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ABSTRACT

Tissue P systems with cell separation where the communication among cells is per-
formed by means of symport and antiport rules are able to efficiently solve compu-
tationally hard problems in a feasible time by a space-time trade off. Symport and
antiport rules formally capture the cases where a number of chemical substances pass
through a membrane at the same time, with the help of each other, either in the same
direction (symport) or in opposite directions (antiport).

The present paper investigates the role of the direction in communication rules from
a computational complexity point of view. More precisely, the efficiency of tissue P
systems with cell separation is analyzed in the case when their communication rules
are all of the same type: either symport rules or antiport rules.

The main result is that in the framework of tissue P systems with cell separation,
passing from using only symport rules to using only antiport rules amounts to passing
from non-efficiency to efficiency, assuming that P 6= NP.

Keywords: Membrane Computing, Tissue P Systems, Cell Separation, Sym-
port/antiport rules. Computational complexity

1. Introduction

Membrane Computing is an emergent branch of Natural Computing introduced by
Gh. Păun at the end of 1998. It is inspired by the structure and functioning of
living cells, and provide unconventional distributed, parallel, synchronous and non-
deterministic computing devices, called P systems. The basic model consists of a
hierarchical structure (a rooted labeled tree) composed by several membranes (the
nodes of the tree), embedded into a main membrane called the skin (the root of
the tree), and delimiting compartments/regions (space between a membrane and the
immediately inner membranes, if any) in which one places multisets of objects. The
objects evolve and pass through membranes in a synchronous parallel manner accord-
ing to given evolution rules, also associated with the membranes.
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Tissue P systems considered in this paper have two biological justifications: inter-
cellular communication and cooperation between neurons. The common mathemati-
cal model of these two mechanisms is a net of processors (cells) dealing with symbols
(chemical substances) and communicating these symbols by means of symport and
antiport rules which were introduced to P systems in [7]. Moreover, two additional
cell-inspired mechanisms have been considered in the framework of tissue P systems:
cell division [8] and cell separation [4]. In the first case, the two new cells created
during the cell division process contain exactly the same objects except for at most a
pair of different objects, thus cell division produces replication of objects between two
new cells. Cell separation is biologically justified by the phenomenon of cell fission: a
cell is divided into two new cells such that the contents of the initial cell is distributed
between two new cells. A class of tissue P systems with cell separation was presented
in [5] and its computational efficiency was investigated in [5] and [10].

In this paper we study the efficiency of tissue P systems with cell separation such
that either only the use of symport rules or only the use of antiport rules is allowed.
That is, we analyze the relevance of the direction in the application of communi-
cation rules allowed in tissue P systems with cell separation, from a computational
complexity point of view.

The paper is organized as follows: first, we recall some preliminaries, and then,
the definition of tissue P systems with cell separation is given. Next, recognizer
tissue P systems are briefly described and polynomial complexity classes associated
with this kind of systems are introduced. Sections 3 and 4 are devoted to study
properties of tissue P systems with cell separation and symport rules, and to analyze
their efficiency, yielding the main result of the paper. Finally, conclusions and open
problems are presented in the last section.

2. Preliminaries

An alphabet Γ is a non–empty set whose elements are called symbols. An ordered
finite sequence of symbols of Γ is a string or word over Γ. As usual, the empty string
(with length 0) will be denoted by λ. The set of all strings over an alphabet Γ is
denoted by Γ∗. A language over Γ is a subset of Γ∗.

A multiset m over an alphabet Γ is a pair m = (Γ, f) where f : Γ → N is a
mapping. For each x ∈ Γ we say that f(x) is the multiplicity of the symbol x in m. If
m = (Γ, f) is a multiset then its support is defined as supp(m) = {x ∈ Γ | f(x) > 0}.
A multiset is finite if its support is a finite set. A set is a multiset such that the
multiplicity of each element of its support, is equal to 1.

If m = (Γ, f) is a finite multiset over Γ, and supp(m) = {a1, . . . , ak} then it will

be denoted as m = a
f(a1)
1 . . . a

f(ak)
k (here the order is irrelevant), and we say that

f(a1) + · · · + f(ak) is the cardinal of m, denoted by |m|. The empty multiset is
denoted by ∅. We also denote by Mf (Γ) the set of all finite multisets over Γ.

