity of products). Others have focused on prioritization based on
the dissimilarities of products [9,40], following the hypothesis that
dissimilar products are better at finding faults. In our case we prioritize
feature sets according to their suspiciousness score, which is calculated
using state-of-the-art SBFL techniques.

In addition to product prioritization, our fault isolation approach
also shares similarities with delta modeling [58]. Delta modeling is an
approach used in SPL automated product derivation [58]. It consists of
having a core product with a set of features as a basis [58]. To derive
new products, different delta operations are applied to the core product
[58,59]. These delta operations consist of (1) adding new features, (2)
removing features and (3) modifying features. Our algorithm adds
suspicious features to the core features of the SPL and, subsequently, a
propagation function adds required features in order to have a valid
product. These operations can be considered as part of the delta mod-
eling approach since our algorithm has an initial product composed of
the SPL core features. The algorithm is designed this way so that the
propagation function increases efficiency. Otherwise, every time the
propagation function is called, the core features would be added to
derive a valid product.

To the best of our knowledge, SBFL has been applied in the SPL
context only in a recent study [31]. Li et al. proposed a search-based
approach that generates application engineering level test cases that
can be easily reused between different SPL products [31]. Their ap-
proach integrates fault localization techniques with the aim to generate
more effective test cases when locating bugs. However, while Li
et al.apply SBFL at code level, in this study we proposed the application
of SBFL at feature level in order to isolate feature sets containing faults.

Yilmaz et al. [17,60] focused on the generation and scheduling of
configurations in configurable software (e.g., Linux) for efficient fault
characterization. To this end, they proposed two kinds of covering ar-
rays, namely, fixed-strength covering arrays and variable-strength
covering arrays [17]. Their empirical evaluation focuses on how dif-
ferent covering arrays perform in fault localization with two case stu-
dies. As expected, they found that higher strength covering arrays
performed better than lower strength ones. In contrast with their ap-
proach, we propose a SBFL approach to locale faulty feature sets in SPLs
following a model-based approach (using feature models). Additionally,
we assess how different SBFL techniques perform in different test sce-
narios (i.e., different amount and types of faults, with different product
suites). We think, however, that both approaches could be com-
plementary: using their covering array algorithms to generate and
prioritize product suites of different strengths, and allow for a faster
fault localization in SPLs. Exploring this idea remains for future work.

6.2. Spectrum-based fault localization

Several empirical studies have been carried out to assess the per-
formance between different SBFL techniques. Pearson et al. compared
the performance of five SBFL techniques and two mutation-based fault
localization techniques for both artificial and real faults from five open
source projects (JFreeChart, Google Closure compiler, Apache
Commons Lang, Apache Commons Math and Joda-Time) [19]. They
found that Dstar outperformed the other techniques. They also found
that while Tarantula does not perform better than other techniques



7. Conclusion and future work

In this article we presented a debugging approach for SPLs using
SBFL techniques. Based on the features included on each product under
test and the test outcomes, it is possible to identify which feature sets
were involved in a failure, and which ones did not, narrowing the
search for the faulty feature set that made the execution fail. As a result,
feature sets are ranked according to their suspiciousness score, assisting
debuggers on the localization of bugs. Additionally, we propose to

exploit the techniques for the automated analysis of feature models to
generate minimal valid products containing the suspicious feature sets,
contributing to reduce the effort required to isolate and locate faults.
We empirically evaluated our approach by comparing the effectiveness
of ten SBFL techniques on eight case studies. Results show that the
approach is effective, with the techniques Tarantula, Kulcynski2 and
Ample2 showing a good and stable performance with different number
and types of faults. We also found that the effectiveness of the technique
increases with the number of products under test. This work comple-
ments the extensive corpus of papers on SPL testing, and paves the path
for new contributions on fault localization in SPLs.

In the future we would like to compare other techniques for fault
localization, such as machine learning-based fault localization (simi-
larly as proposed by Yilmaz et al. [17]). In addition, we would like to
compare our incremental fault localization approach with the decre-
mental. Furthermore, it could be nice to expand on the empirical eva-
luation by including more case studies with real faults. In addition, an
empirical evaluation involving a controlled experiment with humans
could be interesting to better assess our approach in practice. Last, as
previously mentioned, our approach is black box. In the future a nice
complement to our study could be to use white box information of test
cases by using the traceability between feature sets and test cases,
which could lead to further benefits.

Experimental results

Experimental results and statistical analysis scripts in R are publicly
available at http://bit.ly/IST2018AArrieta.
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