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ABSTRACT. A non-autonomous stochastic delay wave equation with linear memory and nonlinear
damping driven by additive white noise is considered on the unbounded domain R™. We establish
the existence and uniqueness of a random attractor A that is compact in C([—h,0]; H1(R™)) x
C([—h,0]; L*(R™)) x LZ(R*; H'(R™)) with 1 <n < 3.
Keywords: Random attractor; stochastic delay wave equation; linear memory; nonlinear damping;
pullback asymptotic compactness.

1. Introduction. Wave equations with delay terms are basic modeling tools in the analysis of
oscillatory phenomena including aftereffects, time lags or hereditary characteristics [17, 20, 34, 39],
as the deformation of viscoelastic materials [9, 11, 12, 25] or the retarded control of the dynamics of
flexible structures [21, 24, 26]. In this paper, we consider the asymptotic behavior of the following
non-autonomous stochastic delay wave equation on R™ with linear memory and nonlinear damping
driven by additive white noise:
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Ou g <8“> — k(0)Au + A — /OOO K (r) Au(t — r)dr

otz ot

+F(z,u) = f(z,ult — p(t) + g(z,t) + > hj(epiy, t>7,z€R", (1)
j=1

u(t,z) = ¢t —1,2), t <7, 0 €R”,

%(tw) (Zf( —rnz), t<T,xeR",

(Yejuan, we have not said anything about the initial function ¢. Should we say something?) where
1<n<3,\k(0)>0and k'(0) <0 for every r € RT, 7 € R is an initial time, ¢ is an initial datum
on (—00,0], for each j = 1,...,m, h;(z) € LP(R*) N H*(R"), {w;}}~, are independent two-sided
real-valued Wiener processes on a probability space which will be specified below, and the other
symbols satisfy the following conditions:

(H1) There exist two constants (1, B2 such that
J(O) =0, O<B1 < J/(U) <52 < Q.
(H2) The memory kernel p := —k/(r) satisfies p € C*(RT) N LY(RY), u(r) = 0, /() + op(r) <0,
Vr € RT and some ¢ > 0, and we will denote mo = [~ pu(r)dr.
(H3) There exist a function k; € L?(R™) and a positive constant ks such that f € C(R™ x R;R)
and p € C*(R; [0, h]) satisfy
(@, ) < [ka(2)]” + K3, Vo €eR", v ER,
0 ()] < pe <1, VEER,
where h > 0 is a given positive number, which will denote the delay time.
(H4) Let G(z,u) = [, F(z,s)ds, where F(z,-) € C(R" x R;R), and there exist functions k3 €
L2(R™), ke, ks € LI(R”) and positive constants kg4, k5, k7 such that

|F(2,u)| < |k3(z)| + ka|uP™t, Vo e R™, ucR,
G(z,u) > ks|ulP — ke(z) and F(z,uw)u > k;G(x,u) — kg(x), Ve eR", ueR,
where 2 < p<ooifn=1,2and 2 <p<4ifn=3.
(H5) The external force g € L? (R; LQ(R”)) is such that

loc

/ / e |g(r, x)|?dedr < co, VteR,

which implies that

K—oo

t
lim / / e |g(r,x)|*dedr =0, Vt € R,
lz| > K

where a > 0 will be given in Lemma 10.

Deterministic autonomous or non-autonomous damped wave equations with memory or no mem-
ory were studied by many authors in regard to global attractors, uniform attractors or pullback
attractors, see [2, 3, 4, 5, 7, 8, 14, 16, 19, 25, 27, 29, 30, 36, 41, 42] and the references therein. The
random attractors for autonomous or non-autonomous stochastic wave equations with memory or
no memory were explored in [10, 13, 18, 22, 28, 31, 33, 38, 40, 43].

The existence of pullback attractors for deterministic damped wave equations with variable
delays in bounded domains was initially established in [6], and then extended to the case with
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non-Lipschitz nonlinearities in [35, 37]. The goal of this paper is to establish the existence and
uniqueness of random attractors for the stochastic delay wave equation (1) with linear memory
and nonlinear damping on an unbounded domain. Since Sobolev compact embedding is lost for
unbounded domain, here we shall present some new uniform estimates on both the tails and the
bounded truncations of solutions to prove the asymptotic compactness of system (1). Note that Eq.
(1) is a damped wave equation with variable delay, non-autonomous and stochastic forcing terms,
so the problem is not only stochastic but non-autonomous as well. Therefore, in order to study the
long term behavior of problem (1), we shall use the general theory of attractors for non-compact
random dynamical systems introduced in [32].

This paper is organized as follows. In Section 2, we recall some basic concepts and results related
to non-autonomous random dynamical systems and global pullback attractors. In Section 3, we
define a non-autonomous random dynamical system for (1). Section 4 is devoted to the existence
and uniqueness of the pullback attractor.

2. Preliminaries. We recall some basic definitions for non-autonomous random dynamical sys-
tems and some results ensuring the existence of random attractors for these systems. The reader
is referred to [32] for more details.

Let (92, F,P) be a probability space, and (X,d) be a Polish space with Borel o-algebra B(X).
Let 2% be the collection of all subsets of X. The Hausdorff semi-distance between two nonempty
subsets A and B of X is defined by

d(A, B) =sup{d(a, B) : a € A},

where d(a, B) = inf{d(a, b) : b € B}. Denote by N,.(A) the open r-neighborhood {y € X :
d(y, A) < r} of radius r > 0 of a subset A of X.
Definition 1. Let (2, F,P, {0, }1cr) be a metric dynamical system. A mapping ® : RT xRxQx X —
X is called a continuous cocycle on X over (Q, F,P,{0;}1er) if for allT € R, w € Q and t,s € RT,
the following conditions are satisfied:

(1) ®(,7,-,-) : RT x Q x X is a (B(R") x F x B(X),B(X)) measurable mapping;

(2) ®(0,7,w,-) is the identity on X;

3) P(t+ s, 1w, ) =P, 7+ 8,0sw,P(s, T, w,));

(4) ¢(t,7,w,"): X = X is continuous.
Definition 2. (See [32].) A collection D of some families of nonempty subsets of X is said to be

neighborhood closed if for each D = {D(r,w) : 7 € R,w € Q} € D, there exists a positive number €
depending on D such that the family

{B(1,w) : B(1,w) is a nonempty subset of N-(D(7,w)),VT € R,Vw € Q} (2)

also belongs to D.
Note that the neighborhood closedness of D implies for each D € D,

{D(r,w) : D(7,w) is a nonempty subset of D(q,w),¥T € R,Yw € Q} € D. (3)
A collection D satisfying (3) is said to be inclusion-closed in the literature, see, e.g., [15].
Definition 3. (See [32].)
(1) A set-valued mapping K : R x Q — 2% is called measurable with respect to F in € if the

value K(1,w) is a closed nonempty subset of X for all 7 € R and w € Q, and the mapping
w€ Q= d(z, K(t,w)) is (F,B(R))-measurable for every fized x € X and 7 € R.
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(2) Let D be a collection of some families of nonempty subsets of X and K = {K(t,w) : T €
R,w € Q} € D. Then K is called a D-pullback absorbing set for ® if for allT € R, w € Q and
for every B={B(1,w) : T € R,w € Q} € D, there exists T = T(B,T,w) > 0 such that

O(t,7—t,0_yw,B(r —t,0_w)) C K(r,w), Vt > T.

If, in addition, for all T € R and w € Q, K(7,w) is a closed nonempty subset of X and K is
measurable with respect to the P-completion of F in 2, then we say K is a closed measurable
D-pullback absorbing set for ®.

(3) Let D be a collection of some families of nonempty subsets of X. Then ® is said to be D-
pullback asymptotically upper-semicompact in X if for all T € R and w € €, the sequence
(T, 7 — Ty, 0_1,w,x,) has a convergent subsequence in X whenever T,, — +o0o (n — 00),
Ty € B(t —Ty,0_1,w) with B={B(r,w): 7 € R,w € Q} € D.

Definition 4. Let D be a collection of some families of nonempty subsets of X and A = {A(1,w) :
TR weQ} eD. Then A is called a D-pullback attractor for ® if it satisfies:
(1) For every T € R, A(-,7) : (Q,F,P) is measurable, and A(r,w) is compact in X.
(2) A is invariant, that is, for every 7 € R and w € Q,
Cb(t, T, W, A(Ta W)) = A(T + 1, etW), Vit > 0.

(3) A attracts every member of D, that is, for every B = {B(1,w) : 7 € R,w € Q} € D and for

allT R and w € 1,

lim d(®(t,7 —t,0_w, B(t — t,0_w)), A(T,w)) = 0.

t——+oo

Definition 5. Let B = {B(1,w) : 7 € R,w € Q} be a family of nonempty subsets of X. For every
TER and w € Q, let

OB, mw) = J2t 7t 0_w B(r—t,0_w)).

s>0t>s
Then the family {©(B,T,w) : 7 € R,w € Q} is called the O-limit set of B and is denoted by ©(B).