Let m1 = (Γ, f1) and m2 = (Γ, f2) multisets over Γ. Then,

• The union of m1 and m2, denoted by m1 + m2, is the multiset (Γ, g), where
g = f1 + f2, that is, g(x) = f1(x) + f2(x) for each x ∈ Γ.
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• The relative complement of m2 in m1, denoted by m1\m2, is the multiset (Γ, g),
where g = f1(x) − f2(x) if f1(x) ≥ f2(x) and g(x) = 0 otherwise.

• m1 is a submultiset of m2, denoted by m1 ⊆ m2, if f1(x) ≤ f2(x) for each x ∈ Γ.

Let m = (Γ, f) be a multiset over Γ and let A be a set. We define the intersection
m ∩ A as the multiset (Γ, g), where g(x) = f(x) for each x ∈ Γ ∩ A, and g(x) = 0
otherwise.

2.1. Tissue P Systems with Cell Separation

In formal models of membrane systems with cell separation, the cells are not polarized;
the two cells obtained by separation have the same labels as the original cell, and if
a cell is separated, its interaction with other cells or with the environment is blocked
during the separation process. These assumptions, together with the original abstract
concept of a P system [6], and previous models studied in [1, 2] and [4], motivated
the following definition:

Definition 1 A tissue P system with cell separation and communication rules of
degree q ≥ 1 is a tuple Π = (Γ, Γ0, Γ1, E ,M1, . . . ,Mq,R, iout), where:

1. Γ is a finite alphabet.

2. {Γ0, Γ1} is a partition of Γ, that is, Γ = Γ0 ∪ Γ1, Γ0, Γ1 6= ∅, Γ0 ∩ Γ1 = ∅.

3. E ⊆ Γ is a finite alphabet.

4. M1, . . . ,Mq are multisets over Γ.

5. R is a finite set of rules of the following forms:

Communication rules: (i, u/v, j), for i, j ∈ {0, 1, . . . , q}, i 6= j, u, v ∈ Mf (Γ),
|u| + |v| > 0;

Separation rules : [a]i → [Γ0]i[Γ1]i, where i ∈ {1, . . . , q}, a ∈ Γ and i 6= iout.

6. iout ∈ {0, 1, . . . , q}.

A tissue P system with cell separation and communication rules can be viewed as
a set of q cells, labeled by 1, . . . , q such that: (a) M1, . . . ,Mq represent the finite
multisets of objects (symbols of the working alphabet Γ) initially placed in the q cells
of the system; (b) E is the set of objects initially located in the environment of the
system, all of them available in an arbitrary number of copies; and (c) iout represents
a distinguished region which will encode the output of the system. We use the term
region i (0 ≤ i ≤ q) to refer to cell i in the case 1 ≤ i ≤ q and to refer to the
environment in the case i = 0.

A communication rule (i, u/v, j) is called an antiport rule if u 6= λ and v 6= λ,
otherwise it is a symport rule. This rule formally captures the cases where a number
of chemical substances (represented by multisets u and v) pass through a cell at the
same time, with the help of each other, either in the same direction (symport) or in
opposite directions (antiport). A symport rule (i, u/λ, j) provides a virtual arc from
region i to region j. An antiport rule (i, u/v, j) provides two arcs: one from region i
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to region j and the other from region j to region i. Thus, every tissue P system has
an underlying directed graph whose nodes are the regions of the system and the arcs
are obtained from communication rules.

A communication rule (i, u/v, j) is applicable to regions i, j if the multiset u is
contained in region i and multiset v is contained in region j. When applying a
communication rule (i, u/v, j), the objects of the multiset represented by u are sent
from region i to region j and, simultaneously, the objects of multiset v are sent from
region j to region i. The length of communication rule (i, u/v, j) is defined as |u|+ |v|.

A separation rule [a]i → [Γ0]i[Γ1]i is applicable to cell i if object a is contained
in that cell. When applying a separation rule [a]i → [Γ0]i[Γ1]i, in reaction with an
object a, the cell i is separated into two cells with the same label; at the same time,
the object a is consumed; the objects from Γ0 are placed in the first cell, those from
Γ1 are placed in the second cell. Note that if there are several copies of a, only one of
them is consumed, the rest goes into one of the new cells. The output cell iout cannot
be separated.

The rules are used in a non-deterministic maximally parallel manner. At each step,
all cells which can evolve must evolve in a maximally parallel way: we apply a multiset
of rules which is maximal, no further applicable rule can be added. Separation rules
impose a restriction: when a cell is separated, the separation rule is the only one
which is applied for that cell at that step.

