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Abstract

A way to obtain behaviour patterns of semiqualitative models of dynamic systems automatically is proposed in this paper. The
temporal evolution of these models is stored into a database. This is a time series database. This database may be obtained as
is explained in [Ortega et al. 1999] or by means of sensor data. In any way, the database contains the values of state variables
and parameters.

Searching for similar patterns in such database is essential, because it helps in predictions, hypothesis testing and, in general,
in data mining and rule discovery.

A language to carry out queries about the qualitative and temporal properties of this time-series database is also proposed.
This language allows us to study all the states of a dynamic system: the stationary and the transient states. The language is
also intended to classify the different qualitative behaviours of our model. This classification may be carried out according to
a specific criterion or automatically by means of clustering algorithms. The semiqualitative behaviour of a system is expressed

by means of hierarchical rules obtained by means of machine learning algorithms.
The methodology is applied to a logistics growth model with a delay.

Keywords: Knowledge acquisition, Semiqualitative models, Qualitative behaviours patterns

1 Introduction

In real systems studied in science and engineering, it
is difficult to find mathematical models that represent
them in an appropriate way. The modeling techniques
should obviate certain aspects of the system. The simu-
lation of these models helps us to study the evolution of
the real system. A way to carry out these simulations
is described in [Ortega et al. 1999] in depth.

On the other hand, it is not always possible to obtain
a mathematical model of a system. Thus, it is necessary
to apply other techniques in order to carry out its study.
A possibility may be placing data sensors in the real
system. The analysis of these data allows to study the
system evolution.

Knowledge about dynamic systems may be quan-
titative, qualitative, and semiqualitative. When
these models are studied all this knowledge should
be taken into account. Different levels of nu-
meric abstraction have been considered: purely
qualitative [Kuipers 1994], semiqualitative [Kay 1996],
[Berleant and Kuipers 1997] and [Ortega et al. 1998],

and quantitative.

Different approximations have been developed in the
literature when qualitative knowledge is taken into
account: distributions of probability, transformation of
non-linear to piecewise linear relationships, MonteCarlo
method, fuzzy sets [Bonarini and Bontempi 1994],
causal relations [Bousson and Travé-Massuyés 1994],
and combination of all levels of qualitative and quan-
titative abstraction [Kay 1996).

In this paper, a technique to carry out the analy-
sis of dynamic systems with qualitative and quanti-
tative knowledge is proposed. The idea follows: the
quantitative behaviours of a real system are stored into
a database and technigues of Knowledge Discovery in
Databases (KDD) are applied to study the system. The
way to obtain the behaviours does not matter: by means
of the simulation of a model or by means of the data sen-
Sors.

The term KDD [Adriaans and Zantinge 1996] is used
to refer to the overall process of discovering useful
knowledge from data. The problem of knowledge ex-
traction from databases involves many steps, ranging



from data manipulation and retrieval to fundamental
mathematical and statistical inference, search and rea-
soning. Although the problem of extracting knowledge
from data (or observations) is not new, automation in
the context of databases opens up many new unsolved
problems.

KDD has evolved, and continues to evolve, from the
confluence of research in such fields as databases, ma-
chine learning, pattern recognition, artificial intelligence
and reasoning with uncertainty, knowledge acquisition
for expert systems, data visualization, software discove-
ry, information retrieval, and high-performance compu-
ting. KDD software systems incorporate theories, algo-
rithms, and methods from all of these fields.

The term data mining is used most by statisticians,
database researchers and more recently by the business
community. Data mining is a particular step in the KDD
process. The additional steps in KDD process are data
preparation, data selection, data cleaning, incorporation
of appropriate prior knowledge and proper interpreta-
tion of the results of mining ensure the useful knowledge
is derived from the data [Rastogi99]. A detailed descrip-
tions of these steps may be found in [Ortega 2000].

On the other hand, historical, temporal and spatial
databases have been profusely studied in the bibliogra-
phy [Agrawal et al. 1995]. Specific applications include
financial, marketing and production time series, such as
stock prices, sales numbers, and also scientific databases
with time series of sensor data. For example, in weather
data, geological, environmental, etc. In this paper, we
are interested in time-series databases corresponding to
the evolution of semiqualitative dynamic systems.