Theorem 6. (See [32].) Let D be a neighborhood closed collection of some families of nonempty
subsets of X, and let ® be a continuous cocycle on X over (Q,F,P,{0;:}tcr). Then ® has a D-
pullback attractor A in D if and only if ® is D-pullback asymptotically compact in X and ® has a
closed measurable D-pullback absorbing set K in D. The D-pullback attractor A is unique and is
giwen, for each T € R and w € 0, by

*A(Ta w) = G(Ka Taw) = U G(BaTaw)' (4)
BED
Remark 7. The concept of neighborhood closedness of D is used to consider the necessary condition
for the existence of a D-pullback attractor. It is obvious that the neighborhood closedness of D
implies the inclusion-closed of D, and we need the concept of inclusion-closed of D in order to
derive a sufficient condition for the existence of such attractor.

3. Cocycle for a stochastic damped wave equation on R". For the stochastic term in (1), we
assume that for each j = 1,...,m, {w;}72, are independent two-sided real-valued Wiener processes
on a probability space (§2, F,P), where

0 ={w=(w,wa,...,wn) € C(R,R™) : w(0) =0},
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F is the Borel g-algebra generated by the compact-open topology of 2, and P is the corresponding
Wiener measure on (€2, F). Then we will identify w with W (t), i.e

W(t) = (wy(t), wa(t), ..., wn(t)) =w(t) forteR. (5)
Define a group {0; }+cr acting on (Q, F,P) by
Ow(-) =w(-+1) —w(t), we D, teR. (6)
Then (2, F,P, {0; }1cr) is a parametric dynamical system.
Given j = 1,...,m, consider the one-dimensional Ornstein-Uhlenbeck equation
dzj + azjdt = dw;(t). (7)
One may easily verify that a solution to (7) is given by
zj(t) = zj(Qrw;) = —a /O e (Opw;)(T)dr, t € R.

It is known that there exists a fj-invariant set Q C € of full P measure such that 2j(Opw;) is
continuous in ¢ for every w € Q, and the random variable |2;(w;)| is tempered. Hereafter, we will
not distinguish Q and Q, and write Q as Q.

It follows from Proposition 4.3.3 in [1] that there exists a tempered function r(w) > 0 such that

> (2@ +1z3(@))I”) < r(w), (8)

where 7(w) satisfies, for every w € Q,
r(6iw) < eZltlr(w), t e R, (9)
Then (8) and (9) imply that, for every w € €,

Z |2 (Orw;) ‘ +|Z](0fwj)|p) <etllly (w), teR. (10)
j=1
Putting 2(0,w) = >0, hjzj(0iw;), by (7) we have

dz + azdt = Z hjdw;.

Let n(t,x,7) = u(t,z) — u(t — r,z), and £ = 2% + du where § > 0 will be fixed later. Then (1)
can be written in the form of the following equivalent system

% 4 ou=c,
t o0
875 — 66+ J(€ = 0u) — Au+ (N +6H)u — / w(r)An(r)dr
0

i (1)
+F(x,u) = fla,u(t = p(t) + g(w,t) + Y hy(x)i,

j=1
o _ on
a - f —ou — 57
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where for simplicity, p(r) = —k’(r) and k(oco) = 1. Initial conditions are transformed into
u(t,z) =u(t —1,2) =Pt —1,2), T—h<t< T, zeR",
0p(t —
) =6t —T1,2) = w +ip(t—T,x), T—h<t<T, x €RY (12)
n(r,z,r) = u(t,2) —u(t —r,z) = ¢(0,7) — p(—r,2), r e RT, x € R"™.
To convert the stochastic wave equation to a deterministic one with random parameters, let us
consider a new variable given by v(t,z) = &(t,z) — 2(6,w), where 2(6,w) = 3771, hjz;(0w;). Then
the system (11)-(12) becomes

gg + du = v + z(6w), N

% Sv+ J(v — du+ z(0w)) — Au+ (A + 6%)u — /0 w(r)An(r)dr (13)
8+F(~’Cv u) = fla,u(t — p(g))) +g(x,t) + (a +0)z(6:w),

n_ n

N =v—0u+ z(Ow) — o

with initial conditions

u(t,x) =u(t—m,x) =9t —m,z), T—h<t< 1, x € R",
v(t,z) =v(t —1,2) = W + 0ot —1,2) — 2(w), T—h <t <7, x€R", (14)
n(r,x,r) =u(t,z) —u(t —r,z) = $(0,z) — ¢(—r,x), r € R, € R".
Following Dafermos [11], introduce a Hilbert “history” space R, 1 = L2 (R™; H'(R")) with the
inner product and norm

(mmmzj"mmwwmwmmw,wMeRm,
0

IWLZWWM:AuWWW%WWanemm

and a new variable n(t, z,7) = u(t,x) — u(t — r, x).

Let (X, || - ||x) be a Banach space, we denote by Cx the Banach space C([—h,0]; X) with the
sup-norm, i.e., [[ullcx = supsei_p,o u(s)llx, for u € Cx. Given T'> 7 and u : [t — h,T) — X,
for each ¢ € [7,T) we denote by u; the function defined on [—h, 0] by the relation u;(s) = u(t + s),
s € [—h,0].

Let H = L?(R") with norm | - | and inner product (-,-), and let V = H*(R") with norm || - .
Denote by |- |, the norm of LP(R™). Set E = Cy x Cyg X R,,1. In the sequel, C' denotes an arbitrary
positive constant, which may be different from line to line and even in the same line.

By the standard Galerkin approximation and compactness method, we have the following exis-
tence result of solutions for the problem (13)-(14):

Theorem 8. Suppose that (H1)-(H4) hold true and g € L?, (R; H). Then for each 7 € R, w €

loc

and for any (ur,v.,n(7)) € E, there exists a solution (u(t),v(t),n(t)) to problem (13)-(14), and

u('>T>w7UT) € C([T - haT]; V)a ’U(',T,w,’UT) € C([T - h7T];H)7
n(,mw,n(r)) € C([r,T|; Rpua), YT >
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Proof. We divide the proof into two steps.
Step 1. Taking the inner product in H of the second equation of (13) with v, we find that

ol — Blof3 + (0 — B+ 2(0)), ) + (A -+ 82)(u,0)
+ (Vu, Vo) — (/OO w(r)An(r)dr, v) + (F(z,u),v)
0
= (f(z,u(t = p(t))),v) + (9(t) + (a + 8)z(0iw), v). (15)
Since v = % + 0u — z(Ayw), it follows from Young’s inequality that
A+ 62 S\ + 62
(Ot )y > A Dye OO e oz (16)
d
(Vu, Vo) > Ll + 3 ull? — Cll=(0)]” a7)
(9(t) + (o +6)z(0uw), v) < %lvlg +Clg(t)f3 + Clz(0w)]3, (18)
and by (H3),
k
(f (@, u(t = p(1))), ) < B”\z 2%”2 |( p(t). (19)
By Lagrange’s mean value theorem and (H1), we obtain that
(J(v = du + z(6w)),v) = (J'({)(v — du + 2(6;w)),v)
252
> Bulvl3 = J'(Q)|(0u — 2(w), v)| > &lb % [ul3 — Clz(0w) 3, (20)

where ( is between 0 and v — du + z(f;w). Integrating by parts and from (H2), we have

(nf;?): /OWM [ vaww VO oy = / CH O P> Dz, (@)

and thus
- </ p(r) An(r)dr, ”) = ( r)dr, n + du + on _ Z(Gtw))
0 ot or
= s —|nll? / p(r)An(r)dr, u — =(6 )+(1
P AL ryou = 2(0w) + 5
d o 26%m, 2m
> g lml s+ il — = llull® = =2l (0w)] . (22)
Let G(u fRn (z,u)dz. Then for the last term on the left-hand side of (15), by (H4) and

Young’s 1nequahty7 we deduce that

(Flau),2(0)) < [ (a(e)] + kalul ™) 2(61) d

k 5k
(ka3 + |2(0)[3) + =5

|ulp + Cl2(0ww)[;

(|ksl3 + [2(6:w) 3 )+5ﬁG( ) + Clks|1 + Clz(0w) P, (23)

[\DM—‘[\DM—*
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which implies that

, = + ou — z(6ww))

— 1
2 G+ = Gu) — fks1 — 5 (k3|3 + [2(0:w)[3) = Clkelr — Clz(0ww)]-

It follows from (15)-(20), (22) and (24) that

1d = B
5 (4 T+ Ot )l + Il + 2600 + (5 =) o

SN+ 07) B2\, (6 2(52m0 2 o kg
(B2 -2 g+ (3 - ful + 2 + G
ki2

ﬂf u(t = p())[3 + Clg()]5 + C + C(|z(Bw)[5 + [2(Brw)l + [12(Bw) )

+

//\

Integrating (25) from 7 to ¢, in view of (H4), we find that

[o(t, 7w, 02)[3 + [[ult, 7w, w2 + (A + 0% ult, 7w, ur)[5 + [In(t 7w, 0(7));

+ 2ks|u(t, T, w, ) B + ( - 26) / lo(r, 7, w, v, ) [3dr

45%m, ¢
# (0= 222 [t unlPar+ g [ oo e

26262 t t
+<6()\+§2)_ 2 )/ |u(r,7,w,u7)\§dr+§k7k5/ |u(r777w7u7)|gdr

< (T, T,w,UT)@ + ||u(r, 7w, uT)H2 + A+ 62)|u(7, T, W, uT)|§ +C

t
+In(r 7w, n(r) 1 + 26 (ulr, 7w, ur)) + Ot = 7) + C/ lg(r)[3dr

4k2 t
+ 25 [ utr = ot o)+ [ (0008 + (05 + 100 dr

Let r' =7 — p(r), where p(r) € [0,h] and 5 ,(T) <5 — for all 7 € R. Therefore,

t
/ fu(r — p(r), 70, ur) 3dr <

1 t
1-p / \u(r’,T,w,uT)@dr/
— Px Jr—h

1 t
<2 (Mot + [ ).

