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Abstract

A way to obtain behaviour patterns of semiqualitative models of dynamic systems automatically is proposed in this paper . The
temporal evolution of these models is stored into a database . This is a time series database . This database may be obtained as
is explained in [Ortega et al . 1999] or by means of sensor data . In any way, the database contains the values of state variable s
and parameters .
Searching for similar patterns in such database is essential, because it helps in predictions, hypothesis testing and, in general ,
in data mining and rule discovery.
A language to carry out queries about the qualitative and temporal properties of this time-series database is also proposed .
This language allows us to study all the states of a dynamic system : the stationary and the transient states . The language is
also intended to classify the different qualitative behaviours of our model . This classification may be carried out according t o
a specific criterion or automatically by means of clustering algorithms . The semiqualitative behaviour of a system is expresse d
by means of hierarchical rules obtained by means of machine learning algorithms .
The methodology is applied to a logistics growth model with a delay .

Keywords : Knowledge acquisition, Semiqualitative models, Qualitative behaviours pattern s

1 Introduction

In real systems studied in science and engineering, i t
is difficult to find mathematical models that represent
them in an appropriate way. The modeling technique s
should obviate certain aspects of the system. The simu-
lation of these models helps us to study the evolution o f
the real system . A way to carry out these simulation s
is described in [Ortega et al. 1999] in depth .

On the other hand, it is not always possible to obtain
a mathematical model of a system. Thus, it is necessar y
to apply other techniques in order to carry out its study.
A possibility may be placing data sensors in the real
system. The analysis of these data allows to study th e
system evolution .

Knowledge about dynamic systems may be quan-
titative, qualitative, and semiqualitative . When
these models are studied all this knowledge shoul d
be taken into account .

	

Different levels of nu-
meric abstraction have been considered: purely
qualitative [Kuipers 1994], semiqualitative [Kay 1996] ,
[Berleant and Kuipers 1997] and [Ortega et al . 1998],

and quantitative .

Different approximations have been developed in th e
literature when qualitative knowledge is taken int o
account : distributions of probability, transformation o f
non-linear to piecewise linear relationships, MonteCarlo
method, fuzzy sets [Bonarini and Bontempi 1994] ,
causal relations [Bousson and Trave-Massuyes 1994] ,
and combination of all levels of qualitative and quan-
titative abstraction [Kay 1996] .

In this paper, a technique to carry out the analy-
sis of dynamic systems with qualitative and quanti-
tative knowledge is proposed . The idea follows : th e
quantitative behaviours of a real system are stored into
a database and techniques of Knowledge Discovery i n
Databases (KDD) are applied to study the system. The
way to obtain the behaviours does not matter : by mean s
of the simulation of a model or by means of the data sen-
sors .

The term KDD [Adriaans and Zantinge 1996] is use d
to refer to the overall process of discovering useful
knowledge from data . The problem of knowledge ex -
traction from databases involves many steps, ranging



from data manipulation and retrieval to fundamenta l
mathematical and statistical inference, search and rea-
soning . Although the problem of extracting knowledge
from data (or observations) is not new, automation i n
the context of databases opens up many new unsolve d
problems .

KDD has evolved, and continues to evolve, from the
confluence of research in such fields as databases, ma -
chine learning, pattern recognition, artificial intelligenc e
and reasoning with uncertainty, knowledge acquisitio n
for expert systems, data visualization, software discove-
ry, information retrieval, and high-performance compu-
ting. KDD software systems incorporate theories, algo-
rithms, and methods from all of these fields .

The term data mining is used most by statisticians ,
database researchers and more recently by the busines s
community. Data mining is a particular step in the KD D
process . The additional steps in KDD process are dat a
preparation, data selection, data cleaning, incorporatio n
of appropriate prior knowledge and proper interpreta-
tion of the results of mining ensure the useful knowledge
is derived from the data [Rastogi99] . A detailed descrip-
tions of these steps may be found in [Ortega 2000] .