Databases theories and tools provide the necessary in-
frastructure to store, access, and manipulate data. In
this paper, a new way to study dynamic systems that
evolve in the time is proposed merging “data mining”,
“time-series” and “databases engine”. The proposed
perspective tries to discover the underlying model in the
database by means of a query/classification language.

It is also possible to obtain fhe behaviour patterns
of these systems automatically by means of clustering
techniques. Clustering is a discovery process in data
mining. It groups a set of data in a away that maxi-
mizes the similarity within clusters and minimizes the
similarity between two different clusters. These discove-
red clusters can help to explain the features of the under-
lying data distribution. The semiqualitative behaviour
of a system is expressed by means of hierarchical rules
obtained by means of machine learning algorithms.

The paper is organized as follows: firstly, our approach
is explained and the concept of semiqualitative model is
defined. Secondly, the kind of qualitative knowledge we
are using in the language is introduced. Thirdly, the
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Figure 1: Our approach

query/classification language on the database is descri-
bed. Next, the clustering algorithms is described in de-
tail and, finally, the way to obtain the hierarchical rules
of the systems is explained. The proposed methodology
is applied to a logistics growth model with a delay.

2 Our approach

There is enough literature that studies stationary states
of dynamic systems, however, the study of transient
states is also necessary. Stationary and transient states
of a semiqualitative dynamic system may be studied
with the proposed approach. It is shown in figure 1.

We begin with a time-series database. It may
be obtained by means of semiqualitative simulations
[Ortega et al. 1999] or by means of data sensors. This
is a trajectory database. A frajectory is a time-serie and
it contains the values of the parameters and the values
of all state variables from their initial value until their
final value. Therefore, every trajectory stores the values
of the transient and the stationary states of these varia-
bles of the system. Every trajectory is set of time-series
of state variables.

We propose a language to carry out queries about the
qualitative properties of the set of trajectories included
in the database. A labelled database is obtained when
these trajectories are classified according to some crite-
ria. It is also possible to classify the database by means
of an automatically process. In such case, it is necessary
apply clustering techniques.

Qualitative behaviours patterns of the system may
be automatically obtained from this database by
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applying rule discovery based on genetic algorithms
[Aguilar ef al. 1998]. The steps of our approach are de-
tailed in the following sections.

3 Semiqualitative models

In this paper, we focus on those dynamic systems where
there may be qualitative knowledge in their parameters,
initial conditions and/or vector field. They constitute
the semiqualitative differential equations of the system.

A semiqualitative model S is represented by means of

@(i’..I,q,f), I(tﬂ) = Tp, (pﬂ(Q!IU) (1)
being x € IR" the state variables, ¢ the parameters, t the
time, & the derivative of the state variables with respect
to the time, ® constraints among #, z, q, t, and ®; cons-
traints with the initial conditions. These constraints
may be composed of qualitative knowledge, arithmetic
and relational operators, intervals, predefined functions,

(In,exp, sen,...) and numbers.

4 Qualitative knowledge

Qualitative knowledge about a model may be com-
posed of qualitative operators, qualitative labels, en-
velope functions and qualitative continuous functions
[Ortega et al. 1999]. In this paper, we are interested
in applying this knowledge to carry out queries with
the language. Therefore, the representation and trans-
formation techniques of this qualitative knowledge are
described bellow.

The representation of the qualitative knowledge is ca-
rried out by means of operators which have associated
real intervals. It simplifies the integration of qualita-
tive and quantitative knowledge, and it also facilitates
the incorporation of expert knowledge in the definition
of the range of qualitative variables and parameters
[Gasca 1998].

Every qualitative operator op is defined by means of
an interval I,, which is supplied by the experts.

4.1 Unary qualitative operators

Every magnitude of the problem with qualitative know-
ledge has its own unary operators defined.

Let U, be the unary operators for a variable z, i. e.,
Uy = {VNy, MN;,LN;,APQ;,LP; M P, ,VFP;}. They
denote for z its qualitative labels: very negative, mode-
rately negative, slightly negative, approzimately zero,
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slightly positive, moderately positive, and very positive
respectively.

The transformation rule for a unary operator is

e—a=20

o) = {02, )
being @ a new generated variable, and I, the inter-
val associated with operator op, which is established

in accordance to [Travé-Massuyes et al. 1997].