Choosing § > 0 small enough such that

252
5<min{%,ﬁ} and 5(A+62)—%>0,

(24)

(25)

(27)
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in view of
Gu(r, T,w,u.)) = G(z,u(r, 7w, u,))dz
Rn
1 1
< — F(z,u(r, 7w, ur))u(t, 7,w, ur )de + —|ks|1
k7 k7

< Clu(r, T,w,u7)|§ + Clu(r, 7, w,ur)|P + C, (28)

v
then, it follows from (26)-(28) that

2
w,1

)

[o(t, 7w, ve) 5 + llult, 7w, un) [+ (A + 0% ult, 7w, ur) 5 + [In(E, 7w, (7))

+ 2ks|u(t, T, w, u) b < u(T, T, w, )3+ ||u(r, 7w, u) |2 + Clu(r, 7, w, u,)|3

+n(r, 7w, n(m) 51 + Clu(r, 7w, u )b + C + C(t = 1) + CllglIZ,,

+C/ lg(r
4k3

T T -1
+ O+ ) ulr, 7w, un) + In(r 7w, n(m)|2.4 + 2ks u(r, w,umz) dr. (20)

e+ [ (=00 + 0. + 10,00 i
2

) / (vw,w,w% ey, u)|?

By Gronwall’s lemma, we deduce that

[o(t, 7w, 005 + lJult, 7w, u) [ + (A + %) ult, 7w, ur) 3 + [0t 70, 0(7)) 154

+ 2kslu(t, 7w, ur) B < T (Jo(r,mw,vr) [ 4 flulr, 7w, un) [P Clu(r, 7w, ur)[3)

+ 9 (G mw n() 2+ Clulr, o, un) [+ ClolE, +Clt =7+ 1)

t t
4 Gt / l9(r) Bdr + CeCE) / (2(6sw) 2 + [2(0r0)[2 + [|2(8,0) [2)dr- (30)

T

Step 2. We consider the Dirichlet problem in a bounded domain

?—I—éu—v—l—z(@w) t>71, ve g,

— — v+ J(v—0u+2(0,w) — Au+ A+ 6>)u — /OOO p(r)An(r)dr

(31)
—i—F(a:,u) = f(z,u(t — p(t))) + g(x,t) + (a + ) z(Ow), t > 7, © € Q,
% :v—éu—i—z(&tw)—%, t>71, x€ gk,
with initial and boundary conditions

uloa, = vloa, = Nloa, =0, t >,

u(t,z) =u(t —1,2) =gt —71,z), T—h <t <7, z €,
0P (t —

v(t,z) =v,(t —T1,2) = w + 0ok (t — 1,2) — 2(6w) YK (J2|), (32)
T—h<t<T, € g,
n(r,z,r) = ¢x(0,2) — dx(—r ), r € RT, 2 € Q,
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where Qx = B(0, K) is the open ball of radius K > 1 centered at 0, ¢x(t,2) = ¢(¢, )Yk (|x]) for
each t € (—o0,0], and 1k is a smooth function satisfying

1, if0<ESK -1,
Vr(§) =4 0<yYr(§ <1, if K-1<E<K,
0, if £ > K.
Let Hy = L*(Qk) and Vi = Hg (k). Note that there exists a family of eigenfunctions {e, }°,
of —A, which is the orthonormal basis of Hx. We consider the subspace Vi, of Vi spanned by
€1, €2, ..., ey, and the projector P, : Hx — Vi, defined as

m

Pu= Z(u,ei)ei, u€ Hg.
i=1

m
Let wm(t) = D Ymi(t)e; be a solution of the ordinary functional differential system
i=1

d;;b—;n + 0Upy, = Uy + Prz(0iw),

d;}—;n — 60 4+ P d (Ui — Ot + Prz(0iw)) — Aty + (A 4 62ty — / w(r)An, (r)dr (33)
0

+Pn B (2, um) = P f(2, um(t — p(t)) + Pmg(z,t) + (o + 8) Pz (fw),

dnm O,

W = Um (5um + PmZ(QtW) W7

with initial conditions
U (t, ) = Pt —7,2), T—h<t<T,
dP,, ¢ (t — T,
onlt,a) = LMDy et —7.0) — Pz@pinllal), T—h <t <, (30)
ﬂm(TafEﬂ”) = PmQSK(va) - Pm¢K(_rv CL’), (S R+~
Then it follows from (30) that
{um (t)} is bounded in L*°(7 — h,T; Vk),
{vm (t)} is bounded in L*(7 — h,T; Hg ),
and
{nm(t)} is bounded in L>°(7,T; Li(R*; Vi)).
Analogous to the proof of Theorem 3.1 in [8] Section XV.3 and the argument in [30] Sections I1.4
and IV.4.4, in view of the continuity of z(6;w) in ¢ for every w € Q, by a standard argument we
obtain the existence of weak solutions

u(s, Ty w,ur) € C([1 —h,T); Vi), v(-,7yw,vr) € C([r — h,T); Hi ),
n(-, ,w,n(7)) € C([r, T];LZ(R"‘; VKk)).

Let {Qk,} be a sequence of bounded subdomains of R™ and Q, — R™ as K; — oco. By the
similar approximation argument of Theorem 5 in [23], we have the existence of weak solutions
(u(t),v(t),n(t)) associated to problem (13)-(14), and

u(ymywyur) € C([r = h, T V), v(-, 1yw,v,) € C([1 — h,T); H),
n(,m,w,n(r)) € C(Ir, T, Ryua), VI >,
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S0 its proof is omitted here. [
In order to obtain the uniqueness and continuous dependence of solutions, we also need the
following conditions:

(H6) There exists L > 0 such that
|f(z,u) — f(z,v)] < Llu — v|,Vx € R,u,v € R.
(H7) There exists a L1 > 0 such that
|F(z,u) — F(z,v)| < Li(1+ [ulP~2 + |v|P~?)|u — v|,Vz € R,u,v € R.

Theorem 9. In addition to the hypotheses in Theorem 8, suppose that (H6)-(HT) hold true. Then
there exists a unique solution to the problem (13)-(14), and the solutions continuously depend on
the initial data in E for any T <t and w € €.

Proof. Assume that (ul, v, n'(7)), (uk, v, n*(7)) € E, and consider the solutions (v'(-),v'(+),n'(+)),
(u*(-),v*(-),n*(+)) to (13) corresponding to the initial data (u7,v7,n'(7)) and (u7, vy, n* (7)), respec-
tively. Let a =o' —u*, 0 =0 —v*, =1 —n*, ¢ = ¢’ — ¢*. Then we have from (13) that

s

g

a—: — 00+ J(v —ou' + 2(6iw)) — J(v* — du* + z(6w)) — Au

Ot 62— / WP AR + F (@, ) — F(z, u") (35)
0

= fla, ' (t = p(t)) — fla,u*(t = p(t))),

o

ot or’

with initial conditions

w(t,x) =t,(t—r,x) =9t —1,2), T—h<t<T, xR

o(t,x) =0, (t —Tyx) = W—f—&i(t—ﬂx% T—h<t<T, zeRY, (36)

i(r,z,r) = a(r,z) — a(t — rz) = ¢(0,z) — ¢(—r, x), r € RY, xz € R™.

Take the inner product in H of the second equation of (35) with 9, we obtain

]‘ d ~ ~ !/ !/ * * ~
§£|v|§ — 0183 + (J(' — 6u' + 2(0w)) — J(v* — du* + z(0yw)), D)
+ Vi, V) + (A + 6%) (i, 9) — </0 w(r)Aq(r)dr, f)) + (F(z,u') — F(z,u"),0)
= (f(z, /' (t = p(t)) = f(z,u"(t = p(1))), ). (37)
Since ¥ = % + du, we deduce that
2
@) = A D s ajag (39)
(Va, V9) = 2 %) + olall”. (39)

By Hélder inequality and (H6)-(HT),

(f(,u'(t = p(1))) = f(2,u” (t = p(1))), 7) < %\17\3 +Cla(t - p(t))13, (40)
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(P, ") — P ), ) < 20+ O1F () — P, )
<Bpgre [ @t
RTL
61 ~12 ~112
< Do+ opale, (a1)
where we have used (30) in the last inequality. By the similar arguments in (20)-(22), we find that

(J(' = o6u' + 2(Ow)) — J(v* — du* + 2(0yw)),0) = (J'(C)(f)—éﬂ),ﬁ)

. s ﬂl 252
> B1[of3 — 682 (@, 0)] > 1015 — 25, | 3, (42)
where ( is between v/ — 6u/ + z(0,w) and v* — du* + z(#,w), and
- ( / i) == ([ uraiean 5+ o+ 57)
0 0 ot 0

o o .
S+ Sl ~ / )i, 37

2dt
o . 5%my
> il T~ e . (13)
Inserting (38)-(43) into (37) yields that
1d _ . g
2 (03 + Nl + (/\+52)IUI§+II77||2,1)+(41— ) bt
252 §2m

2y _ P2 -9 _ 0 24 Tym2
+ (o089 = ZY1a+ (5= 20 al? + Sl

(44)

< Clal® + Cla(t - p(t))]3-

By the selection of § in Theorem 8, we obtain
> 0.