On the other hand, historical, temporal and spatia l
databases have been profusely studied in the bibliogra-
phy [Agrawal et al. 1995] . Specific applications include
financial, marketing and production time series, such a s
stock prices, sales numbers, and also scientific database s
with time series of sensor data . For example, in weathe r
data, geological, environmental, etc . In this paper, we
are interested in time-series databases corresponding t o
the evolution of semiqualitative dynamic systems .

Databases theories and tools provide the necessary in-
frastructure to store, access, and manipulate data . In
this paper, a new way to study dynamic systems that
evolve in the time is proposed merging "data mining" ,
"time-series" and "databases engine" . The propose d
perspective tries to discover the underlying model in the
database by means of a query/classification language .

It is also possible to obtain the behaviour pattern s
of these systems automatically by means of clusterin g
techniques . Clustering is a discovery process in dat a
mining. It groups a set of data in a away that maxi-
mizes the similarity within clusters and minimizes th e
similarity between two different clusters . These discove-
red clusters can help to explain the features of the under -
lying data distribution . The semiqualitative behaviour
of a system is expressed by means of hierarchical rule s
obtained by means of machine learning algorithms .

The paper is organized as follows : firstly, our approac h
is explained and the concept of semiqualitative model i s
defined . Secondly, the kind of qualitative knowledge w e
are using in the language is introduced . Thirdly, the

sea .

Simulatioon of a mane]

Figure 1 : Our approach

query/classification language on the database is descri-
bed . Next, the clustering algorithms is described in de-
tail and, finally, the way to obtain the hierarchical rule s
of the systems is explained . The proposed methodology
is applied to a logistics growth model with a delay .

2 Our approach

There is enough literature that studies stationary state s
of dynamic systems, however, the study of transien t
states is also necessary. Stationary and transient state s
of a semiqualitative dynamic system may be studie d
with the proposed approach . It is shown in figure 1 .

We begin with a time-series database . It may
be obtained by means of semiqualitative simulation s
[Ortega et al. 1999] or by means of data sensors . Thi s
is a trajectory database . A trajectory is a time-serie and
it contains the values of the parameters and the values
of all state variables from their initial value until thei r
final value . Therefore, every trajectory stores the value s
of the transient and the stationary states of these varia-
bles of the system . Every trajectory is set of time-serie s
of state variables .

We propose a language to carry out queries about th e
qualitative properties of the set of trajectories included
in the database . A labelled database is obtained whe n
these trajectories are classified according to some crite-
ria . It is also possible to classify the database by mean s
of an automatically process . In such case, it is necessar y
apply clustering techniques .

Qualitative behaviours patterns of the system may
be automatically obtained from this database b y

Labelled

Database
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applying rule discovery based on genetic algorithm s
[Aguilar et al . 1998] . The steps of our approach are de -
tailed in the following sections .

3 Semiqualitative model s

In this paper, we focus on those dynamic systems wher e
there may be qualitative knowledge in their parameters ,
initial conditions and/or vector field . They constitut e
the semiqualitative differential equations of the system .

A semiqualitative model S is represented by means o f

el> (x, x, q, t ),

	

x ( to) = xo,

	

1o(q , xo)

	

( 1 )

being x E 1R' the state variables, q the parameters, t th e
time, ± the derivative of the state variables with respec t
to the time, constraints among x, x, q, t, and (Po cons-
traints with the initial conditions . These constraints
may be composed of qualitative knowledge, arithmeti c
and relational operators, intervals, predefined functions ,
(In, exp, sen, . . .) and numbers .

4 Qualitative knowledge

Qualitative knowledge about a model may be com-
posed of qualitative operators, qualitative labels, en-
velope functions and qualitative continuous functions
[Ortega et al. 1999] . In this paper, we are interested
in applying this knowledge to carry out queries wit h
the language . Therefore, the representation and trans-
formation techniques of this qualitative knowledge ar e
described bellow .