4.2 Binary qualitative operators

Let e, €5 be two arithmetic expressions. A binary qua-
litative operator b(e;,es) denotes the qualitative order
relationship between e; and es;. These operators are
classified into

e Operators related to the difference >,=,<. The
following transformation rules are applied

€1 =€y = 21—6220
e —eyg—a=20
e <e =
L= a € [—o0,0]
e1—ey—a=10
e > ey =
ne a € [0, 0o

Table 1: Transformation rules

e Operators related to the quotient €, — <, ~, &, >
,Vo,Ne,.... The applied transformation rule is

(3)

e —esxa=10
opsler,ex) = { P

a el

being « a new variable and I, the interval associated to
opy in accordance to [Travé-Massuyes et al. 1997).

5 Query/classification language

We propose a language to carry out queries and to
classify with labels a time-series database T' obtained
with the quantitative simulations of a family of models
[Ortega et al. 1999]. Therefore, this language allows us
to classify the behaviour patterns of the system.

5.1 Abstract Syntax of the language

Let T' be the time-series database and let r be every
trajectory in this database. The abstract syntax of the
proposed language is A query @ on the database T' may



: VreCeP L B
| dreCeP | # kP
| PV P
| =P
Pb . Pd Pd . EQ
| Or | CL
| es(OL([FL,{LY)) | .

Or: always F Or, :  inecrease
|  semetime F | decrease
|  always F before F |  periodic
|  always F until F |  mazim
| sometime F before ' | minimum
|  sometime F until F | constant
| always F after F | length

F Fb Fb : €
| F&F | eel
| F|F | u(e)
| F=F | b(el, 82)
| IF

Table 2: Queries abstract syntax

be a quantifier ¥, 3 applied to T". This query try to de-
termine if all the trajectories (V) or if there is at least
one (3) verify the property P. This property may be
formulated by means of the composition of other pro-
perties using the Boolean operators A, V, = and its result
is the application of these operators among the partial
properties.

A basic property P, may be: a predefined property
Py, a Boolean expression e, applied to a list operator
Or([F].{L}) applied to a list L of points or intervals
which verify the formula F, or a temporal operator Or.

A list operator Of([F],{L}) returns the list L of
points or intervals of the trajectory which verify the for-
“ula F.

A temporal operator Or is used to describe proper-
ties in a concrete time of a trajectory, or to compare
among different times of a trajectory, or to establish
a sequence of behaviours of a trajectory. We have
chosen a set of temporal operators from the tempo-
ral logic. The chosen had been those whose definition
would be obtained by means of a final recursive defini-
tion [Lipeck and Saake 1987].

A defined property Py is one whose formulation is au-

aiatic. They are queries commonly used in dynamical
svstems. There are two predefined: EQ, which is veri-
fied when the trajectory ends up in a stable equilibrium;
and C'L that it is verified when it ends up in a limit cy-
cle.

A formula F' may be composed of other formulas com-
bined by means of Boolean operators &, |, ! and its result

is the application of these operators among the partial
formulas.

A basic formula F; may be: a Boolean expression ey,
or if a numeric expression e belongs to an interval T, or
a unary u or binary b qualitative operator.

Classification

A classification rule is formulated as a set of basic
queries with labels and possibly other expressions. A
classification problem is proposed in accordance to the
following abstract syntax:

C: [r € C,automatic]
| ['FEC.PA]—_-),‘Lenlg-..
| [reC,Pg]= B,eu,...
| e

Table 3: Classification abstract syntax

5.2 Semantics of the language

The semantics of every proposed statement is translated
into a query of the database. A query V r € C'e P is
true when all trajectories r € C verifies property P. To
prove that an 3 statement is true, it is necessary to find
at least one trajectory r € T that verifies the property
2

A property P which is formulated bv means of the
application of Boolean operators A.V - is frue when
the result of the application of these erators among
the partial properties is true.

The result of the evaluation of a temporal operator
O+ depends on its semantics. For example, always F
returns a true value if all the values of » verify F. If
this operator is sometime F returns a true value when
at least a value of r verifies F. The semantic of all
these temporal operators are described in accordance to
[Lipeck and Saake 1987].