252 2
B 550, 640t =20 L g 5 Tmo
4 253, o

Integrating (44) from ¢ to 7, and arguing as in (27), we deduced that
[6(t, 7w, 0[5 + lla(t, 7w, @) [ + (A + 8% alt, 7w, ) |3 + 17t 7w, (7)1,

1

< Jo(r, 7,0, 50 |3 + (T, 7w, ) |12 + (1707, 7w, (7)) 71

t
Cltt, + [ (w(r, 0,8+ (70|

O+ 82,0 )+ T (15)
The Gronwall lemma implies that
|0(t, 7,0, 07) 5 + |a(t, 7w, a7 I + (A + 6% |alt, 7w, 7[5 + 170t 7w, 7(7) 15 1
i,l)a (46)

<UD (o 7w, 00) 3 + [T, 7w, @)1 + CllE,, + (r, 7w, (7))l

and thus the assertion of this theorem follows immediately. O
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Thanks to Theorems 8-9 and Lemma 10, we define a continuous cocycle ® for problem (12)-(13)
which is given by ® : RT xRxQx E — E and forevery t € RT, 7 € R, w € Q and (u,,v,,n(7)) € E,

(I)(tv T, W, (U’T7 Ur, 77(7—)) = { (ut+‘r('7 T, 977'(*}’ ’LL-,—), Ut+7'('7 T, 977'(*}; U-,—)7 W(f + T, T, 9,7w7 77(7—))) }7

where u;y, and vyy, are defined for 8 € [—h, 0] as ui-(0) = u(t +7+0) and v (0) = v(t+7+0)
respectively, and Ut+7'('7 T,0_rw, UT) = £t+‘r('7 T,0_rw, gr) - Z(9t+~w) with U‘r(') = g‘r() - Z(Gw)

4. Uniform estimates of solutions. In this section, we derive uniform estimates on the solutions
of (13)-(14) defined on R™ for the purpose of proving the existence of a pullback absorbing set of
the random dynamical system. In particular, we will show uniform estimates on the tail parts of
the solutions for large space variables when time is sufficiently large in order to prove the pullback
asymptotic compactness of continuous cocycle associated with the equation on the unbounded
domain R"”.

Assume that D = {D(1,w) : 7 € R,w € Q} is a family of bounded nonempty subsets of E
satisfying, for every 7 € R, w € , and each n € {a, a1},

i e s (Il 1Ry 1, + I, ) =0 (D
(¢, ,m)ED(T+t,0:w)

where a and a7 will be given in Lemma 10 and Theorem 13, respectively. Denote by D the collection
of all families of bounded nonempty subsets of E which fulfill condition (47), i.e.,

D={D={D(r,w): 7 € Ryw € Q} : D satisfies (47)}.
Obviously D is neighborhood closed.

Lemma 10. In addition to the assumptions (H1)-(HT7), assume that there exists a positive constant
a such that

o
- 4
oz<27 (8)
20 B«
k—7<5<z—§, (49)
4m0 2
052 45— a >0, (50)
o

and
23262 4k3eh

(6 =) +%) - B Bu(l—p.)

> 0. (51)
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Then for every T € R and w € Q, the solution of (13)-(14) with w replaced by 6_,w satisfies for all
t>h,

e |Gy + lurly + lurlly, + lurcllEy , g, + I0(T)IE
<Ce ™ (Jo(r —t,7 = t,0_rw,v—)[3 + [Ju(t — t, 7 — t,0_rw,ur—y)||?)
+Ce™ (Ju(r — t,7 — t,0_rw,ur—e) |5 + |u(r — £, 7 — t,0_rw, ur_4)[5)

T

+ O n(r — t,7 — ,0_rw,n(r — 1))[2 1 + C + Ce™oT / e lg(r)l3dr

— 00

0 m
O oll +C [ eSOy + L) P
—o° j=1

where C' is a positive constant independent of T and w.

Proof. It follows from (25) that

) ~ 8 .
(0 TP+ 3+ 89l + Il +250)) + (G — 20— ) ool

2 252
n <5 _A0%mo a> e 2 + ((5 —a)(A+0?) — 2%5) e u2
o 1

o — 42
+ (5 = 0) eIl + Gk — 2006 Tlu) < 2 ult — p(0)]3

+Ceg(t)]5 + Ce + Ce® (|2(0uw) 3 + (0w [f + [|2(0e) ). (52)
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Givent 20,7 € R,w € Qand 7 — ¢t < T < 7, integrating (52) over (7 —¢,T), in view of (H4), we
obtain that

(T, 7 —t,w, UT—Q'% + lu(T, 7 —t, w, u‘r—t)H2 + (A + 62)|U(T7 T —t,w, UT—t)@
+ (T, 7 — t,w,n(T — t))||i1 + 2ks5|(u(T, 7 — t, w, ur—¢)[P

Bl —aT ’ ar 2
+|—=—=-20—ae e o(r, T —t,w, vr—y)|3dr

2 —t
452 r
+ (5 2o a) e_aT/ e lulr, T — t,w, ur—¢)||2dr
o T—t
23252 T
+ ((5 —a)(A+6?%) — ’8525 ) e‘aT/ e |ulr, T — t,w,ur_¢)|5dr
1 T—t
g T T 2
+(G-a)e / e = tn(r = )|
T
+ ks(0kr — Qa)e_o‘T/ e u(r, T —t,w, ur ) |bdr
T—t

< e T—7+t) (|v(7’ —t,7—t,w, vT_t)|§ + |lu(r —t, 7 — t,w, uT_t)Hz)

+e T (A4 6% ulr — t,7 = t,w,ur )5 + (7 — 8,7 — t,w,n(T = D)|71)

4+ 2e TG (u(r — t,7 — t,w,ur_4)) + C (53)
4k§ —aT r ar 2 —aT T ar 2
+ 75 e e u(r — p(r), 7 —t,w,ur—¢)|5dr + Ce e g(r)|zdr
1 T—t T—t

T
ket [ (20w + O + (60 [P
T—1

Let v = r — p(r), where p(r) € [0, h] and ﬁ’(r) < ﬁ for all r € R. Therefore,

T
/ e u(r — p(r), 7 — Lw,uT,t)\%dr
T—t

eah T ,
< T, / e |u(r', T — t,w, ur ) |2dr’
— Px Jr—t—h

T (54)

ah T—1
< 16 (/ eo”,|u(r', T —t,w, ur)|3dr’ + / eo”,|u(r'7 T—tw, uT_t)gdr’>
— Px T—t—h T—t

DR, e

T
/ e u(r T =ty w, ur_y)|3dr.
T—t
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By slightly modifying the argument of (28) and replacing w by 6_,w, we have from (H5), (48)-(51)
and (53)-(54) that

[0(T, 7 —t,0_rw,vr_ )3 + (T, 7 — t,0_ w0, ur_o)||> + N+ 6D (T, 7 — t,0_rw,ur ;)|

+ (T, 7 —¢t,0_rw,n(r — t))||i,1 + 2ks|u(T, 7 —t,0_,w, uT_t)|§

L emT=7+) (Jo(r —t, 7 = t,0_rw, v, )5 + [Ju(r — t, 7 — t,0_w, ur—)||?)