The representation of the qualitative knowledge is ca-
rried out by means of operators which have associate d
real intervals . It simplifies the integration of qualita-
tive and quantitative knowledge, and it also facilitate s
the incorporation of expert knowledge in the definitio n
of the range of qualitative variables and parameter s
[Gasca 1998] .

Every qualitative operator op is defined by means o f
an interval lo, which is supplied by the experts .

4.1 Unary qualitative operator s

Every magnitude of the problem with qualitative know -
ledge has its own unary operators defined .

Let U~ be the unary operators for a variable x, i . e . ,
U,, = {VNN , MNX ,LNX ,APO x ,LPX,MPX ,VPX } . They
denote for x its qualitative labels : very negative, mode-
rately negative, slightly negative, approximately zero,

slightly positive, moderately positive, and very positiv e
respectively .

The transformation rule for a unary operator i s

opu(e)

	

e — a = 0

	

(2 )
a E lw

being a a new generated variable, and I,. the inter-
val associated with operator opt,, which is establishe d
in accordance to [Trave-Massuyes et al . 1997] .

4 .2 Binary qualitative operator s

Let e l , e 2 be two arithmetic expressions . A binary qua-
litative operator b(e l , e 2 ) denotes the qualitative order
relationship between e l and e2 . These operators ar e
classified into

• Operators related to the difference >, _, < . The
following transformation rules are applied

Table 1 : Transformation rule s

• Operators related to the quotient <<, — <, —, ti, »
, V o, Ne, . . . . The applied transformation rule i s

e l —e 2 *a= 0
aElb

being a a new variable and lb the interval associated to
opb in accordance to [Trave-Massuyes et al . 1997] .

5 Query/classification language

We propose a language to carry out queries and t o
classify with labels a time-series database T obtaine d
with the quantitative simulations of a family of model s
[Ortega et al. 1999] . Therefore, this language allows u s
to classify the behaviour patterns of the system .

5.1 Abstract Syntax of the language

Let T be the time-series database and let r be every
trajectory in this database . The abstract syntax of the
proposed language is A query Q on the database T may

- e2 = 0
e l —e 2 —a= 0
a E [—oo, 0 ]
el — e2 — a = 0
a E [0,00]

e l

opb (e l , e 2 ) (3 )
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Q : VrEC• P
3rECeP

P:
I

Pb
P A P
P V P

P
Pb : Pd

OT
e b (OL ([F], {L}))

Pd : EQ
CL

Or always F
sometime F
always F before F
always F until F
sometime F be f ore F
sometime F until F
always F after F

OL :

~

~

increas e
decreas e
periodic
maxim
minimu m
constan t
length

F : Fb
F&F

Fb :
~

~

e b
ee l
u(e )
b ( e i, e2 )

1

	

F I F
F = F
!F

Table 2 : Queries abstract syntax

be a quantifier V, 3 applied to T . This query try to de-
termine if all the trajectories (V) or if there is at leas t
one (3) verify the property P . This property may be
formulated by means of the composition of other pro-
perties using the Boolean operators A, V, --, and its resul t
is the application of these operators among the partia l
properties .

A basic property Pb may be : a predefined property
Pd , a P tolean expression e b applied to a list operator
OL([F], ZL}) applied to a list L of points or interval s
which verify the formula F, or a temporal operator O T .

A list operator O L ([F], {L}) returns the list L of
points or intervals of the trajectory which verify the for-
'ula F .

A temporal operator OT is used to describe proper -
ties in a concrete time of a trajectory, or to compar e
among different times of a trajectory, or to establis h
a sequence of behaviours of a trajectory. We have
chosen a set of temporal operators from the tempo-
ral logic . The chosen had been those whose definitio n
would be obtained by means of a final recursive defini-
tion [Lipeck and Saake 1987] .

