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1 Introduction

The stability problem of functional equations originated from a question of Stanislaw Ulam,
posed in 1940, concerning the stability of group of homomorphisms. The question concerning
the stability of homomorphisms is as follows:
Let G1 be a group, and let G2 be a metric group with a metric d and a positive number ε.
The problem is to analyze if there exists a positive number δ such that for every g : G1 → G2

satisfying the inequality
d(g(xy), g(x)g(y)) ≤ δ, ∀x, y ∈ G1,

there exists a homomorphism h : G1 → G2 such that

d(g(x), h(x)) ≤ ε, ∀x ∈ G1.

In 1941, Donald H. Hyers [5] gave a partial answer to the question of Ulam in the context of
Banach spaces in the case of δ-linear transformations, that is:
Let F1, F2 be two Banach spaces and let g : F1 → F2 be a linear transformation satisfying

‖g(x+ y)− g(x)− g(y)‖ ≤ δ, ∀x, y ∈ F1 δ > 0.

There exists a unique linear transformation L : F1 → F2 such that the limit L(x) = limn→+∞
g(2nx)
2n

exists for each x ∈ F1 and ‖g(x)− L(x)‖ ≤ δ for all x ∈ F1, that was the first significant break-
through and a step towards more solutions in this area. Since then, a large number of papers
have been published in connection with various generalizations of Ulam’s problem and Hyers’s
theorem (see, for instance, [21], [4], [5], [6], [7], [8], [9], [10], [2], [17], [22], [12], and [3]). In
1978, Rassias [19] provided a generalized solution to the Ulam problem for approximate δ-linear
transformations. In [18], Rassias obtained a generalization of the Hyers’s theorem. In 1994,
Gavruta [1] obtained a generalization of Rassias’s Theorem for the unbounded Cauchy differ-
ence g(x + y) − g(x) − g(y) and stated the notion of generalized Ulam-Hyers-Rassias stability
in the spirit of Rassias approach. To the best of our knowledge, there are a few papers about
the Ulam-Hyers and the Ulam-Hyers-Rassias stability of stochastic differential equations in the
literature (see [11, 16, 23]). In the literature, neutral stochastic functional differential equations
attracted the attention of many researchers (see [13, 14, 15, 20] etc.). Therefore, it is important
to generalize the research results of deterministic neutral functional differential equations to the
stochastic case. The contents of the paper is as follows. In Section 2, we present some basic
results and assumptions. Section 3 is devoted to show some sufficient conditions and assumptions
ensuring the Ulam-Hyers and the Ulam-Hyers-Rassias stabilities of the solution of the system.
Finally in Section 4, we analyze two examples to illustrate our results.

2 Preliminaries and definitions

Let {Ω,F , (Ft)t≥0,P} be a complete probability space with a filtration satisfying the usual con-
ditions, i.e., the filtration is continuous on the right and F0 contains all P-zero sets. W (t)
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is an m-dimensional Brownian motion defined on the probability space. Let L2([a, b],Rn) be

the family of Rn-valued Ft-adapted processes {f(t)}a≤t≤b such that
∫ b
a
|f(t)|2dt < ∞ a.s. and

M2([a, b],Rn) the family of processes {f(t)}a≤t≤b in L2([a, b],Rn) such that E
∫ b
a
|f(t)|2dt < ∞.

Let C([−τ, 0];Rn) denote the family of functions ϕ from [−τ, 0] to Rn that are right-continuous
and have limits on the left. C([−τ, 0];Rn) is equipped with the norm ‖ϕ‖ = sup−τ≤s≤0 |ϕ(s)|
and |x| =

√
xTx for any x ∈ Rn. Denote Cb

F0
([−τ, 0];Rn) to be the family of all F0-measurable

bounded C([−τ, 0];Rn)-valued random variables ξ = {ξ(θ) : −τ ≤ θ ≤ 0}. Let L2
Ft

([−τ, 0];Rn),
t ≥ 0, denote the family of all Ft-measurable, C([−τ, 0];Rn)-valued random variables
ϕ = {ϕ(θ) : −τ ≤ θ ≤ 0} such that sup−τ≤θ≤0 E|ϕ(θ)|2 <∞.