+e T (Clu(r — t, 7 — t,6_;w,ur ) |3 + (7 — .7 — t,0—rw,n(r = )15 1)

T

+ Ce T y(r —t,7 —t,0_rw, ur—y) |2 + C’e_aT/ e |g(r)|3dr + C (55)
—o0o
T
+Ce T g|[g,, + Cem" / e (|2(0y—+)[3 + [2(6r—rw)[5 + [|2(6r—r)||?) dr.
T—1

Note that z(6w) = Z;”:l h;z;(0iw;) and h; € L*(R™) N LP(R™) N H'(R"). Hence, we deduce that
for every w € €,

e’“/ e (|2(0r—rw)[3 + [2(0r—rw) [} + [|2(r—rw)||*)dr
T—t

0
< / e (|00 w) 3 + [2(00) [+ [|2(6,00) )i’

m

t
0
S C/ e > (125 (0 wy)I* + |2 (0rwj)[P) dr'. (56)
e j=1

Replacing T by 7+ s in (55) where s € [—h, 0], in view of (56), we find that for all ¢ > h,

[o(T 4+ 8,7 —t,0_rw,vr_¢)|2 + |u(T 4+ 8,7 —t,0_rw,ur )||> + |u(r + 5,7 — t,0_w0,ur_4)|3
+lu(r + 5,7 - t,0_w, u‘l'*t)|§ + (T +s,7—t,0_;w,n(T — t))Hi,l
< Ce ™ (Jo(r —t, 7 — t,0_rw,v,—¢) 3+ |Ju(r — t, 7 — t,0_rw, ur—)[|?) (57)

+Ce™ (Ju(r — t,7 — t,0_rw,ur—¢) |5 + |u(r — £, 7 — t,0_rw, ur4)[7)
T

+ CeIn(r —t, 7 —t,0_rw,n(1 — t))“fn +C+Ce 7 / e*"|g(r)|5dr

—0o0

0 m
0 oll, +C [ eSO + 1240 P) .

j=1
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Hence, from (57) we obtain that for all ¢ > h,

[vrllEy, + lurliZ, + lurllEy, + lurllE,, p, + 1000152
<Ce ™ (jo(r —t,7 —t,0_rw,v—) 3 + ||u(r —t, 7 — t,0_rw,ur—y)||?)

+Ce™ (Ju(r — t,7 — t,0_rw,ur—e) |5 + |u(r — £, 7 — t,0_rw,ur—4)[7)

T

+Ce ™ |n(t —t,7 —t,0_rw,n(T — t))“fm +C+Ce / e |g(r)[5dr

— 00

0 m
O ol +C [ e Y12y 0rn) P + 12y (0P (58)
e j=1

This completes the proof. O
Lemma 11. Assume that the hypotheses in Lemma 10 hold. Let 7 € R, w € Q and B = {B(r,w) :

Te€R,we Q} € D. Then for any € > 0, there exist Ty =T (e, 7,w, B) < h and K1 = Ky (¢, T,w) >
0 such that for allt > Ty and K > K, the solution of (13)-(14) with w replaced by 6_,w satisfies

sup / (|Vu(7 + 5,7 —t,0_rw,ur )2+ |u(T 48,7 —t,0_w, UT_t)|2)d$
se[—h,0] Jas,

+ sup / (|u(7' + 8,7 —t,0_rw,ur )2+ |ulrt + 5,7 —t,0_,w, uT,t)|p) dx
s€[—h,0] QS

+/ Mﬂ/\WWw—a&wmh—mN%wN@,
0 Q

3

where Q5. = {z € R" | |z| > K} and (ur—t,vr—,n(T —t)) € B(T — t,0_w).

Proof. We choose a smooth function t such that 0 < t(s) < 1 for any s € RT with
t(s)=0 for 0<s<1 and t(s) =1 for s > 2,

and there exist positive constants Cp, C{, such that |t'(s)] < Cp and t'(s) < C] for any s € RT.

||

Multiplying the second equation of (13) by t (ﬁ> v and then integrating over R™, we deduce that
1d 22| 22| 2 |z
a2 wa (2N s = sus 200
+(A+69) e Jw x + ez (v — du + z(w))vdx

_ /Ooo u(r) /Rn t ('}i;) Anvdzdr + /Rn t (?j) F(z,u)vds (59)

= /Rn t (EC(';) f(zu(t — p(t))vdz + /Rn t (EC(';) (9(t) + (o + 8)2(bpw) ) vda.
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We now estimate the terms in (59) as follows. First, by Young’s inequality, we obtain

|| |z 2c , (|
_/nt<K2 vAudr = t ¥l VuVudr + - ﬁt/ ¥yl Vuvdx

2 2
> / t <|m|) Vu <Va +0Vu — Vz(@w)) dr — 2v2 t (|m ) |Vu||v|dz
Rn

K2 ot K Jk<ie<vak
td [ (P 5[ (lf
> -2
Z 3% R”t(Kz |Vul|?dx + = / t 702 |Vul*dz
x2
—o [ (%) watbwa - P + ) (60)
R?L

Similar to the argument of (21) and (22), we derive that
0o 2
— / ,u(r)/ t (|K|2 ) Anvdzdr
0
B 0 |J}|2 /oo / 20 ‘(I}|2
_/0 M(r)/nt<K VnVudzdr + ; w(r) - K2t el Vnudxdr
e’} 2
:/ u(r)/ t('xl )V V(an—i-é +a77—z(9tw)> dxdr
0 R ot 0
e 2z x|?
+/O w(r) /Rn Kzt’ (|K2) Vnudzdr (61)
1 2 oo 2
> 5% ,u(r)/ t<x| )V?ﬂ dxdr + — / u(r)/ t<|x| >|V77| dxdr
0 n O n

26%myg |z|? 9 2myg || 9

By Lagrange’s mean value theorem and (H1), similar to (20), we have

/ K (;‘j) — bu+ 2(0w) vda > By /R K (f;'j) ERE

,3,1 + [vl3) -

WV
M‘F
T
H«-o-
-
N‘_ N‘
N————
E

&

|
A

(o9
[\v]

-
o
N‘i
no
N———
=
o

QL

IS

Ju
(at—i—éu—z(ﬂtw)> x
1d 2PN e, 0 2\ | 2
> -2 Lind B e Lind
z 2dt/]Rnt<K2) ful dw+2/Rnt Rz ) lulde

- C/Rn t (';;'22) |2(0yw) |2 da. (63)
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For the last term on the left-hand side of (59), by (H4) and Young’s inequality, we deduce that

[ (';() Fr.e0w)ir < [ t('}@' ) ra(o)] + alul? =) (61 o
<5 [ () (k@ + o) ds

+’“5"25’“7/Rt<§22>| Pz +2I<;]:§k7/ t('f('j) |2(6yw)|Pdz

g%/ t(';(;) (ksl? + |2(0mw)|?) da +‘5§ Rnt('ﬁj)G(m u)da

ok |z|? K / |z|? »
+5 nt( |ke(z)|dz + Seadhn tH = |z(0rw)|Pdx, (64)

and thus

|z _ / |z du B
/Rn t < 702 F(z,u)vdr = ) t e F(z,u) 5 + du — z(Oyw) | dx
d || Oky ||?
> — — — N
>t o t < o2 > G(z,u)dr + 3 e t 7e G(z,u)dz

1.2
—¢ [ (5L (@ + ) + st do

R?’I K2
— % 2(0:w)|? + |2(6,w)|P) d
o [ () (=0 + 20 ) (65)

By Young’s inequality once more and (H3), the terms on the right-hand side of (59) are bounded
by

[ () 0+ e orenvir< 2 [ (1) o
+c/” <|> ‘dﬁc/ (| l2) o) P, .

and

L(5) sate—tmpote < 2 [ (B0 ppras

= f('j('j)ml( pan+ 52 [ t('K') jult — p(t)) . (67)
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Then it follows from (59)-(63) and (65)-(67) that

% Rnt('}?t) (|’U\2+|Vu|2 (/\+52)|u|2+2G(9:,u)) dx

d [ 2 B 2
) ,u(r)/ t<|K|2> V77|2dxdr+( - 26) /Rt<|f(|2> [o[*dz
462 2 2 2(52 2
(o) L) ot ) (5
o] 2 2
+%/0 u(r)/ t<|K2> |Vn|2dacdr+5k7/ t<|lx(|2)G(x u)dx

< (1o + 1l + )2 )+ﬁ (B pute — o) 2
K \2 1 B4 K2

vo [ (M) porac | (“’”') B+ @) + ko (w)] + ks(2)]) de

|z

+C t(K2

) (2O + 2P + [V=(0,)2) d.

Hence,
j(eat/ (I z[® ><|v|2+|w2 (A +6%)|ul® + 2G(z, u)) dx)

e (e [T [ () )
(@ 22(5—a> /t<|;<|§>| 2
(5 45 o _ )eat/nt(?z)WW o
(¢

(

+

252 2
+ —a)(A+4%) — 2%15 )eat/ t<|K|2>| ?dx

poe)e o [ (R
+ (Ok7 — 20) ™ /R t (';'22) Gz, u)dz

c . k3 Edls
< e E(lvl3 + Jlul® + ||n\|i1) + B—fe ¢ /Rn t <K2> lu(t — p(t))|*dx

Cet [ ¢ 2* 2d
+Ce Ve l9(t)["dx

b
+Ceat/ 1‘<|K|2) (|k1( )|2+\k3($)|2+|k6($)|+|k8($)|)dx

_|_

+ceaf/ t('KE) (|2(0:)* + [2(6:w) [P + |V 2(0pw)|?) d.
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Givent >0, 7 € R, w € Q and 7 — ¢t < T < 7, integrating the inequality (69) over (7 —¢,T) and
replacing w by 6_,w, by (H4), (48)-(51) and the similar argument of (28) and (54), we deduce that

2
eaT/ t <|f(|2 ) (|U(T T = ta 077"*): 'U'rft)‘2 + ‘VU(T, T—= t, gf'rwa u'rft)|2) dx

2
+ e“T/ t ('chlQ ) (A4 )T —t,0_rw,ur—y)|* + 2ks|u(T, 7 — t,0_rw, ur—)|P) da

3] 2
+ eaT/ u(r)/ t (' i ) \V(T, 7 —t,0_,w,n(r — t),r)*dzdr
0 R"