A defined property Pd is one whose formulation is au -
,ratic . They are queries commonly used in dynamical

systems . There are two predefined : EQ, which is veri-
fied when the trajectory ends up in a stable equilibrium ;
and CL that it is verified when it ends up in a limit cy-
cle .

A formula F may be composed of other formulas com-
bined by means of Boolean operators &,I, ! and its result

is the application of these operators among the partial
formulas .

A basic formula Fb may be : a Boolean expression e b ,
or if a numeric expression e belongs to an interval I, or
a unary u or binary b qualitative operator .

Classificatio n

A classification rule is formulated as a set of basi c
queries with labels and possibly other expressions . A
classification problem is proposed in accordance to th e
following abstract syntax :

Table 3: Classification abstract syntax

5.2 Semantics of the languag e

The semantics of every proposed statement is translate d
into a query of the database . A query V r E C• P i s
true when all trajectories r E C verifies property P . To
prove that an 3 statement is true, it is necessary to fin d
at least one trajectory r E T that verifies the propert y
P .

A property P which is formulated bmeans of the
application of Boolean operators A, \

	

is true when
the result of the application of these

	

erators amon g
the partial properties is true .

The result of the evaluation of a temporal operato r
OT depends on its semantics . For example, always F
returns a true value if all the values of r verify F . If
this operator is sometime F returns a true value whe n
at least a value of r verifies F . The semantic of al l
these temporal operators are described in accordance to
[Lipeck and Saake 1987] .

Let eb(OL([F], {L})) be a basic property. This pro-
perty is true if the Boolean expression applied to th e
list operator OL returns a true value . The operator OL
returns the intervals or points of a trajectory which ve-
rify a formula F .

In order to evaluate a formula F, it is necessary t o
substitute its variables by their values . These values ar e
obtained from T .

Let [r, PA] A, cAr be a classification rule . A tr". -
jectory r E T is classified wit ii the label A if it verifies
property PA . It is also included into the database for
this trajectory the result of the evaluation of e A r . Thi s

[r E C, automatic ]
[r E C, PA ]

	

A,en r, . . .
[r E C,PB ]

	

B , en2, . . .

C :
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	 Q i
VrEC•P, 'rue,

3rEC•Pi

	

f(ll ., ,
&V y

process is repeated with every classification rule . When
the classification rule is [r E C, automatic], it is nec i
ry to apply clustering techniques in order to classify th e
database automatically .

5.3 Implementation detail s

The semantics of all queries and classification rules i s
translated into an algorithm . The execution of this al-
gorithm yic ,is the answers to the queries and labelle d
the databa e, and it is only necessary go once throug h
the dat, This algorithm is automatically genera-
ted .

Let Q = {Q 1 , . . ., Q l } be a set of m queries on a subse t
C C T . Let b = {b i , . . ., b.,n } be them answers to Q . The
template algorithm to obtain b follows :

1. QueryClassifyQ(Q, C) return b
2.

	

b := e
3.

	

for i := 1 to i < Card(C)
4.

	

t :=tf
5.

	

y :=yo
6.

	

while —,(t = to )
7.

	

t :=t — At

being p = (y 1 , . . ., y,) auxiliary variables .

	

Ever y
Boolean variable b accumulates the result of the qu o
on the database and Boolean variable y accumulat c ., t

res

	

tf the qu

	

on the trajectory. The initial vu . .
of b (line 2) is the neutral element of the operation tha t
it accumulates . The initial value for y (line 5) is c
culated by applying the operation to the last instani ,
the trajectory. In order to modify these variables (line s
8 and 11) the operations ft and Ty to the y variable s
and the operation T b to the b are applied . The function
f evaluated at time t denoted by f t . The algorith m
proceeds backwards in time due to the transforrriatio . .
of the temporal operators [Ortega 2000] .