Consider the following neutral stochastic functional differential equation for 0 ≤ t0 < T fixed:

d [x(t)−G(xt)] = f(t, xt)dt+ g(t, xt)dW (t), t0 ≤ t ≤ T, (2.1)

with the initial condition
xt0 = ξ ∈ L2

Ft0
([−τ, 0];Rn), (2.2)

and recall that, given x ∈ C([t0, T ];Rn), for each t ∈ [t0, T ] we denote by xt(·) the function in
C([t0 − τ, 0];Rn) defined as xt(θ) = x(t+ θ), −τ ≤ θ ≤ 0. We assume that

f : [t0, T ]× C([−τ, 0];Rn) −→ Rn, g : [t0, T ]× C([−τ, 0];Rn) −→ Rn×m,

G : C([−τ, 0];Rn) −→ Rn.

Using the definition of Itô’s stochastic differential and integrating the two sides of equation (2.1)
from t0 to t, we have

x(t)−G(xt) = x(t0)−G(xt0) +

∫ t

t0

f(s, xs)ds+

∫ t

t0

g(s, xs)dW (s), t0 ≤ t ≤ T, (2.3)

We will establish some assumptions ensuring the existence and uniqueness of a solution, denoted
by x(t; t0, ξ), for equation (2.1).
H1: (Uniform Lipschitz condition): Assume that there exists a constant L > 0 such that

|f(t, ϕ1)− f(t, ϕ2)|2 ∨ |g(t, ϕ1)− g(t, ϕ2)|2 ≤ L||ϕ1 − ϕ2||2,

for all t ∈ [t0, T ] and ϕ1, ϕ2 ∈ C([−τ, 0];Rn), where the notation a ∨ b define the maximum of a
and b.
H2: (Linear growth condition): Assume that there exists a constant α > 0 such that for all
(t, ϕ) ∈ [t0, T ]× C([−τ, 0];Rn)

|f(t, ϕ)|2 ∨ |g(t, ϕ)|2 ≤ α(1 + ||ϕ||2),

H3: Assume that there is a constant β ∈ [0, 1
2
) such that

|G(ϕ1)−G(ϕ2)| ≤ β||ϕ1 − ϕ2||, (2.4)

for all ϕ1, ϕ2 ∈ C([−τ, 0];Rn).
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Definition 2.1. An Rn-valued stochastic processes x(t) on t0 − τ ≤ t ≤ T is called a solution
to equation (2.1) with initial condition (2.2) if the following conditions are satisfied:

(i) it is continuous and {x(t)}t0≤t≤T is Ft-adapted.

(ii) {f(t, xt)} ∈ L1([t0, T ],Rn) and {g(t, xt)} ∈ L2([t0, T ],Rn×m).

(iii) xt0 = ξ and (2.3) holds for every t0 ≤ t ≤ T .

Theorem 2.1. If assumptions H1 −H3 are satisfied, then there exists a unique solution
x ∈M2([t0 − τ, T ],Rn) to equation (2.1) with initial condition (2.2).

Proof. See [14].

3 Main results

In this section, we discuss the Ulam-Hyers and the Ulam-Hyers-Rassias stability of equation (2.1)
under the assumptions H1-H3.

Definition 3.1. Equation (2.1) is Ulam-Hyers stable with respect to ε if there exists a constant
C > 0 such that for each ε > 0 and for each solution y ∈M2([t0− τ, T ],Rn), with yt0 = ξ, of the
following inequation:

E|y(t)−G(yt)− (y(t0)−G(yt0))−
∫ t

t0

f(s, ys)ds−
∫ t

t0

g(s, ys)dW (s)|2 ≤ ε,∀t ∈ [t0− τ, T ], (3.1)

there exists a solution x ∈M2([t0−τ, T ],Rn) of (2.1), with xt0 = ξ, such that E|y(t)− x(t)|2 ≤ Cε,
∀t ∈ [t0 − τ, T ].