2
+ Cea(T_t) / t <|x| (lU(T —t,T—t, 077"*): ’LL.,—,t)|2 + |U(T —t,7—t,0_rw, U’T*t)|p) dx
o] 2
w0 [ty [ (L) 9t =t 0.0t — 01,0 P
0
+Ce7 ) / <| - ) (Isl® + |ks) dz + 7/ T u(r, T —t,0_rw,vry) 3dr
RTL

/ Pl — 0y, ur—) |2 4+ (7 — 8,00, (T — £))[21) dr

2
+ Ceolr= t>||¢||cH+c/ / <|x| > (r)[2dzdr

+CeO‘T/ (';’j) (s @) + k(@) + k()| + [ks(a)]) de
e / o[ (W) Orr)? |20y r0) P 4 [V2(Brri0) ) (70)

Let €9 be given arbitrarily. Since (u,—¢, vr—¢,n(7 — 1)) € D(7 — t,6_4w) and D € D, we can choose
t sufficiently large such that

2
Ce / t (';;2> (IVu(r —t,7 —t,0_w,ur—) > + |u(t — t, 7 — t,0_rw,ur4)|?) da
Rn

2
RTL

a || —a

+ Ce™ /Rn t <K2 (r —t,7 —t,0_;w,v,y)|Pdz + Ce*||B||E,,
—at > ‘ |2 2

+Ce ; u(r) t el [Vo(r —t, 7 —t,0_rw,n(r —t),r)|[*dedr

< Ce* (Jlu(r — t, T—t,0_rw,ur ) ||P+ u(r —t, 7 — t,0_rw,u-0) |3 + ||9)12,,)

+ Ce u(t —t, 7 —t,0_,w, ur—¢) )+ Ce ™ o(r —t,7 —t,0_ w,v, )3

+Ce (T —t,7 —t,6_rw,n(r —1))||% 1 < Ceo. (71)
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Note that z(0iw) = 377", h;zj(0,w;) and h; € L*(R™) N LP(R™) N H'(R™). Hence, there is Ry =
Ri(gg,w) such that for all K > Ry and j =1,2,...,m,

/ (1h; @)1 + [hy (@)IP + [Vhy(2)*)de < —=, (72)
lz|>K (w)
where 7(w) is the tempered function in (8). By (8)-(9) and (72), we have for all K > R,

T 2
C’efm/ ear/ t <|[$(|2) ([2(0r—rw)* + [2(0r—rw) [P + |V 2(0,—rw)|?) dadr
T—t R™

0
<c/ e‘”// (|2(00w) 2 + [2(0pw) [P + |V 2(0,0w)?)dxdr’

<
Il

0
< Ceo / e r(Opw)dr’ < Cey. (73)

By the assumption (H5), in view of ki, k3 € L?(R™) and kg, ks € L'(R™), we can choose K
sufficiently large such that

\x|2 2 2
C | t| =) (k@) + |ks(x)]* + ke (2)| + |ks(x)]) dz
R’Vl

T 2
+ Cef‘”/ e"”/ t <|Ix(|2) lg(r)|2dzdr < Ce. (74)
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By (55), (56) and (71), we can take K and t large enough such that

C T
o aT / e (|v(r, T—t,0_rw, v )3+ ulr, T —t,0_,w, uTt)||2>dr
T—1
¢ —aT T ar 2
+ ? e ||77(7’a T —1, 9_7—&), 77(7- - t))”;,t,ldr
T—1
C
< X (eo”5 (Jo(r —t, 7 = t,0_rw, v )5+ [Ju(t — t,7 = t,0_rw,ur—y)||?)

+e " (Ju(r —t, 7 — t,0_rw,ur—y) |3+ Ju(t — t, 7 — t,0_,w, uT,t)|§)

T

+e M n(r —t, 7 —t,0_rw,n(r — )|, +1+e77 / " |g(r)3dr

0 m
+e olE, +/ ey (12 (0rwy)* + IZj(f)rwj)lp)dr)
oo =

T

0 m
g+ [ S (e 0 + |z O Py | (75)

Jj=1

<Ce¢ |1 —l—e_‘”/

Replacing T by 7 + s in (70) where s € [—h,0], in view of (71) and (73)-(75), when t and K are
sufficiently large, we obtain

2
sup / t (|K2> (Jo(r+ 8,7 —t,0_rw, v, ) > + [Vu(r + 5,7 — t,0_rw,ur ) [*) d
s€[—h,0] JR™

2
+ sup / t (';,'2) |U(7‘ + s, 7 -1, H—vau‘f'—t)|2dx
s€[—h,0] JR™

2
+ sup / t <|I$(|2) lu(r + 5,7 —t,0_;w,ur—)|Pda
s€[—h,0] JR™

+ /0Oo () /Rn t (';'22) IVn(r, 7 —t,0_rw,n(T —t),7) | dzdr (76)

T

0 m
g+ [ e S (5O + |2y (O )
S

<Cey |1+ 6_0”—/

— 00

Thus Lemma 11 follows from (76) by choosing € appropriately for a given ¢ > 0. O

5. Existence of pullback attractors. In this section, we prove the existence of a pullback at-
tractor for the continuous cocycle ® associated with the system (13)-(14) on R™. First we apply
Lemma 10 to present the existence of a pullback absorbing set in D.

Lemma 12. Assume that the hypotheses in Lemma 10 hold. Then there exists G = {G(T,w) : T €
R,w € Q} € D such that K is a closed measurable D-pullback absorbing set for ®, that is, for every
TER, weQand B={B(r,w): 7 € R,w € Q} € D, there exists To = To(T,w, B) > 0 such that
forallt > Ty,

O(t, 7 —t,0_4w,B(T —t,0_w)) C G(T,w).
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Proof. Given 7 € R and w € Q, let G(1,w) = {(9071/}77;) € E: ||gp||%v + ||<p||%H + ||l
[911%,, + Inll%.1 < L(7,w)}, where

_|_

P
Crprn)

T

0 m
e |g(r)5dr + C/ "y (12 (0w;)| + |2 (0,w)[P)dr, — (77)
e

L(r,w)=C+ Ce*‘”/

— 00

where L(7,w) is the constant given by the right-hand side of (58). Then for each 7 € R, L(r,") :
QO — Ris (F, B(R))-measurable, and

lim e*"L(t 4+ 60,w)=0. (78)

r——00

Therefore, G = {G(1,w) : T € R,w € Q} belongs to D. By Lemma 10, G = {G(7,w) : 7 € R,w € O}
is a closed measurable D-pullback absorbing set in D for ®. [

We are now in a position to state and prove our main result: the existence of a pullback attractor
for ® in D.

Theorem 13. Assume that the hypotheses in Lemma 10 hold. Then the continuous cocycle ®
associated with problem (13)-(14) possesses a unique D-pullback attractor A € D in E.

Proof. Let 7 € R,w € 2 be given arbitrarily. By Lemmas 10 and 12, for any 7' > 7 — ¢t with ¢t > 0
let

q)(T -7+ t7 T = t7 Q,tw, (U/.,—,t, Ur—t, 77(7- - t))) = (UT('7 T = t7 977'("}7 U/.,—,t)7
vp( T — 0w, v.—), (T, 7 —t,0_rw,n(T —1)))

where (u(-), v(+),n(+)) is a solution of (13)-(14) satisfying the energy equation (15) with (u,_¢, vr—¢, n(T—
t) € Gt —t,0_4w), and G = {G(1,w) : 7 € R,w € Q} € D is a closed measurable D-pullback ab-
sorbing set for ® in E.

Given a positive integer R, let Qo = {z € R" : |z| < 2R}, and we define the following new
variables
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where t is the cutoff function defined in the proof of Lemma 11. Multiplying Egs. (1

()

) J (v —6u+ 2(0rw)) — AT+ (A +6%)a

1—t (lw‘ ) we obtain

with initial conditions

Telr—t—h,7—

Te[r—t—h,T—

and boundary conditions

~—

~
8
I

=

I
NS
GGG
o
Sl

Let U= uy + ua, U =101 4+ v, §=m1 + 12.

1o}
%—&—61@ Vg,

8’[}2

u(T,z) =0, (T —7+t,2) =

2
5T Svg — Aug + (X + 6%)ug + (1 —t (2'2)) J (v —du+ z(Orw))

3) and (14) by

(79)

(-1 (5) e

Y i 0 o9t (2 wu 4 uae (12
_ R2 Z( TW)+ Ri u+u R2

urae (5 yoyar,

t], S QQR,

(T, x) =0, (T -7+ t,x) =

+5 (1 —t(';';)) T —7+1,2) — (1 —t(';';)) 2(Orw),

t], x € Qop,
nr—txz,r)=u(lr—t,z)—u(r —t—r,z)

HENE ) RYR (T ) PR

T — t
(D)) T o w )

122\ 99(
or

=y

(80)

T e (r—t,00), |z| =2R,
T e (r—t,00), |z| =2R,
T e (r—t,00), |x| =2R.