The execution of this algorithm returns

	

Boole : —
value true or false as result of every query. The cc •t-

plexitv of the algorithm is lineal, sine : each trajector : .
read once for all the queries . This algorithm can b e
ways obtained . The algorithm is instantiat

	

'epending
on the language sentences as follows .

5 .3 .1 Queries

Table 4 collects the generated code for a query .

where every fiery Qi generates at least an auxiliary

Table 4: Qu. .

	

. formatio n

variable y to contain the evaluation of P on the trajec-
tory .

5 .3 .2 Propertie s

5 .3 .3 List operators

Let e b (OL ([F], {L})) be a Boolean expression applie d
to a list operator . The generated code contains a lis t
1 to store the intervals of the trajectory that verify the
formula F and a flag a to indicate when the formula F
is activated . A record is generated for every interval o f
each trajectory r that verifies consecutively the form '
F . This record contains the initial and final tin], of th e
interval :uid the result of the -aluation in e time t
of the expressions that appear in L, and it is (lentil ec l
as L t . The operator OL is applied on the obtai ; ; a d
1 . The Boolean expression e b is appli""-' • he result o f
this applica :' in . The gen rated code is in table 6 .

List operator P t ,(O L ([1 t
line code

5

	

l :_ { }
8

	

if Ft then l := Lt U i
10

	

y := eb (OL (1) )

Table 6: List operator transformatio n

where Ft denotes the evaluation of formula '
tant t .

8 .
9 .

10 .
11 .
12 .

Table 5 collects the generated code for a property .

Property Pi line code
P1 A P2 10 y := yp 1 A yp 2

P1 VP2 10 y :=yp 1 Vyp 2

-,P 10 y :_ —,y p

Table 5: Properties transformatio n

y

	

ft(y , C(i) t ) being y an auxiliary variable to store the rest of Pi ,
end while and yp to store the result of the elemental aper -
y :=Ty (y)

ties, and y is obtained by applying the A, V, ratorb := Tb (b, y)
among the yp variables .end for



5 .3 .4 Temporary operators

	

5 .3 .6 Formulas

The table 7 collects the generated code for temporal
operators .

Linea
Temporary operator OT
codigo generado

5
8

always F
y :=Ft
y :=Ft A y

5
8

sometimes F
y :=Ft
y :=Ft V y

5

8

always F before G
y :=Ft VGt

y :=Ft V (Gt Ay)

5
8

always F until G
,y :_(FtAGt) VFt
y := (Ft A Gt) V (Ft A y)

5
8

sometime F before G
y := (Ft A -, Gt) V (-, Gt )
y :_ (Ft A -Ct) V (,Gt A y)

Table 7 : Temporary operators transformatio n

This algorithm has been obtained in accordanc e
to the definition of temporal operators provided i n
[Lipeck and Saake 1987] .

5 .3.5 Predefined properties

Predefined properties are queries whose formulation i s
automatic . They are queries commonly used on dy-
namic systems .

A trajectory ends in a stable equilibrium EQ whe n
the states variables do not oscillates in the end of the si -
mulation . Therefore the derivative of the state variables
may be approximately equals to zero .

EQ = always (t E RF

	

0)

	

(4 )

where RF denotes the final range of the simulation, ± is
the derivative of the state variable x and is a binary
qualitative operator . The generated algorithm is th e
corresponding to this temporal operator always .

A trajectory ends in a limit cycle CL when it oscillates
in the final time of the simulation .

CL - periodic([t E RF A± = 0 A > 0], {x})

	

(5 )

This predicate obtains a list with the relative maxima
(or minima) in the final range of the trajectory . A limi t
cycle appears when these maxima are periodically re-
peated .