Let ep(Or([F],{L})) be a basic property. This pro-
perty is true if the Boolean expression applied to the
list operator O, returns a true value. The operator O,
returns the intervals or points of a trajectory which ve-
rify a formula F'.

In order to evaluate a formula F, it is necessary to
substitute its variables by their values. These values are
obtained from T

Let [r, P4] = A,ea; be a classification rule. A tra
jectory v € T is classificd with the label A if it verifies
property P4. It is also included into the database for
this trajectory the result of the evaluation of e 4;. This
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process is repeated with every classification rule. Wlhien
the classification rule is [r € C, automatic], it is nece: -
ry to apply clustering techniques in order to classify the
database automatically.

5.3 Implementation details

The semantics of all queries and classification rules is
translated into an algorithm. The execution of this al-
gorithm yie (s the answers to the queries and labelled
the database, and it is only necessary go once through
the datat + This algorithm is automatically genera-
ted.

Let Q = {€1,..., @m} be a set of m queries on a subset
CCT. Let b= {by,...,b;n} be the m answers to @. The
template algorithm to obtain b follows:

1. QueryClassifyQ(Q.,C) return b
2 b:=¢
3 for i:=1to 1< Card(C)
4. t:=1y
5. Y= Yo
6 while —(t = tg)
i t:=1— At
8. Y= ft(y,C(i)g)
9. end while
10. y:=Ty(y)
11. b:=Ty(b,y)
12. end for
being v = (y1....,yp) auxiliary variables. Every

Boolean variable b accnmulates the result of the que:
on the database and Boolean variable y accumulates 1]
resi; of the qu on the trajectory. The initial vai .
of b (line 2) is the neutral element of the operation that
it accumulates. The initial value for y (line 5) is cn!
culated by applying the operation to the last instany
the trajectory. In order to modify these variables (lines
8 and 11) the operations f; and 7T}, to the y variables
and the operation T} to the b are applied. The function
f evaluated at time ¢  lenoted by f;. The algorithm
proceeds backwards in time due to the transformaciu..
of the temporal operators [Ortega 2000].

The execution of this algorithm returns n Boolean
value frue or false as result of every query. The com-
plexity of the algorithm is lineal, since cach trajector;
read once for all the queries. This algorithm can be .
ways obtained. The algorithm is instantiat:  lepending
on the language sentences as follows.

5.3.1 Queries

Table 4 collects the generated code for a query.

where everv nery @); generates at least an auxiliorv

11

3 rE (Pl L] 1“1 _JP(}.lf.‘-l'
: b= Y

Table 4: Que., ..

sformation

variable y to contain tle evaluation of P on the trajec-
tory.

5.3.2 Properties

Table 5 collects the generated code for a property.

Property P; line code
P AP, 10 y:=ypi Ayps
PV P 10 y:=yp1 Vypr
= if 10 y:=-yp

Table 5: Properties transformation

being y an auxiliary variable to store the resi!* of F;,
and yp to store the result of the elementa )per-
ties, and y is obtained by applying the A,V,—  rator
among the yp variables.

5.3.3 List operators

Let ey (OL([F],{L})) be a Boolean expression applied
to a list operator. The generated code contains a list
[ to store the intervals of the trajectory that verify the
formula F and a flag a to indicate when the formula F'
is activated. A record is generated for every interval of
each trajectory r that verifies consecutively the form:
F. This record contains the initial and final tiine of the
interval and the result of the « valuation i 1. time ¢
of the expressions that appears in L, and it is denoted
as L;. The operator Oy is applied on the obtaiied

. The Boolean expression e, is applied « o Le result of
this applicat 'on. The genirated code is in table 6.

“List operator £, (O ([F7. {
line code

5 ={}

8 if Fy then!:= L, Ul i1
10 y:=e(0p (1))

Table 6: List operator transformation

where F} denotes the evaluation of formula /" at in
tant .




5.3.4 Temporary operators

The table 7 collects the generated code for temporal
opera.tors.