A configuration at any instant of a tissue P system is described by all multisets of
objects over Γ associated with all the cells present in the system, and the multiset
of objects over Γ \ E associated with the environment at that moment. The initial
configuration is C0 = (M1, · · · ,Mq; ∅). A configuration is a halting configuration if
no rule of the system is applicable to it.

Let us fix a tissue P system with cell separation and communication rules Π. We
say that configuration C1 yields configuration C2 in one transition step, denoted by
C1 ⇒Π C2, if we can pass from C1 to C2 by applying the rules from R following the
previous remarks. A computation of Π is a (finite or infinite) sequence of configurations
such that: (a) the first term of the sequence is the initial configuration C0 of the
system; (b) each non-initial configuration of the sequence is obtained from the previous
configuration by applying rules of the system in the manner described above; and (c) if
the sequence is finite (called halting computation) then the last term of the sequence
is called halting configuration. Only halting computations give a result, which is
encoded by the objects present in the output region iout in the halting configuration.

If C = {Ct}0≤t≤r of Π (r ∈ N) is a halting computation, then the length of C,
denoted by |C|, is r, that is, |C| is the number of non-initial configurations which
appear in the finite sequence C. We denote by Ct(i) the multiset of objects over Γ
contained in all cells labeled by i (by applying separation rules different cells with
the same label can be created) at configuration Ct, and Ct(0) denotes the multiset
of objects over Γ \ E contained in the environment at configuration Ct. Finally, we
denote by C∗

t the multiset Ct(0) + Ct(1) + · · · + Ct(q).



The Role of the Direction in Tissue P Systems with Cell Separation 189

2.2. Recognizer Tissue P Systems with Cell Separation and Communication Rules

In order to study the computational efficiency of membrane systems, the notion of
recognizer tissue P systems is introduced in [8].

Definition 2 A recognizer tissue P system with cell separation and communication
rules of degree q ≥ 1 is a tuple Π = (Γ, Γ0, Γ1, Σ, E ,M1, . . . ,Mq,R, iin, iout), where:

1. (Γ, Γ0, Γ1, E ,M1, . . . ,Mq,R, iout) is a tissue P system with cell separation and
communication rules of degree q ≥ 1 (as defined in the previous section).

2. The working alphabet Γ has two distinguished objects yes and no being, at
least, one copy of them present in some initial multisets M1, . . . , Mq, but none
of them are present in E .

3. Σ is an (input) alphabet strictly contained in Γ such that E ⊆ Γ \ Σ.

4. M1, . . . ,Mq are multisets over Γ \ Σ.

5. iin ∈ {1, . . . , q} is the input cell, and the output region iout is the environment.

6. All computations halt.

7. If C is a computation of Π, then either object yes or object no (but not both)
must have been released into the environment, and only at the last step of the
computation.

For each multiset m over the input alphabet Σ, the computation of the system Π with
input m starts from the configuration of the form (M1, . . . ,Miin

+ m, . . . ,Mq; ∅),
that is, the input multiset m has been added to the contents of the input cell iin.
Therefore, in this kind of systems we have an initial configuration associated with
each input multiset m over the input alphabet Σ.

We say that a computation C is an accepting computation (respectively, reject-
ing computation) if object yes (respectively, object no) appears in the environment
associated with the corresponding halting configuration of C.

Note that, because of the condition that all computations halt, rules of the type
(i, λ/v, 0) with v ⊂ E are not allowed for recognizer systems.

We denote by TSS (respectively, TSA) the class of recognizer tissue P systems
with cell separation and symport rules (respectively, antiport rules). For each natural
number k ≥ 1, we denote by TSS(k) (respectively, TSA(k)), the class of recognizer
tissue P systems with cell separation and symport rules (respectively, antiport rules)
of length at most k.

Previous results in the literature concern the classes TSC and TSC(k), of recog-
nizer tissue P systems with cell separation and no restriction on the direction of its
communication rules.

For the case of recognizer tissue P systems using division rules instead of cell
separation rules, the corresponding classes are denoted by TDS, TDA and TDC,
respectively.
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2.3. Polynomial Complexity Classes of Recognizer Tissue P systems

Let us recall that a decision problem is a pair (IX , θX) where IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total Boolean
function over IX . Next, we define the meaning of “efficient solution” to a decision
problem in the framework of tissue P systems. Bearing in mind that tissue P systems
are devices with a finite description, a countable family of tissue P systems will be
necessary in order to solve (any instance of) a decision problem.