Definition 3.2. Equation (2.1) is generalized Ulam-Hyers-Rassias stable with respect to
z(·) ∈ C([t0 − τ, T ];Rn) if there exists a constant M > 0 such that for each solution
y ∈M2([t0 − τ, T ],Rn), with yt0 = ξ, satisfying

E|y(t)−G(yt)−(y(t0)−G(yt0))−
∫ t

t0

f(s, ys)ds−
∫ t

t0

g(s, ys)dW (s)|2 ≤ z(t), ∀t ∈ [t0−τ, T ], (3.2)

there exists a solution x(t) ∈M2([t0−τ, T ],Rn) of (2.1), with xt0 = ξ, such that E|y(t)− x(t)|2 ≤Mz(t),
∀t ∈ [t0 − τ, T ].

We cite now a technical lemma before proving our main theorems.
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Lemma 3.1. For any x, y ≥ 0 and 0 < ε < 1, we have:

(x+ y)2 ≤ x2

ε
+

y2

1− ε
.

Proof. See [14].

Theorem 3.2. Under assumptions H1 −H3, equation (2.1) is Ulam-Hyers stable.

Proof. By Theorem 2.1, there exists a unique solution x ∈M2([t0 − τ, T ],Rn) to equation (2.1)
with initial condition (2.2).

Let y ∈M2([t0− τ, T ],Rn), with yt0 = xt0 = ξ, be a solution to (3.1), then for t ∈ [t0− τ, t0],
we have E|y(t)− x(t)|2 = 0.

By the triangle inequality, equation (2.3) and inequality (3.1), we have for t ∈ [t0, T ]

|y(t)− x(t)|2

≤ 2

∣∣∣∣y(t)−G(yt)− (y(t0)−G(yt0))−
∫ t

t0

f(s, ys)ds−
∫ t

t0

g(s, ys)dW (s)

∣∣∣∣2 ,
+2

∣∣∣∣(G(yt)−G(xt)) +

∫ t

t0

(
f(s, ys)− f(s, xs)

)
ds+

∫ t

t0

(
g(s, ys)− g(s, xs)

)
dW (s)

∣∣∣∣2 ,
≤ 2L(t) + 2J(t),

where

L(t) =

∣∣∣∣y(t)−G(yt)− (y(t0)−G(yt0))−
∫ t

t0

f(s, ys)ds−
∫ t

t0

g(s, ys)dW (s)

∣∣∣∣2
and

J(t) =

∣∣∣∣(G(yt)−G(xt)) +

∫ t

t0

(
f(s, ys)− f(s, xs)

)
ds+

∫ t

t0

(
g(s, ys)− g(s, xs)

)
dW (s)

∣∣∣∣2 .
We denote by I(t) =

∫ t

t0

(
f(s, ys)− f(s, xs)

)
ds+

∫ t

t0

(
g(s, ys)− g(s, xs)

)
dW (s).

Then, J(t) = |(G(yt)−G(xt)) + I(t)|2. Thus, by Lemma 3.1, we obtain for any 0 < β < 1
2

|y(t)− x(t)|2 ≤ 2L(t) + 2 |(G(yt)−G(xt)) + I(t)|2 ,

≤ 2L(t) +
2

β
|G(yt)−G(xt)|2 +

2

1− β
|I(t)|2 ,

≤ 2L(t) + 2β ‖yt − xt‖2 +
2

1− β
|I(t)|2 .
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Therefore, taking supremum and expectation, we have

E
(

sup
t0≤s≤t

|y(s)− x(s)|2
)
≤ 2ε+ 2βE

(
sup
t0≤s≤t

|y(s)− x(s)|2
)

+
2

1− β
E
(

sup
t0≤s≤t

|I(s)|2
)
,

which implies

E
(

sup
t0≤s≤t

|y(s)− x(s)|2
)
≤ 2ε

1− 2β
+

2

(1− β)(1− 2β)
E
(

sup
t0≤s≤t

|I(s)|2
)
.

On the other hand, by the Hölder inequality, the Burkhölder–Davis–Gundy inequality and the
Lipschitz condition, one has

E
(

sup
t0≤s≤t

|I(s)|2
)
≤ 2E

(∣∣∣∣∫ t

t0

f(s, ys)− f(s, xs)ds

∣∣∣∣2
)

+ 2E

(∣∣∣∣∫ t

t0

g(s, ys)− g(s, xs)dW (s)

∣∣∣∣2
)

≤ 2(t− t0)E
(∫ t

t0

|f(s, ys)− f(s, xs)|2 ds
)

+8E
(∫ t

t0

|g(s, ys)− g(s, xs)|2 ds
)

≤ 2L(T − t0)
∫ t

t0

E ‖ys − xs‖2 ds+ 8L

∫ t

t0

E ‖ys − xs‖2 ds

= 2L(T − t0 + 4)

∫ t

t0

E ‖ys − xs‖2 ds

≤ 2L(T − t0 + 4)

∫ t

t0

E
(

sup
t0≤r≤s

|y(r)− x(r)|2
)
ds.