(81)

Then we can decompose Eqs. (79)-(81) as follows:

(82)
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with initial conditions

2
wlTa) = a0 =+ t0) = (1= () Jor = 0a),
Telr—t—h,7—t], z € Qapg,

2\ 0p(T — 7 +1t,
vo(T,z) =ve r (T — T+ t,x) = 1—t<|§2 w

+6 (1—{('?5)) T —7+1,2) — (1—t(|]9;|22)>z(9w),
Te[r—t—h,7m—1t], z € Qap,

(T —t,x,r) =us(T —t,2) —us(r —t —r,x)

= (1—t<2|22>)¢(0,x)— (1—{('2'5)) ¢(—r,x), r € RY, x € Qap,

us(T,xz) =0, T € (r—t00), |z|]=2R,
va(T,xz) =0, T € (r—1t00), || =2R,
n(T,2) =0, TE€ (r—t00), |x| =2R,

and

oT g ) ) #0re);

2 2
|x|2>) z(0rw) + 2Vt ‘?2 ) Vu + ult <|2|2 )

x| o

+2 u(r)Vt( 5 > Vn(r)dr + p(r)At

R
Om |z Om
aiT:v175u1+ <1t(R2 Z(GTW)*W7

with initial conditions

w(Tyz)=u (T —7+t,x)=0, Te[r—t—h,7—1], € Qap,
n(T,z)=vi (T —7+t,x)=0, Telr—t—h,17—t], x € Qapg,
m(r—t,z,r) =0, recRT z&Qp,

and boundary conditions
ul(T7x):0a TE(T—t,OO)7 |$‘:2R7

’Ul(T,fE):O, TG(Tft,OO), |£L'|:2R,
m(T,xz) =0, T € (r—1t,00), |z|]=2R.
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Step 1. Uniform estimates on the solutions of Egs. (82)-(84). Taking the inner product in
H of the second equation of (82) with vq, we have

; d?Ivz\g Slvaf2 + ((1 ¢ (;'j)) (J (0 — 6u+ 2(67w)) — J (01 — Sur + 2(0rw)) , v2)
+ (Vua, Vo) 4 (ot ) azon) = ([ ) (e ) = ()

Arguing as in (16)-(17), (20) and (22), in view of vy = 8“2 + dug and vy = 6"2 + duz + 5 8"2 ,In a
similar way as in Theorem 8 and by Eq. (82), we deduce that

((1 —t ('g;)) (J (v = Su + 2(07w)) — J (v1 — 6uq + 2(67w)) )’UQ)

~((1-4(5)) @0 -v - st ) > Dl - ek 69

where ( is between v — du + z(frw) and v — duy + z(frw), and

([T utrammaren) == ([ utr)amyan 52 +50,+ 52

1d 9 o 9 52mg 2
> 2l Tl — s, (90)
Oug 1 9 2
(VUQ,V'UQ) = VUQ,VaT +5VUQ = 2dT||'LL2|| +5||U2H (91)
0 1d
(uz,v2) = (u(;} +5u2) 5 ol + sl (92)

Let o7 := min {61 —20,26 — 252;”0 ,20 — 51(ﬁ>j_52 , 2} > 0. Then it follows from (88)-(92) that

d
77 (023 + ua | + A+ 6%)[ual3 + [Im2]51)

+a (Joaf + [luzl” + (A + ) |uzl3 + [In2ll7, 1) < 0. (93)

Given t > 0, 7 € R and w € , using the Gronwall inequality to (93), and replacing w by 0_,w, we
obtain that for all T € [T — ¢, T]

[oo (T, 7 — t,0_rw, 02 7—4) |3 + [Jua(T, T — t,0_rw,uz—4)|?
+ (A4 03 |ua(T, 7 — t, 0w, uz ) |5 + Im2(T, 7 — t,0_rw,ma(T — 1))|12 4
< e~ (T=7+1) (Jvo(r = t,7 = t,0_rw, vg,T,t))@ + ||ug(r —t, 7 — ¢, 0_rw, U277—7t)H2)
+ A+ 6)e T g (1 —t, 7 — 1, 0w, uzr—¢)|3

+ e T Iy (7 — b7 — £, 6w, ma(r = 1))I[7 1. (94)
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Replacing T' by 7 + s in (94) where s € [—h, 0], we have that for all ¢t > h,

lvar iy, + lluae &y, + luzelIE,, + 2 (D17

= sup |ua(r 45,7 — 0w, v d)[3+ sup fua(r 45,7 — 10w, us )|

s€[—h,0] s€[—h,0]
+ sup |ua(7T + 8,7 —t,0_;w, UQ,T*t)@ +Im2(r, 7 = ,0_rw,n2(r — t))”i,l
s€[—h,0]
< Cemant (\UQ(T —t, T —t,0_;w,va, )3+ [Jua(T —t, T —t,0_,w, 'U;Q,T_t)HQ) (95)

+ Ce— it (|U2(T —t,7—t,0_rw, ug,T_t)@ +Ine(r —t, 7 —t,0_rw,ne(1 — t))||i1) .

Step 2. Uniform estimates on the solutions of Eqs. (85)-(87). We consider a couple of
solutions (ul(t),v'(t),n'(t)) and (u?(t),v*(t),n*(t)) of system (13) with initial data (ul,vl, n'(7))
and (u2, 02,72 (7)), respectively. Let a(T) = ul(T) — (), 5(T) = v} (T) — 3 (T), 7(T) = 1} (T) -
n3(T). Then it follows from Egs. (85)-(87) that (u(T),v(T),7(T)) satisfies

aﬂ+5ﬂ—ﬁ

or - of?

v _ _ _ T
aT51}Au+()\+52)u+<1t(Rz))J(vi5u%+z(0Tw))

oo

1—t <R2>) J (v = 0ui + 2(0rw)) — /0 w(r) AT (r)dr

(
+ (1 —t (Z';)) F(x,u') — (1 —t (';; ) F(x,u?)
(

(M) st o - (1 (B5)) st - o) o

' /0°° L)Vt (;;l) (Vo () — Vi (r))dr + /O
.

with initial conditions

u(T,z) =U,— (T —7+t,2)=0, Te[r—t—h,7—1t], € g,
(T, 2) =0, (T —7+t,x)=0, TE[r—t—h,7—t], € Qapg, (97)
ot —t,x,r) =0, r€R" x€Qop,

and boundary conditions

uw(T,z) =0, Te€(r—t o), || =2R,
(T, z) =0, Te€(r—1t00), |x|]=2R, (98)
n(T,z) =0, Te€(r—t,00), |z|=2R.
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Taking the inner product in H of the second equation of (96) with T, in a similar way as above we
have

d o P P PR
=5 (13 + 117l” + A+ 0%) [l + [177,0) + e (1213 + [l + (3 + %) [als + [17ll%..)

<2 ' ((1 —t (';';)) (F(z,u') — F(z,u%)) ,v) ’
(1= (B5)) @ - o) - s - pay) )]
Vit ('gj) (Vu! — VUZ),U> ’ +2 ‘ (At (';'22) (u* — u2),v>

(
(

+4 (/OOO wu(r)Vt <|;|22) (Vnt(r) — Vn2(r))dr, v> ’
(

+ 2

+4

2| [T ueac(BE) o - enans)|. (99)
where a7 > 0 is given in (93). By a simple computation, we find that
At ('gj) =t <|;;|22) %2 + ¢ <;|22> %, (100)
and
Vit ('gj) =t ('2'22) %. (101)

Given 7 € R, w € Q and ¢ > 0, integrating (99) over (7 —¢,T) with T' € [t — ¢, 7] and replacing w
by 0_,w, in view of (99)-(101) and |[t'(s)| < Co, [t"(s)| < C} for any s € RT, we deduce that
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(T, 7 —1,0_rw,5r ) o+ || T, T —,0_rw,Tr ) |2
+ [T, 7 = t,0rw, )5 + 7T, = t,0_w,7( = 1))|2 4

2
H (1 —t <|R|2 )) (F(z,u'(r,m —t,0_rw,ur_,)) (102)
_F(l', u2( T, T —t, 9-7-00, u?——t))) ||L2(QQR><[Tft,T])

X ot 7 —t,0—rw0, )|l L2 px [r—t.7])
|z
e H (1 —t ( a3 ) ) (! (= p(r), 7~ 1.6_w.u7 )

—f(x,uQ(r - ,0(7"), T = ta H—va u-}——t)))

L2(QQR><[7—7t,T])

X ||@(t,7’ — t,ef-rwvﬁfft)||L2(QQR><[T—t,‘r])

c
+ E (HV’ul(T,T - t,efruhu_}., )) t HLz (Qap x[T—t .,.]))

t HL2(522R><[7'7t 7]

)—&-HVu (r, 7 —1,0_ w,u_

X ||@(t,7’ — t,ef-rwvﬁfft)||L2(QQR><[T—t,‘r])

c 1 1
+ R (Hn (r,m =1, G*Tw’nT*t)HLQ(Tft,T;Li(]RJr;Hé(QQR)))
2 2

+ Hn (r,7 — t,077—&)»nr—t))HL2(T_t7T;Lﬁ(R+;H5(QzR)))

(™ = 4,070,750l 2 g 117 ) (103)
where we have used the Sobolev embedding HE (Q2r) < LP(Qar).