Temporary operator O
linea cdodigo generado
always F
5 y:i=F
8 yi=F ANy
sometimes F

5 Yy = Fp
8 y:=FKVvVy

always F before G
5 y:=F VG

8 y:=FV(GAy)

always F until G

y:=(F,AG)VF,

8 Y= (FgAG[)V(FﬁA’y)
sometime E before G

] Y= (Ff AﬂGf)V("'Gf_)

8 y:=(FA-G)V(=GiAy)

(]

Table 7: Temporary operators transformation

This algorithm has been obtained in accordance
to the definition of temporal operators provided in
[Lipeck and Saake 1987].

5.3.5 Predefined properties

Predefined properties are queries whose formulation is
automatic. They are queries commonly used on dy-
namic systems.

A trajectory ends in a stable equilibrium E( when
the states variables do not oscillates in the end of the si-
mulation. Therefore the derivative of the state variables
may be approximately equals to zero.

EQ = always (t € Rp = @ = 0) (4)

where Ry denotes the final range of the simulation, 4 is
the derivative of the state variable z and = is a binary
qualitative operator. The generated algorithm is the
corresponding to this temporal operator always.

A trajectory ends in a limit cycle C'L when it oscillates
in the final time of the simulation.

CL = periodic([t € Rp A2 =0Az >0),{z}) (5)

This predicate obtains a list with the relative maxima
(or minima) in the final range of the trajectory. A limit
cycle appears when these maxima are periodically re-
peated.

5.3.6 Formulas

Formulas study specific features of a concrete instant in
a trajectory. A formula F; applied to r is verified when
F' is satisfied in the instant {. Transformation instruc-
tions depend on F, and they are in table 8. In order

Formula F' line code
Fg A G‘t 8 EUQE(F;_) N EUG‘.![G;)
F v Gy 8 Eval(F}) v Eval(G})
Ff, = Gf, 8 EUQI(Fg) = EUGI(G:)
- F} 8 - Eval(F})
F, 8  Ewal(Fy)

Table 8: Formulas transformation

to evaluate a formula F, it is necessary to substitute
its variables for their values. These values are obtained
from T'.

6 Behaviour patterns

A behaviour pattern is each one of the possible be-
haviours that may appears in a dynamic system from
its initial state until its final state. A qualitative model
has a group of qualitative behaviours. Each one of them
is a behaviour pattern. In figure 2 there are three diffe-
rent quantitative trajectories but they follow the same
qualitative pattern: begins with a value next to zero,
then it goes growing until it reaches a mazimum and
next it oscillates until arriving to a positive value where
it remains stable.

Figure 2: Similar qualitative behaviours

It is possible, that there are different ways to reach a
stationary state. If the study is only limited to the sta-
tionary, it is not possible to recognize these differences
and we would conclude that all the trajectories have
the same behaviour. It is therefore necessary to further
out the study with the transient state to discover these
behaviours.

In order to obtain the patterns, the database must be
labelled. Once the database is labelled, the techniques
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to obtain the behaviour patterns are applied.

7 Labelling of the database

The labelling of the database assigns one or more labels
to every trajectory. These labels may be assigned by a
certain criterion provided by the user or by means of an
automatic process. The data normalization is necessary
to classify automatically the database. This normaliza-
tion helps us to assign the labels to the trajectories by
means of clustering algorithms.

7.1 Labelling with specific criteria

Let 7' be the database for the following classification
rules: C = {C,,C3,Cs, ...}, being:

c, = ['l" € T,Pbl] = Li,ey
C:=[reT Py)= L

6
Cs =[r €T, Pr,) = L, e31,€32 (6)

being r the trajectories of T', Pg, the i-th predicate of
the classification rule C;, L; labels and e expressions.

A label L is assigned to trajectory r when it verifies
the property P. In order to apply the behaviour pattern
algorithms, it is necessary that all trajectories have at
least one label, otherwise, an empty label is assigned.

7.2 Automatic labelling

The automatic labelling classifies the database in accor-
dance to the different behaviours of the dynamic system.
It is necessary to supply the similarity degree to carry
out this classification. It is a number in the interval [0,1]
and its functionality is explained bellow.

Let T be the trajectories database. The idea is to find
the different patterns that appear in T'. Every trajectory
is classified with a label L in accordance to its behaviour
pattern.