Therefore,

E

(
sup
t0≤s≤t

|y(s)− x(s)|2
)
≤ 2ε

1− 2β
+

4L(T − t0 + 4)

(1− β)(1− 2β)

∫ t

t0

E
(

sup
t0≤r≤s

|y(r)− x(r)|2
)
ds.

The Gronwall inequality implies now, for all t ∈ [t0, T ] and 0 < β < 1
2
,

E

(
sup
t0≤s≤t

|y(s)− x(s)|2
)
≤ 2ε

1− 2β
exp

(
4L(T − t0 + 4)

(1− β)(1− 2β)
(T − t0)

)
≤ 2ε

1− 2β
exp

(
4LT (T + 4)

(1− β)(1− 2β)

)
,

which implies that
E |y(t)− x(t)|2 ≤Mε,

where M = 2
1−2β exp

(
4LT (T+4)

(1−β)(1−2β)

)
, ∀t ∈ [t0 − τ, T ]. The proof is complete.
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Theorem 3.3. Assume that hypotheses H2 and H3 are satisfied and that there exists ψ ∈
L1 ([t0 − τ,+∞),R+) such that, for all ϕ1, ϕ2 ∈ C ([−τ, 0],Rn) and t ∈ [t0, T ],

|f(t, ϕ1)− f(t, ϕ2)|2 ∨ |g(t, ϕ1)− g(t, ϕ2)|2 ≤ ψ(t) ‖ϕ1 − ϕ2‖2 .

Then,

(a) Equation (2.1) has a unique solution x which belongs to M2([t0 − τ, T ],Rn).

(b) Equation (2.1) is generalized Ulam-Hyers-Rassias stable with respect to nondecreasing func-
tions z(·) ∈ C([t0 − τ, T ];Rn).

Proof. (a) Uniqueness: Let x1(t) and x2(t) be two solutions of equation (2.1). Using Lemma 2.4
in [14, page 204], both solutions belong to M2([t0 − τ, T ],Rn). Moreover, we have

x1(t)− x2(t) = G(x1t )−G(x2t ) +K(t),

where

K(t) =

∫ t

t0

(
f(s, x1s)− f(s, x2s)

)
ds+

∫ t

t0

(
g(s, x1s)− g(s, x2s)

)
dW (s).

By Lemma 3.1 and assumption H3,∣∣x1(t)− x2(t)∣∣2 =
∣∣G(x1t )−G(x2t ) +K(t)

∣∣2
≤ 1

β

∣∣G(x1t )−G(x2t )
∣∣2 +

1

1− β
|K(t)|2

≤ β
∥∥x1t − x2t∥∥2 +

1

1− β
|K(t)|2 .

Then,

E
(

sup
t0≤s≤t

∣∣x1(s)− x2(s)∣∣2) ≤ βE
(

sup
t0≤s≤t

∣∣x1(s)− x2(s)∣∣2)+
1

1− β
E
(

sup
t0≤s≤t

|K(s)|2
)
.

It follows that

E
(

sup
t0≤s≤t

∣∣x1(s)− x2(s)∣∣2) ≤ 1

(1− β)2
E
(

sup
t0≤s≤t

|K(s)|2
)
.