Step 3. D-pullback asymptotically upper-semicompact in E. Thanks to Lemma 11, we
see that for every 7 € R, w € Q and any € > 0, there exist Ry = Ro(e,7,w,G) > 0 and Ty =

To(e, 7,w, G) < h such that for any solution (uT(-, T—t,0_rw,tr—t), v (T —t,0_rw,vr—t), n(T, T —
t,0_,w,n(T — t))) € <I>(t, T—t,0_w,G(T —t, H_tw)),

sup / (IVu(r 4+ 5,7 = t,0_rw,ur—) > + (7 + 5,7 — t,0_rw,v,)[*) dz
s€[—h,0] J QS

+ sup / (|u(7’ +5,7 =t 0_rw,ur_y) >+ |lu(t + 5,7 —t,0_rw, uT_t)|p) dx
s€[—h,0] J QS

+/ M(T)/ IVo(r, T —t,0_rw,n(T —t),r)|?dedr <e, VYt>Ty, (104)
0 S

and by G € D, (47), (95) and the Sobolev embedding H{ (Q2r) < LP(Q2r), we have
[vor 12y + luar &y + lluarllEy, + lluzclZ,, ) + (D)5 <& V8> T (105)
In order to prove the D-pullback asymptotic compactness of @, let B = {B(r,w) : 7 € R",w € Q} €

D, sequence t" — o0 (n — o00) and (ul(-, 7 — t", 0_;w,ul_pn), V0 (, T — ", 0w, V), (T, T —
", 0_rw,n" (T —t"))) € D", T — 1", 0_nw, B(T —1",0_nw)) be given arbitrarily. Since G is a
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D-pullback absorbing for ®, we obtain that there exists N > 0 such that for all n > N,
(P(tn7 T — tn, G,tnw, B(T — tn, eftn(/.)))

= (T, 7 — Ty, 01w, P(t" — T, 7 — t", 0 _nw, B(T — t",0_tnw))

C q)(To, T — T, G_Tow, G(T — T, G_Tow)).
This implies that (ul!(-,7 — t",0_rw,ul_yn), V2 (, 7 — ", 0_;w, 02 ), 0" (1,7 — t",0_;w,n" (T —
t"))) € ®(To, 7—To,0_1,w, G(7—Tp, 0_1,w)). Hence for each n, there exists a solution (4(-), d(-),7(-))
of (13) satisfying the energy equation (15) with (4} _, , 0} 5,7 (7 —Tp)) € G(1 — Ty, 0_1,w) such
that

(@?(-), 02 (), 0" (7)) = (w7 (), v (), n"™(7)). (106)

Then it follows from Lemma 10 that

{a™(T,7 — Ty, 0_rw, @ _q,)} is bounded in L*(r — Ty — h,7; H'(R™)), (107)
{o™(T, 7 — Tp,0—rw, 07_g,)} is bounded in L™ (7 — Ty — h, 73 L*(R™)), (108)
{7"(T, 7 — To,0—rw, 7" (T — Tp))} is bounded in L*(r — Ty, 7; L2 (RT; H' (R™))). (109)
Since g—gi =0 — du + z(0rw), in view of the continuity of z(6rw) and (8)-(10), we obtain that for
every w € Q,
ou™(T, 7 — Ty, O_rw, 0l
{ (T, ;T r-1) } is bounded in L(r — Ty — h, 7; L(R™)). (110)

Hence, there exists Ry > Ry such that for all n,m > N,

C

Rl(Hva (T, 7 — Ty, 0

*Tw’aZ*To)HLZ(QQRl><[T—T077'])
+ HVﬂm(T, T —Tp,0-rw, aZ—To)HLQ(Qle x[r=To,7]) >

d

FT T = Toy 0o, 8, _yy) — 07 (T 7 — T, 0r, @’;}PTO))‘

Lz(QQRl X[T*T(),T])

C . 2

+ E ||(77 (Ta T —"Tp,0_rw,n (T - TO))||L2(7—7T0’7-;Lﬁ(RJr;H&(QQRl)))
C m i 2

+ g, NG T 7 = To, 0707 (7 = To )12 (1, 7512 (43118 (221, )

<e, (111)

c ~n ~n ~m ~m 2
+ & Hvl (T, 7 —Tp,0_,w, ULT*TO) —o"(Ty 1 — To,0_rw, vLTfTO)HLZ(QZR1 X r—To.r])
thanks to the continuous embedding H}(Q2g,) < L?(Q2g, ). Recall that

L*®°(r =Ty — h,T; H&(QQRI)) NL>®(r—Ty— h,7; LQ(QQRl)) — L™(r — Ty — h,7; L°(Qar,)),

compactly for any 1 <m < oo, 1 <s<ooifn=1,2and 1 < s <6 if n = 3. Hence, without loss
of generality, by (107) and (110) we have

u (T, 7 —To,0_rw,ul_g,) = u(T,7 —To,0_;w,u;_7,) in L"(Qag, x [T —To —h,7]) (112)
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forany l <m<oo,l1<r<oifn=12and1<r <6ifn=3. Inview of (H6)-(HT7) and
Holder’s inequality, we deduce from (107) and (112) that

H (1 - <R|>) F(z,a"(T,7 = To, 07w, 47 _7,))

L2(Q2pr, X[T—=To,7])

O/ / L+ |a@™(T, 7 — Ty, 0—rw, @) _q ) [*P~* + |G(T, 7 = Tp, 0—rw, r—1, )| P~ %)
=Ty QZRl

2

(T, 7 —To,0_rw, 0} _g,) — (T, 7 —To, 07w, Ur_1,)| dwdl

< Cl™(T, 7 =Ty, 0—rw, @2 _q,) — W(T, 7 — Ty, 0—rw,ir—1,)|7 -0 (113)

|LT/ (Qle X [T—To—hﬂ'])

asn — oo forsome 1 <" <ocifn=1,2and 1< <6ifn=23, and

Lz(QgRl X [T—TQ,TD
2
dxdT

<. /
To J/Q2r,

S CH’LL (Ta 7 — To, 077‘*]7 ﬂ:—LfTO) - a(Ta 7 — Ty, 977’“; ﬂT7T0)||%2(QQR1 X[r=To—h,7]) -0 (114)

— Ty, 0—rw, @ _g) — (T, 7 — T, 0—rw, lir—1;)

as n — oo. Observe that the sequence {0} (T, 7 —To,0_rw, o7 .5, )} is bounded in L*(Qap, x [T —
T, 7]). Thus, there exists N7 > N such that for all n,m > Ny,

H (1 o (lsz)) (F(w, @(T,7 = To, 07w, 47 _1,))

— F(z,a™(T,7 — To, 0w, u" 7,)))

L2(QQR1 X [T*TQ,T])

X Hﬁ?(Ta T = TOa G—va ’D{L,T—T() - ’D{n(Ta T = TOa 0—7“*}’ rD{T,LT—TU)HLz(Qle x[r=To,7]) < 06, (115)
and
() Gt o), - 10w _,)
R2 P y T 0, V—7W, Ur_7,

- f(xaﬂm(T - p(T)vT - TOv 0—7w7ﬂT—Tg)))

L%(QRy X[T=To,7])

x H’D?(Ta T T07 077‘*}7 6111,77T0) - 6T(Ta T = TO; 977"*}7 @TTiTo)HL2(QZR1 X [r—To,7]) < Ce. (116)
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Combing (115)-(116) with (102) and (111) together, we deduce that for all n,m > Ny,

~n ~ 2 ~7 ~ 2 ~7 ~m |2
157, = 0By 1 B = T 1y 1 = 05 U

+ [l77' () — ﬁ;n(T)||2Lﬁ(R+;Hé(QQRl))

- . . ~ 2
= s[up ] ( Hv?(r +s,7—Tp,0_ w, va_TO) — 071 + 8,7 — T, 0w, UTT_TO)HLQ(%RJ
s€[—h,0

- _ N - 2
+ ||u’f(7' +s,7—Tp,0_,w, uﬁT_TO) —a(t+ s, 7 — Ty, 0_rw, UTT—TO)HL?(le)
_ _ _ - 2
+ ||u?(r +8,7 = To,0_rw,af ; _q,) — U (7 + 5,7 = Tp, 0w, UTT—TO)HH[}(QQRJ )

s ~n ~m ~m 2
+ ||771 (7—7 T —Tp,0_rw, Uit (T - TO)) - (Ta T —Tp,0-rw, Ui\ (T - TO))||L/%(R+;H8(QQR1))
< Ce. (117)

This together with (104)-(106) implies that for all n,m > N; and every w € ,

[} = o1&+ | uf = w18, +In™(r) = 0™ (P51 < Ce, (118)

and thus the sequences {(u? (-, 7—t", 0_rw, u}_;n), V2 (-, 7—t", 0_rw, 07 _n), N (1, 7—t", 0_rw,n"™ (T—
t")))}52, is precompact in E. The proof of this theorem is complete. O
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