Each trajectory r € T' contains a temporal sequence
for every state variable, therefore, a trajectory is a vec-
tor of time sequences. It is necessary to apply a clus-
tering algorithm on these time series of the database to
discover the behaviours. These sequences may be pre-
viously normalized. Any clustering algorithm needs to
define a metric among the elements to be classified. This
metric is provided by the similarity degree.
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8 Normalization

Two trajectories with a similar behaviour may have a
distance next to 0. In figure 2, the three trajectories fo-
llow the same qualitative pattern, but if we apply among
them a distance like the Euclidean, it is concluded that
they follow different behaviours. It is necessary to nor-
malize these data to obtain the same pattern for similar
qualitative behaviours. Therefore, these data will be
scaled, translated and weighted.

8.1 Scaling

Let r be a trajectory, and let zy,...,z; be the values
stored in the database of the state variables of r. These
values will be scaled to the interval [0, 1]. For every va-
riable & € r is necessary to obtain its maximum and
minimum values oz, Tmin respectively. The value
Ty = Tmar — Tmin i the range of values of z. Let z; be
the value of z at time ¢. Let z} be the escalated value.
It is obtained by means of the expression

t _ Lt — Lmin (?}

X, =
t
Ty

8.2 Translation

The trajectories ra, ...,y are translated to the first tra-
jectory ry. Let s be a trajectory s € {ry,...,rn}. For
each trajectory s is defined T = 33 — 81 (figure 3).

Figure 3: Translation and periodicity

The translation of s is obtained by solving the follo-
wing system:

(8)

ti=a*s +b
t2=a*83+b

being a the homotecy between both trajectories and b
the translation. Solving this system, it is obtained that



the values of a,b are:

-t T

_ 118y — 125 - 1159 — tasy
83 — 81 Ta

89 — &1 - Ts
(9)

By substituting (9) in (8) and operating, we obtain the
translation

b

_ b8 +tasy — 11T,
b = T,

(10)

8.3 Weighting

Once every trajectory has been translated, it is not
possible to compare them directly. Therefore, it is ne-
cessary to interpolate these values.

Let r be a fixed trajectory and let s be the one that
will be interpolated. Let ¢, be the value obtained by the
translation (10). Let ¢;,; be where t; = ty + kAt and
t; = t; + At where k is a natural number that verifies
that t; € [ti,t;]. Let y;,y; be the translated values
stored in the database for ¢;,¢; respectively. We are
interested in calculating the value #;. There are several
ways to calculate it: linear approximations, 3-splins, ...
In this paper, the value y; is calculated by means of a
linear approximation as follows:

Ui — W%
=y + 2, - 11
Ys = Ui At (ts ) (11)
being At = t; — #;. This is the value of trajectory s
that may be compared with the corresponding on the
trajectory r.

9 Distance among trajectories

Let T be a database with N normalized trajectories. Tt
is calculated a distance matrix D among these trajec-
tories. It is a triangular matrix with its main diagonal
equal to zero. This matrix is necessary for the clustering
algorithm.

Let &(ri,r;) be the distance between two trajecto-
ries. A possibility consists of calculating § by means
of the Euclidean distance. However, we know that tra-
jectories are time series, therefore is better to calcu-
late & by means of the Fourier coefficients ag,ay,....
There are several reasons to elect the Fourier coefficients
[Agrawal el al. 1995]: the distance is preserved, they
are easy to calculate, they concentrate the signal ener-
gy in a few coefficients and there is an algorithm Fast
Fourier Transform (FFT) that calculate this coefficients
efficiently. Therefore, Fourier transform is an appropri-
ate way to calculate the distance in time series.

In this paper the distance § between two trajectories

ri,; is defined by means of:

Polaoi — ag;|*+
pilay —ay;*+
palas; — az;|*+
ps [ |i(t) — x;(t)|*dt+
pa [ |x}(t) — 2 (8)[Pdi+
ps [ |z (t) — </ (t)|*dt

‘5::(7':':7',?') =

being a the state variables, po, p1, ..., ps weights, a,, the
u-th Fourier coefficient, x;, 2; normalized values stored
in the database for the trajectories ¢, j respectively, and
z,z; and xf, x] first and second derivative of z;,z;
values respectively.