On the other hand,

E
(

sup
t0≤s≤t

|K(s)|2
)
≤ 2 (T − t0 + 4)

∫ t

t0

ψ(s)E
∥∥x1s − x2s∥∥2 ds

≤ 2 (T − t0 + 4)

∫ t

t0

ψ(s)E
(

sup
t0≤r≤s

∣∣x1(r)− x2(r)∣∣2) ds.
7



Thus,

E
(

sup
t0≤s≤t

∣∣x1(s)− x2(s)∣∣2) ≤ 2(T − t0 + 4)

(1− β)2

∫ t

t0

ψ(s)E
(

sup
t0≤r≤s

∣∣x1(r)− x2(r)∣∣2) ds
By the Gronwall inequality,

E
(

sup
t0≤t≤T

∣∣x1(t)− x2(t)∣∣2) = 0,

which implies that x1(t) = x2(t) for t0 ≤ t ≤ T , and therefore for all t0 − τ ≤ t ≤ T , almost
surely.
Existence: The proof of the existence is similar to [14], but we take

δ = β +
2(T − t0 + 4)λ

1− β
,

where λ is a positive constant such that

∫ +∞

t0−τ
ψ(t)dt ≤ λ.

(b) Using equation (2.3), x(t) is a solution of equation (2.1). By condition (3.2), for
z ∈ C([t0 − τ, T ],Rn), we have

E
∣∣∣∣y(t)−G(yt)− (y(t0)−G(yt0))−

∫ t

t0

f(s, ys)ds−
∫ t

t0

g(s, ys)dW (s)

∣∣∣∣2 ≤ z(t), ∀t ∈ [t0− τ, T ].

Moreover, we know that, for t ∈ [t0 − τ, t0], E |y(t)− x(t)|2 = 0. Proceeding as in the previous
theorem when t ∈ [t0, T ], we have

|y(t)− x(t)|2 ≤ 2L(t) + 2J(t).

Then, for any 0 < β < 1
2

and t ∈ [t0, T ]

|y(t)− x(t)|2 ≤ 2L(t) + 2β ‖yt − xt‖2 +
2

1− β
|I(t)|2 .

Thus, taking again supremum and expectation, we have

E
(

sup
t0≤s≤t

|y(s)− x(s)|2
)
≤ 2z(t) + 2βE

(
sup
t0≤s≤t

|y(s)− x(s)|2
)

+
2

1− β
E
(

sup
t0≤s≤t

|I(s)|2
)
.

Therefore,

E
(

sup
t0≤s≤t

|y(s)− x(s)|2
)
≤ 2

1− 2β
z(t) +

2

(1− β)(1− 2β)
E
(

sup
t0≤s≤t

|I(s)|2
)
.
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On the other hand, we can see that

E
(

sup
t0≤s≤t

|I(s)|2
)
≤ 2(T − t0 + 4)

∫ t

t0

ψ(s)E ‖ys − xs‖2 ds

≤ 2(T − t0 + 4)

∫ t

t0

ψ(s)E
(

sup
t0≤r≤s

|y(r)− x(r)|2
)
ds

≤ 2(T + 4)

∫ t

t0

ψ(s)E
(

sup
t0≤r≤s

|y(r)− x(r)|2
)
ds.

Then,

E
(

sup
t0≤s≤t

|y(s)− x(s)|2
)
≤ 2

1− 2β
z(t) +

4(T + 4)

(1− β)(1− 2β)

∫ t

t0

ψ(s)E
(

sup
t0≤r≤s

|y(r)− x(r)|2
)
ds.

Using the Gronwall lemma,

E
(

sup
t0≤s≤t

|y(s)− x(s)|2
)
≤ 2

1− 2β
z(t) exp

(
4(T + 4)

(1− β)(1− 2β)

∫ t

t0

ψ(s)ds

)
≤ 2

1− 2β
z(t) exp

(
4(T + 4)

(1− β)(1− 2β)

∫ +∞

−τ
ψ(s)ds

)
≤ Cz(t),

for all t ∈ [t0, T ], where C =
2

1− 2β
exp

(
λ

4(T + 4)

(1− β)(1− 2β)

)
.

Finally, for all t ∈ [t0 − τ, T ], we have

E
(
|y(t)− x(t)|2

)
≤ Cz(t).

The proof is complete.

4 Examples

In this section we will show two examples to illustrate the applicability and interest of our
abstract results.