Definition 3 We say that a decision problem X = (IX , θX) is solvable in polynomial
time by a family Π = {Π(n) | n ∈ N} of recognizer tissue P systems with cell
separation and communication rules if the following holds:

1. The family Π is polynomially uniform by Turing machines, that is, there exists a
deterministic Turing machine working in polynomial time such that on input 1n,
constructs the system Π(n).

2. There exists a pair (cod, s) of polynomial-time computable functions over IX

such that:

(a) for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input
multiset of the system Π(s(u));

(b) for each n ∈ N, s−1(n) is a finite set;

(c) the family Π is polynomially bounded with regard to (X, cod, s), that is,
there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) is halting and it performs at
most p(|u|) steps;

(d) the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX , if
there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1;

(e) the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

From the soundness and completeness conditions above we deduce that every P sys-
tem Π(n) is confluent, in the following sense: every computation of a system with the
same input multiset must always give the same answer.

Let R be a class of recognizer tissue P systems. We denote by PMCR the set of
all decision problems which can be solved in polynomial time by means of families of
systems from R, as defined above. The class PMCR is closed under complement and
polynomial–time reductions [9].

2.4. On Efficiency of Tissue P Systems with Cell Separation

It is worth pointing out two important results related to the computational efficiency
of tissue P systems with cell separation and communication rules: (a) only tractable
problems can be efficiently solved by using families of such tissue P systems with
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communication rules of length at most 2 ([3]), that is, P = PMCTSC(2); and (b) an
efficient solution to the SAT problem has been given by means of a family of such tissue
P systems with communication rules of length at most 3 ([10]), hence NP∪co − NP ⊆
PMCTSC(3). Therefore, 3 is an optimal bound on the length of communication
rules, with respect to the efficiency of tissue P systems with cell separation and
communication rules (assuming that P 6= NP).

3. Representation of Tissue P Systems from TSS

First, we prove a technical result concerning recognizer tissue P systems with cell
separation and symport rules.

Lemma 1 Let Π = (Γ, Γ0, Γ1, Σ, E ,M1, . . . ,Mq,R, iin, iout) be a recognizer tissue
P system of degree q ≥ 1 from TSS(k), k ≥ 1. Let M = |M1 + · · · + Mq|. Let
C = {C0, . . . , Cr} be a computation of Π. For each t, 0 ≤ t ≤ r, the following holds:

1. If t < r then C∗
t+1 ∩ (Γ \ E) ⊆ C∗

t ∩ (Γ \ E).

2. C∗
t ∩ (Γ \ E) ⊆ (M1 + · · · + Mq) ∩ (Γ \ E), and |C∗

t ∩ (Γ \ E)| ≤ M .

3. |C∗
0 | = M and |C∗

t+1| ≤ |C∗
t | + M · k, for each t < r.

4. |C∗
t | ≤ M · (1 + k · t).

5. The total number of objects handled by the system along the computation C
(including objects from Γ \ E in the environment) is

C∗
0 + C∗

1 + · · · + C∗
r ≤ M · (1 + r) · (1 +

k · r

2
)

6. The number of created cells along the computation C by the application of sep-
aration rules, is bounded by M · (1 + r) · (2 + k · r).

Proof. 1. Let x be an object of the multiset C∗
t+1 ∩ (Γ \ E) = (Ct+1(0) + Ct+1(1) +

· · · + Ct+1(q)) ∩ (Γ \ E). Let us start recalling that separation rules do not replicate
objects and do not produce new objects. Then, at the (t + 1)th transition step there
are two possible scenarios:

• x has not been involved on the application of any communication rule, and then
x ∈ C∗

t ∩ (Γ \ E).

• x has been involved on a communication rule. In this case, either x came from
the environment, and then x ∈ Ct(0)∩ (Γ \ E), or x came from another cell, and
then x ∈ (Ct(1) + · · · + Ct(q)) ∩ (Γ \ E). In both cases x ∈ C∗

t ∩ (Γ \ E).

The multisets inclusion that we just proved can be strict for some values of t, in case
separation rules were applied in that step, thus consuming some objects.

2. By induction on t. For t = 0 the result is trivial because of

C∗
0 ∩ (Γ \ E) = (C0(0) + C0(1) + · · · + C0(q)) ∩ (Γ \ E) = (M1 + · · · + Mq) ∩ (Γ \ E)
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Let t be such that t < r and let us assume the result holds for t (inductive hypothesis).
Then

C∗
t+1 ∩ (Γ \ E)

(1)

⊆ C∗
t ∩ (Γ \ E)

(i.h.)