This distance (12) is defined as an expression depen-
ding on: Fourier coefficients, weights, variable magni-
tude and first and second variable derivatives. The ju
tification is as follows:

e In accordance to [Agrawal et al. 1995] only with a
few Fourier coefficients the features of the origi-
nal trajectory are obtained. Therefore, the term
p3 [ |zi — x;|*dz provides the same information as
the three first Fourier coefficients.

o Besides the magnitude, there are other features that
are interesting to take into account from a qualil
tive perspective: the shape (first derivative) and
the concavity (second derivative).

e Weights are introduced to take precedence over the
magnitudes, the shapes or the concavity of the tra
jectories. We had not study the relation and rele-
vance among these weiglils and the distance. All
the tests have been carried out with a weight of |

A distance matrix D is obtained using the proposed defi-
nition of 6. The completeness of the algorithm to obtain
D is exponential.

10 Clustering and decision rules

Clustering is a discovery process in data mining. Tt
groups a set of data in a away that maximizes the
similarity within clusters and minimizes the similarity
between two different clusters. These discovered clus-
ters can help to explain the features of the underlying
data distribution. In recent years, a number of clus-
tering algorithms for databases have been proposed:
DBScan [Ester et al. 1996], CURE [Guha et al. 1998,
Chameleon [Karypis et al. 1999], ...

A scalable clustering algorithm is proposed in this pa-
per. Its execution puts together a trajectory and a label.
This label determines the behaviour pattern of the tra-
jectory.
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1. Clustering(D, M) return Mg
2. Amean = Mean(D)

3. G = Graph(D,dmnean)

4 Mg = Clusters(G, a)

being a the similarity degree previously commented.
This algorithm begins obtaining the distance matrix D
among trajectories. Next, it calculates the mean of D.
This mean distance dy.an is calculated to know the
magnitude of the distance.

A weighted graph G is obtained with the k-neighbours
of every trajectory. The vertex of G are the trajecto-
ries. The arcs are weighted with the relationship bet-
ween dmeqans and the distance between two trajectories.
Figure 4 shows examples of graphs building: original (a)
and with 1- (b), 2- (c) and 3-(d) neighbours.

ST
P -
Y
N

Figure 4: Graph with k-neighbours

d)

It is applied an algorithm to the k-neighbours graph.
The algorithm breaks those arcs between neighbours
vertices whose weight w is less than

a * dmean

w < 100

being a the similarity degree.

The connected graphs represent every different be-
haviour pattern of the dynamic system. All the trajecto-
ries of every connected graph are classified with the same
lahe! This is carried out by the function Clusters(G, a).

Once the database has been labelled, the pattern be-
haviour of the system is represented by means of a set
of hierarchical decision rules. These rules are obtained
using the program COGITO [Aguilar et al. 1998] to the
bidimensional dynamic array described in the section 7
of this paper.
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11 Application to a logistics
growth model with a delay

It is very common to find growth processes in which an
initial phase of exponential growth is followed by ano-
ther phase of approaching to a saturation value asymp-
totically (figure 5). These are given the following generic
names: logistic, sigmoidal, and s-shaped processes.

exponentisl i 5
prowh, ! asymiotic behavior
-

1

Figure 5: Logistics growth curve

This growth is exhibited by systems for which expo-
nential expansion is truncated by the limitation of the
resources required for this growth. This behaviour is
due to a positive feedback that is dominant in the ini-
tial phase, and a negative feedback that is dominant in
the final phase.

In literature, these models have been profusely stu-
died. They abound both in natural processes, and in
social and socio-technical systems. They appear in the
evolution of bacteria, in mineral extraction, in world
population growth, and in economic development. Lear-
ning curves also show this type of behaviour.

The same thing happens with some diffusion pheno-
mena within a given population, such as epidemics or
rumors. Other examples of this behaviour are a popu-
lation that grows in a habitat with limited resources,
a technological innovation that is being introduced, or
a new product that is being put on the market. In all
these cases, their common behaviours are shown in fi-
gure 6. There is a bimodal behaviour pattern attractor:
A stands for normal growth, and O for decay. It can
be observed how it combines exponential with asymp-
totic growth. This phenomenon was first modeled by
the Belgian sociologist P. F. Verhulst in relation with
human population growth. Nowadays, it has a wide va-
riety of applications, and some of them have just been
mentioned.