Example 1: Consider the following neutral stochastic functional differential system for each
ε > 0 and for t ∈ [t0 − τ, T ]

d [x(t)−G(xt)] = f(t, xt)dt+ g(t, xt)dW (t),

E|x(t)−G(xt)− (x(t0)−G(xt0))−
∫ t
t0
f(s, xs)ds−

∫ t
t0
g(s, xs)dW (s)|2 ≤ ε,

xt0 = ξ,

(4.1)
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where

ξ ∈ L2
Ft0

([−τ, 0];R), x(t) ∈M2([t0 − τ, T ],R)

G(ϕ) = βϕ(−τ), ϕ ∈ C([−τ, 0];R)

f(t, ϕ) =
e−t√
1 + t2

ϕ(0) +
cos(t)√
1 + t2

ϕ(−τ), ϕ ∈ C([−τ, 0];R)

g(t, ϕ) =
sin(t)√
1 + t2

ϕ(−τ), ϕ ∈ C([−τ, 0];R).

Here τ > 0 and β ∈ [0, 1
2
). Then, replacing now ϕ by the segment of a solution xt we have

G(xt) = βx(t− τ),

f(t, xt) =
e−t√
1 + t2

x(t) +
cos(t)√
1 + t2

x(t− τ),

g(t, xt) =
sin(t)√
1 + t2

x(t− τ).

We will prove that equation (4.1) is Ulam-Hyers stable. Let ϕ, ψ ∈ C([−τ, 0];R), then

|f(t, ϕ)− f(t, ψ)|2 =

∣∣∣∣ e−t√
1 + t2

(φ(0)− ψ(0)) +
cos(t)√
1 + t2

(ϕ(−τ)− ψ(−τ))

∣∣∣∣2
≤ 2

1 + t2
|φ(0)− ψ(0)|2 +

2

1 + t2
|ϕ(−τ)− ψ(−τ)|2

≤ 4 ‖ϕ− ψ‖2 ,

and

|g(t, ϕ)− g(t, ψ)|2 =
sin2(t)

1 + t2
|ϕ(−τ)− ψ(−τ)|2

≤ ‖ϕ− ψ‖2 .

Hence, the uniform Lipschitz condition is satisfied. Moreover,

|f(t, ϕ)|2 =

∣∣∣∣ e−t√
1 + t2

ϕ(0) +
cos(t)√
1 + t2

ϕ(−τ)

∣∣∣∣2
≤ 2

1 + t2
|ϕ(0)|2 +

2

1 + t2
|ϕ(−τ)|2

≤ 4
(
1 + ‖ϕ‖2

)
and

|g(t, ϕ)|2 =
sin2(t)

1 + t2
|ϕ(−τ)|2 ≤ 1 + ‖ϕ‖2 .
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Consequently, the linear growth condition holds true. Moreover, it is easy to verify that, for
β ∈ [0, 1

2
), G satisfies hypothesis H3. Therefore, by Theorem 3.2, equation (4.1) is Ulam-Hyers

stable.

Example 2: Consider the following neutral stochastic functional differential system for
t ∈ [t0 − τ, T ]:

d [x(t)−G(xt)] = f(t, xt)dt+ g(t, xt)dW (t),

E|x(t)−G(xt)− (x(t0)−G(xt0))−
∫ t
t0
f(s, xs)ds−

∫ t
t0
g(s, xs)dW (s)|2 ≤ z(t),

xt0 = ξ,

(4.2)

where x ∈M2([t0−τ, T ],R), W (t) is a one dimensional Brownian motion, z(·) ∈ C([t0−τ, T ];Rn)
is a nondecreasing function and f, g : R+ × C([−τ, 0];R)→ R are defined by

f(t, ϕ) =

∫ 0

−τ
e−(t+θ)ϕ(θ)dθ, ϕ ∈ C([−τ, 0];R),

g(t, ϕ) =

∫ 0

−τ

e−t√
1 + t2

sin(θ)ϕ(θ)dθ, ϕ ∈ C([−τ, 0];R),

and G : C ([−τ, 0],R)→ R is a linear operator defined by

G(ϕ) =
1

τ

∫ 0

−τ
u(θ)ϕ(θ)dθ,

where τ > 0, u ∈ C ([−τ, 0],R), ξ ∈ L2
Ft0

([−τ, 0];R), and ‖u‖ < 1
2
.

Then, for ϕ ∈ C ([−τ, 0],R), we have

f(t, ϕ) =

∫ 0

−τ
e−(t+θ)ϕ(θ)dθ,

g(t, ϕ) =

∫ 0

−τ

e−t√
1 + t2

sin(θ)ϕ(θ)dθ.