⊆ (M1 + · · · + Mq) ∩ (Γ \ E)

Thus, |C∗
t ∩ (Γ \ E)| ≤ |(M1 + · · · + Mq) ∩ (Γ \ E)| ≤ M .

3. Obviously, |C∗
0 | = |C0(0) + C0(1) + · · ·+ C0(q)| = |M1 + · · ·+Mq| = M . Now, let

us compute C∗
t+1 = Ct+1(0) + Ct+1(1) + · · · + Ct+1(q).

First, let us see what is the contribution to C∗
t+1 of multiset Ct(1) + · · · + Ct(q).

• Some objects from Ct(1) + · · · + Ct(q) either do not evolve, or evolve by the
application of symport rules between different cells of the system of the type
(i, u/λ, j) with u ∈ Ct(1) + · · · + Ct(q). These objects will pass to Ct+1(1)+
· · · + Ct+1(q).

• Some objects from Ct(1)+ · · ·+ Ct(q) evolve by the application of symport rules
of the type (i, u/λ, 0) with u ∈ Ct(1)+ · · ·+ Ct(q). Only objects from u∩ (Γ \ E)
will be produced in Ct+1(0).

Now, let us see what is the contribution of multiset Ct(0) to C∗
t+1.

• Some objects from Ct(0) do not evolve and they directly pass to Ct+1(0).

• The remaining objects from Ct(0) will evolve by means of rules of the type
(i, λ/v, 0). In this case, string v must contain some objects from Ct(0) ⊆ Γ \ E .
Then, the number of new objects that can arrive to cells by the application of
these rules is, at most, |Ct(0)| · (k − 1).

Hence, |C∗
t+1| ≤ |Ct(1) + · · · + Ct(q)| + |Ct(0)| · k ≤ |C∗

t | + M · k.

4. By induction on t. For t = 0 the result is trivial because of |C∗
0 | = M .

Let t be such that t < r and the result holds for t. Hence,

|C∗
t+1|

(3)

≤ |C∗
t | + M · k

(i.h.)

≤ M · (1 + k · t) + M · k = M · (1 + k · (t + 1))

5. It suffices to note that

C∗
0 + C∗

1 + · · · + C∗
r ≤ M + (M(1 + k)) + · · · + (M(1 + k · r)) =

M · (1 + r) + M · k · r(r+1)
2 = M · (1 + r) · (1 + k·r

2 )

6. Follows from (5) noting that the each application of a separation rule consumes
one object and produces two new cells. 2

Let Π = (Γ, Γ0, Γ1, Σ, E ,M1, . . . ,Mq,R, iin, iout) be a recognizer tissue P system
from TSS(k), k ≥ 1

1. We denote by RSY (respectively, RSP ) the set of symport rules (respectively,
separation rules) of Π. We will fix total orders in RSY and RSP .

2. In order to uniquely identify the cells created by the application of a separation
rule, we modify the labels of the new cells in the following recursive manner:
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• The label of a cell will be represented by a pair (i, σ) where 1 ≤ i ≤ q
and σ ∈ {0, 1}∗. At the initial configuration, the labels of the cells are
(1, λ), . . . , (q, λ).

• If a separation rule is applied to a cell labeled by (i, σ), then we create two
new labels by appending to the string σ a symbol 0 or a symbol 1. That
is, the new created cells will be labeled by (i, σ0) and (i, σ1), respectively.
Cell (i, σ0) will only contain the objects of cell (i, σ) which belong to Γ0, if
any, and cell (i, σ1) will only contain the objects of cell (i, σ) which belong
to Γ1, if any.

• Note that we can consider a lexicographical order over the set of labels of
cells in the system along any computation.

3. If cells labeled by (i, σi) and (j, σj) are engaged by a communication rule, then,
after the application of the rule, both cells keep their labels.

4. A configuration Ct of Π is characterized by the multisets of objects over Γ
contained in each individual cell and the multiset of objects over Γ\E inside the
environment. Then, Ct can be described by a multiset of labeled objects from
{(a, i, σ)| a ∈ Γ∪{λ}, 1 ≤ i ≤ q, σ ∈ {0, 1}∗}∪{(a, 0)| a ∈ Γ\E}. If (a, i, σ) ∈ Ct

then we say that object a and cell labeled by (i, σ) are in configuration Ct.

Let us notice that the number of labels σ we need to identify all cells appearing
along a computation of a tissue P system from TSS is cubic in the size of the
initial configuration of the system and the length of the computation.