Let S be the qualitative model. If we add a delay in
the feedback paths of S, then its differential equations
are
&= z(nr —m),

y =delay-(z), x>0, r=~h(y),
ki = {(—o0, —00), +, (do, 0), +, (0,1),
+, (dl 3 eﬂ)) ) (11 0)9 —('-I-DO, —00)}

being n the increasing factor, m the decreasing fac-

¢ =



O
1

Figure 6: Logistics growth model

tor, and hy a qualitative continuous function defined by
means of points and the derivative sign among two con-
secutive points. These functions are explained in detail
in [Ortega 2000]. This function has a maximum point
at (21,y0)- The initial conditions are

o € [LP,, MP,),
LFP;(m),

LF;(n),

7€ [MP,,VP,]

Py =

where LP, M P,V P are the qualitative unary operators
slightly positive, moderately positive and very positive for
x, T variables.

We would like to know:
1. if an equilibrium is always reached
2. if there is an equilibrium whose value is not zero
3. if all the trajectories with value zero at the equili-
brium are reached without oscillations.
4. To classify the database in accordance to the be-
haviours of the system.

The methodology is applied to this model. Firstly,
it is necessary to define the intervals associated with
every qualitative operator, they have been defined for
this problem by the experts as follows:

LP,=1[0,1] MP, =[1,3]
MP, =[0.5,4] VP, = [4,10]

The methodology described in [Ortega et al. 1999] is
applied to obtain the trajectory database 7. The
proposed methodology transforms this semiqualitative
model into a family of quantitative models. Stochastic
techniques are applied to choose a quantitative model of
the family. The simulation of every quantitative model
generates a trajectory. All trajectories put together
constitute the database T

Applying the proposed language, the proposed queries
are formulated as follows:
1.VreTe EQ
2. 3r € T o (EQ A sometimet ~ t; = z # 0)
3.Vr e T o (EQ A sometimet =ty =z~ 0A

length(z =0Az <0))

The list of points where & = 0 and & < 0 is the list with
the maximum points. There are no oscillations when its
length is 0.

The answers to the proposed questions were:

1. by = T'rue, all the trajectories of T reach a stable
equilibrium. Therefore, we conclude: there is no cycle
limit.

2. by = True, some trajectories of T reach an equili-
brium whose value is not zero. Therefore, this is the
first behaviour we have obtained. We know it as re-
covered equilibrium. 3. by = False, there are at least
two ways to reach this equilibrium: with oscillations
(this behaviour is called as retarded catastrophe) and
the other way is without oscillations (that if is called as
decay and extinction).

We apply to T' the described clustering algorithm with
a similarity degree of @ = 0.1. This algorithm found
the three possible behaviours patters for this system.
This result is in accordance to the previous queries. The

equilibeium recoverod

retarded catstrophe

decay and extinction

N

]

Figure 7: Logistics growth model with a delay

obtained results with this way to discover the behaviour
patterns are in accordance to others appeared in the bi-
bliography [Aracil et al. 1997] and [Karsky et al. 1992]
where the results are concluded by means of a mathe-
matical reasoning. This circumstance encourages us to
continue developing this methodology and to apply it to
other systems with qualitative and quantitative know-
ledge.

12 Conclusions and further work

In this paper, we have presented a way to obtain tempo-
ral and semiqualitative behaviour patterns of dynamic
systems with qualitative and quantitative knowledge.
This approach is based on a transformation process, de-
finition of a query/classification, language on a quanti-
tative behaviours database, and clustering techniques.
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There is enough bibliography that studies stationary
states of dynamic systems. However, the study of tran-
sient states is also necessary. These studies are possible
with the proposed language.

In the future, the query/classification language must
be enriched with operators for comparing trajectories,
spatial operators, etc. Dynamic systems with cons-
traints and with multiple scales of time are also one of
our future points of interest.

The methodology is being applied in a real computer-
controlled process. It is a production industrial system.
Altos Hornos de Sevilla is a metallurgical Company in-
terested in modifying its steel control production system
applying the whole methodology ([Ortega et al. 1999
and this paper). The production engineers of this com-
pany wish to improve the steel quality, and, if possible,
reduce the production costs. This collaboration is now
developing and in forthcoming papers, we will describe
this system in detail and the conclusions we shall abtain.
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