For all ϕ1, ϕ2 ∈ C ([−τ, 0],R), we have

|f(t, ϕ1)− f(t, ϕ2)| =

∣∣∣∣∫ 0

−τ
e−(t+θ) (ϕ1(θ)− ϕ2(θ)) dθ

∣∣∣∣
≤

∫ 0

−τ
e−(t+θ) |ϕ1(θ)− ϕ2(θ)| dθ

≤ ‖ϕ1 − ϕ2‖
∫ 0

−τ
e−(t+θ)dθ

= ‖ϕ1 − ϕ2‖ (eτ − 1) e−t.
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Therefore,
|f(t, ϕ1)− f(t, ϕ2)|2 ≤ (eτ − 1)2 e−2t ‖ϕ1 − ϕ2‖2 .

On the other hand,

|g(t, ϕ1)− g(t, ϕ2)| =

∣∣∣∣∫ 0

−τ

e−t√
1 + t2

sin(θ) (ϕ1(θ)− ϕ2(θ)) dθ

∣∣∣∣
≤ e−t√

1 + t2

∫ 0

−τ
| sin(θ)| |ϕ1(θ)− ϕ2(θ)| dθ

≤ e−t√
1 + t2

‖ϕ1 − ϕ2‖
∫ 0

−τ
dθ

=
τe−t√
1 + t2

‖ϕ1 − ϕ2‖ .

Therefore,

|g(t, ϕ1)− g(t, ϕ2)|2 ≤
τ 2

1 + t2
e−2t ‖ϕ1 − ϕ2‖2 .

Then,
|f(t, ϕ1)− f(t, ϕ2)|2 ∨ |g(t, ϕ1)− g(t, ϕ2)|2 ≤ ψ(t)||ϕ1 − ϕ2||2,

where ψ(t) = max (ψ1(t), ψ2(t)), with ψ1(t) = (eτ − 1)2 e−2t ∈ L1 ([−τ,+∞[,R+) and ψ2(t) =
τ2

1+t2
e−2t ∈ L1 ([−τ,+∞[,R+) .
For all (t, ϕ) ∈ [−τ, T ]× C ([−τ, 0],R), we have

|f(t, ϕ)| =

∣∣∣∣∫ 0

−τ
e−(t+θ)ϕ(θ)dθ

∣∣∣∣
≤ eτ ‖ϕ‖

∫ 0

−τ
e−θdθ

= eτ (eτ − 1) ‖ϕ‖ .

And this implies that

|f(t, ϕ)|2 ≤ e2τ (eτ − 1)2 ‖ϕ‖2

≤ e2τ (eτ − 1)2
(
1 + ‖ϕ‖2

)
.
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Moreover,

|g(t, ϕ)| =

∣∣∣∣∫ 0

−τ

e−t√
1 + t2

sin(θ)ϕ(θ)dθ

∣∣∣∣
≤ e−t√

1 + t2
‖ϕ‖

∫ 0

−τ
dθ

=
τe−t√
1 + t2

‖ϕ‖

≤ τeτ ‖ϕ‖ .

Then,

|g(t, ϕ)|2 ≤ τ 2e2τ ‖ϕ‖2

≤ τ 2e2τ
(
1 + ‖ϕ‖2

)
.

Therefore,
|f(t, ϕ)|2 ∨ |g(t, ϕ)|2 ≤ α(1 + ||ϕ||2),

where α = max
(
e2τ (eτ − 1)2 , τ 2e2τ

)
.

For all ϕ1, ϕ2 ∈ C ([−τ, 0],R),

|G(ϕ1)−G(ϕ2)| =
1

τ

∣∣∣∣∫ 0

−τ
u(θ) (ϕ1(θ)− ϕ2(θ)) dθ

∣∣∣∣
≤ ‖u‖ ‖ϕ1 − ϕ2‖ .

Therefore, all the assumptions of Theorem 3.3 are satisfied. Then equation (4.2) has a unique
solution x(t) ∈ M2 ([t0 − τ, T ],R) and the Ulam-Hyers-Rassias stability with respect to the
nondecreasing z(·) ∈ C([t0 − τ, T ];Rn) is fulfilled.
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