5. Let r ≡ (i, a1 · · · as/λ, j) be a symport rule of Π, where 1 ≤ i, j ≤ q and
1 ≤ s ≤ k. If n is a natural number, then we denote by n ·LHS(r, (i, σi), (j, σj))
the multiset of objects over Γ in cell (i, σi) consumed by applying n times
the rule r to cells (i, σi) and (j, σj). That is, n · LHS(r, (i, σi), (j, σj)) is
the following multiset of objects (a1, i, σi)

n · · · (as, i, σi)
n. We also denote by

n·RHS(r, (i, σi), (j, σj)) the multiset of objects produced in cell (j, σj) by apply-
ing n times the rule r to cells (i, σi) and (j, σj). That is, n·RHS(r, (i, σi), (j, σj))
is the following multiset of objects (a1, j, σj)

n · · · (as, j, σj)
n.

6. Let r ≡ (i, λ/a1 · · · as, 0) be a symport rule of Π, where 1 ≤ i ≤ q and 1 ≤ s ≤ k.
If n is a natural number, then we denote by n ·LHS(r, (i, σi), 0) the multiset of
objects over Γ \ E in the environment consumed by applying n times the rule
r involving the environment and cell (i, σi). That is, n · LHS(r, (i, σi), 0) is
the following multiset of objects ((a1, 0)n · · · (as, 0)n)∩ ((Γ \ E)× {0}). We also
denote by n ·RHS(r, (i, σi), 0) the multiset of objects produced in cell (i, σi) by
applying n times the rule r involving the environment and cell (i, σi). That is,
n ·RHS(r, (i, σi), 0) is the following multiset of objects (a1, i, σi)

n · · · (as, i, σi)
n.

7. Let r ≡ (i, a1 · · · as/λ, 0) be a symport rule of Π, where 1 ≤ i ≤ q and 1 ≤ s ≤ k.
If n is a natural number, then we denote by n · LHS(r, (i, σi), 0) the multiset
of objects consumed in cell (i, σi) by applying n times the rule r involving the
environment and cell (i, σi). That is, n·LHS(r, (i, σi), 0) is the following multiset
of objects (a1, i, σi)

n · · · (as, i, σi)
n. We also denote by n · RHS(r, (i, σi), 0) the

multiset of objects over Γ \ E in the environment produced by applying n times
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the rule r involving the environment and cell (i, σi). That is, n·RHS(r, (i, σi), 0)
is the following multiset of objects ((a1, 0)n · · · (as, 0)n) ∩ ((Γ \ E) × {0}).

8. If Ct is a configuration of Π, described as has been expressed in (4), then we
denote by Ct + {(x, i, σ)/σ′} the multiset obtained by replacing in Ct every
occurrence of (x, i, σ) by (x, i, σ′), for 1 ≤ i ≤ q. Besides, Ct + m ( Ct \ m,
respectively) is used to denote that a multiset m of labeled objects is added
(removed, respectively) to the configuration.

4. Efficiency of Tissue P Systems from TSS

The goal of this section is to show that only tractable problems can be solved efficiently
by using tissue P systems with cell separation and symport rules. Specifically, we will
show that P = PMCTSS(k), for each k ≥ 1.

For this purpose, we provide a deterministic algorithm A working in polynomial
time that receives as input a pair (Π, m), where Π is a confluent tissue P system
from TSS(k) that has a finite number of computations, all of them being halting
computations, and m is an input multiset of Π.

Then, algorithm A reproduces the behaviour of one computation of Π + m, that
is, the answer of A is affirmative if and only if the system Π + m has an accepting
computation (and then, any computation is an accepting one).

The pseudocode of the algorithm A is described as follows:

Input: a confluent system Π from TSS(k) and an input multiset m

Initialization stage : the initial configuration C0 of Π + m

t← 0

while Ct is a non halting configuration do

Selection stage: Input Ct, Output (C′

t, A)

Execution stage: Input (C′

t, A), Output Ct+1

t← t + 1

end while

Output: Yes if Π + m has an accepting computation, No otherwise

Figure 1: Pseudocode of Algorithm A

Let (Π, m) be an input of A. Let

Π = (Γ, Γ0, Γ1, Σ, E ,M1, . . . ,Mq,R, iin, iout) ∈ TSS(k).

Let M = |M1 + · · · + Mq|. Let p be a natural number such that any computation
of Π + m performs, at most, p transition steps. Then, from Lemma 1 the number of
created cells along any computation by the application of separation rules, is bounded
by M · (1 + p) · (2 + k · p).

The selection stage and the execution stage implement a transition step of a rec-
ognizer tissue P system Π + m. Specifically, the selection stage receives as input a
configuration Ct of Π + m at an instant t. The output of this stage is a pair (C′

t, A),
where A encodes a maximal multiset of rules selected to be applied to Ct, and C′

t
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is the configuration obtained from Ct once the labeled objects corresponding to the
application of rules from A have been consumed. The selection is done taking into
account that, for each step, a separation rule cannot be applied together with any
other rule on the same cell (a special variable B is used for this). The execution stage
receives as input the pair (C′

t, A) obtained from the selection stage. The output of
this stage is the configuration in the next step, Ct+1. Specifically, at this stage, the
configuration Ct+1 is obtained from C′

t by adding the labeled objects produced by the
application of rules from A.

Selection stage and execution stage are described in detail in Figures 3 and 2,
respectively.

Execution stage.

Input: The output C′

t and A of the selection stage

for each (r, nr , (i, σi), (j, σj)) ∈ A do

C′

t ← C′

t + nr · RHS(r, (i, σi), (j, σj))

end for

for each (r, nr , (i, σi), 0) ∈ A do

C′

t ← C′

t + nr · RHS(r, (i, σi), 0)

end for

for each (r, 1, (i, σi)) ∈ A do

C′t ← C
′

t + {(λ, i, σi)/σi0}

C′t ← C
′

t + {(λ, i, σi1)}

for each (x, i, σi) ∈ C′t according to the lexicographical order do

if x ∈ Γ0 then

C′t ← C
′

t + {(x, i, σi)/σi0}

else

C′t ← C
′

t + {(x, i, σi)/σi1}

end if

end for

end for

Ct+1 ← C′t

Figure 2: Execution stage

The algorithm for Selection stage is deterministic and works in polynomial time.
Indeed, the cost in time of such algorithm is polynomial on the size of Π because the
number of cycles of the first main loop for is of the order

O(|R| ·
M(1 + p)(2 + kp) · (M(1 + p)(2 + kp) − 1)

2
) ⊆ O(|R| · M2 · k2 · p4)

and the number of cycles of the remaining loops for are of the order O(|R|·M ·(1+kp)).

The algorithm for Execution stage is also deterministic and works in polynomial time.
Indeed, the cost in time of such algorithm is polynomial on the size of Π because the
number of cycles of the first main loop for is of the order O(|R| · M2 · k2 · p4), and
the number of cycles of the second and the third main loop for are of the order
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Selection stage.

Input: A configuration Ct of Π + m at the instant t

C′t ← Ct; A← ∅; B ← ∅

for each r ≡ (i, λ/v, j) ∈ RSY , 1 ≤ i, j ≤ q, i 6= j according to the order

chosen do

for each pair of cells (i, σi), (j, σj) of C′t according to the lexicographical

order do

nr ← maximum number of times that r is applicable to (i, σi), (j, σj)

if nr > 0 then

C′t ← C
′

t \ nr · LHS(r, (i, σi), (j, σj))

A← A ∪ {(r, nr , (i, σi), (j, σj))}

B ← B ∪ {(i, σi), (j, σj)}

end if

end for

end for

for each r ≡ (i, λ/v, 0) ∈ RSY according to the order chosen do

for each cell (i, σi) of C′t according to the lexicographical order do

nr ← maximum number of times that r is applicable to (i, σi)

if nr > 0 then

C′t ← C
′

t \ nr · LHS(r, (i, σi), 0)

A← A ∪ {(r, nr , (i, σi), 0)}

B ← B ∪ {(i, σi)}

end if

end for

end for

for each r ≡ (i, v/λ, 0) ∈ RSY according to the order chosen do

for each cell (i, σi) of C′t according to the lexicographical order do

nr ← maximum number of times that r is applicable to (i, σi)

if nr > 0 then

C′t ← C
′

t \ nr · LHS(r, (i, σi), 0)

A← A ∪ {(r, nr , (i, σi), 0)}

B ← B ∪ {(i, σi)}

end if

end for

end for

for each r ≡ [a]i → [Γ0]i[Γ1]i ∈ RSP according to the order chosen do

for each (a, i, σi) ∈ C′t according to the lexicographical order do

if (i, σi) /∈ B then

C′t ← C
′

t \ {(a, i, σi)}

A← A ∪ {(r, 1, (i, σi))}

B ← B ∪ {(i, σi)}

end if

end for

end for

Figure 3: Selection stage
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O(|R| · M · k · p2). Besides, inside the body of the last loop there are two loops for
giving a number of cycles of the order O(|Γ|).

Throughout Algorithm A we have simulated a computation of Π in such manner
that the answer of the algorithm is affirmative if and only if the computation simulated
is an accepting computation.

Theorem 2 P = PMCTSS.

Proof. We prove that P = PMCTSS(k), for each k ≥ 1. It suffices to prove
that PMCTSS(k) ⊆ P, for each k ≥ 1. For that, let X ∈ PMCTSS(k) and let
{Π(n) : n ∈ N} be a family of tissue P systems from TSS(k) solving X according to
Definition 3. Let (cod, s) be a polynomial encoding associated with that solution.
If u ∈ IX is an instance of the problem X , then u will be processed by the system
Π(s(u)) + cod(u).

Let us consider the following algorithm A′:

Input: an instance u of the problem X.

Construct the system Π(s(u)) + cod(u).

Run algorithm A with input the pair (Π(s(u)), cod(u)).

Output: Yes if Π(s(u)) + cod(u) has an accepting computation, No otherwise

The algorithm A′ receives as input an instance u of a decision problem X =(IX , θX)
and works in polynomial time. The following assertions are equivalent:

1. θX(u) = 1, that is, the answer of problem X to instance u is affirmative.

2. Every computation of Π(s(u)) + cod(u) is an accepting computation.

3. The output of the algorithm A′ with input u is Yes.

Hence, X ∈ P.

2

Consequences:

1. From the previous theorem we deduce that P = PMCTSS(3).

2. In [10] a polynomial time solution of the SAT problem by a family of tissue
P systems from TSC(3) according to Definition 3 was given. In that solu-
tion, the symport rules that appear are of the type (i, u/λ, 0), with |u| ≤ 2.
Then we can rearrange the rules adding a new object # to the alphabet E of
the environment, in such a way that symport rules (i, u/λ, 0) can be replaced
by equivalent antiport rules (i, u/#, 0). This proves that SAT ∈ PMCTSA(3).
Thus, NP ∪ co-NP ⊆ PMCTSA(3).

3. In the framework of tissue P systems with cell separation and communication
rules with length at most 3, the kind of communication rules (only symport rules
versus only antiport rules) provides a new borderline between the efficiency and
non-efficiency.
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5. Conclusions and Further Works

Cell separation provides a mechanism to generate an exponential workspace in linear
time expressed in the number of cells of the system.

There are many cases where two chemical substances pass through a membrane at
the same time, with the help of each other, either in the same direction, or in opposite
directions.

In this paper we have shown that applying communication rules always in the
same direction (symport rules), tissue P systems with cell separation are not com-
putationally efficient, in the sense that they cannot solve NP–complete problems in
polynomial time (according to Definition 3).

We have also obtained a surprising result, proving that in the framework of tissue
P systems with cell separation and communication rules of length bounded by 3, the
direction of the communication plays a crucial role. More precisely, we have shown
that passing from using only symport rules to using only antiport rules amounts to
passing from non-efficiency to efficiency, assuming that P 6= NP.

P = PMCTSS(3)

NP ∪ co-NP ⊆ PMCTSA(3)

If we restrict ourselves to the case of antiport rules only, then we have a borderline
of the efficiency related to the length of antiport rules: the cooperation of pairs of
objects is not enough, we need three objects interacting together to reach efficiency

P = PMCTSA(2)

NP ∪ co-NP ⊆ PMCTSA(3)

Nevertheless, when cell division is used in the framework of tissue P systems to
generate exponential workspace in polynomial time, there is an advantage which needs
to be taken into account: all the other objects in the cell are duplicated except the
object that activates the cell division operation. Note that Lemma 1 will not be valid
for this case.

We summarize here previous results obtained in the framework of tissue P systems
with cell division. If no cooperation is allowed (that is, if we use only communication1

rules of length 1), then only problems from class P can be efficiently solved. On the
other hand, a solution to HAM-CYCLE has been given using a family in TDC(2), which
can be adapted and transformed into a solution within either TDS(3) or TDA(3).
Studying the computational power of classes TDS(2) and TDA(2) remains an open
problem to be addressed in the future.

P = PMCTDC(1)

NP ∪ co-NP ⊆ PMCTDS(3)

NP ∪ co-NP ⊆ PMCTDA(3)

1Note that, by definition, antiport rules require objects on two regions, so communication rules
of length 1 are actually symport rules.
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