Formulas study specific features of a concrete instant in
a trajectory. A formula Ft applied to r is verified when
F is satisfied in the instant t . Transformation instruc-
tions depend on F, and they are in table 8 . In orde r

Formula F line cod e
Ft A G t 8 Eval (Ft ) A Eval (G t )
Ft V Gt 8 Eval(Ft ) V Eval(G t )
Ft z Gt 8 Eval(Ft )

	

Eval(Gt )
-Ft 8 -Eval(Ft )
Ft 8 Eval(Ft )

Table 8: Formulas transformatio n

to evaluate a formula F, it is necessary to substitut e
its variables for their values . These values are obtaine d
from T .

6 Behaviour pattern s

A behaviour pattern is each one of the possible be-
haviours that may appears in a dynamic system from
its initial state until its final state . A qualitative model
has a group of qualitative behaviours . Each one of them
is a behaviour pattern . In figure 2 there are three diffe-
rent quantitative trajectories but they follow the sam e
qualitative pattern : begins with a value next to zero ,
then it goes growing until it reaches a maximum an d
next it oscillates until arriving to a positive value wher e
it remains stable .

------------ -

time '

Figure 2 : Similar qualitative behaviour s

It is possible, that there are different ways to reach a
stationary state . If the study is only limited to the sta-
tionary, it is not possible to recognize these differences
and we would conclude that all the trajectories hav e
the same behaviour . It is therefore necessary to furthe r
out the study with the transient state to discover thes e
behaviours .

In order to obtain the patterns, the database must be
labelled . Once the database is labelled, the technique s

11 6



to obtain the behaviour patterns are applied .

7 Labelling of the databas e

The labelling of the database assigns one or more label s
to every trajectory. These labels may be assigned by a
certain criterion provided by the user or by means of an
automatic process . The data normalization is necessar y
to classify automatically the database . This normaliza-
tion helps us to assign the labels to the trajectories by
means of clustering algorithms .

7.1 Labelling with specific criteri a

Let T be the database for the following classification
rules : C = {C 1 , C 2 , C3i . . .}, being :

C1 - [r E T, PL ,] . Li, e 1
C2 = [rET,PL2 ]=L 2

C3 = [r E T, PL3]

	

L3, e31, e32

8 Normalization

Two trajectories with a similar behaviour may have a
distance next to 0 . In figure 2, the three trajectories fo-
llow the same qualitative pattern, but if we apply amon g
them a distance like the Euclidean, it is concluded tha t
they follow different behaviours . It is necessary to nor-
malize these data to obtain the same pattern for simila r
qualitative behaviours . Therefore, these data will b e
scaled, translated and weighted .

8.1 Scaling

Let r be a trajectory, and let be the value s
stored in the database of the state variables of r . These
values will be scaled to the interval [0,1] . For every va-
riable x E r is necessary to obtain its maximum and
minimum values xmax, x,,,,in respectively. The value
x v = x,nax — x,nin is the range of values of x . Let x t be
the value of x at time t . Let x't be the escalated value .
It is obtained by means of the expressio n

( 6 ) x t — xmi n
x t = (7 )

x,.

being r the trajectories of T, PE, the i-th predicate o f
the classification rule Ci , L i labels and e expressions .

A label L is assigned to trajectory r when it verifie s
the property P . In order to apply the behaviour patter n
algorithms, it is necessary that all trajectories have a t
least one label, otherwise, an empty label is assigned .

7 .2 Automatic labelling

The automatic labelling classifies the database in accor-
dance to the different behaviours of the dynamic system .
It is necessary to supply the similarity degree to carry
out this classification . It is a number in the interval [0,1 ]
and its functionality is explained bellow .

Let T be the trajectories database . The idea is to fin d
the different patterns that appear in T . Every trajectory
is classified with a label L in accordance to its behaviou r
pattern .

Each trajectory r E T contains a temporal sequenc e
for every state variable, therefore, a trajectory is a vec-
tor of time sequences . It is necessary to apply a clus-
tering algorithm on these time series of the database to
discover the behaviours . These sequences may be pre-
viously normalized. Any clustering algorithm needs to
define a metric among the elements to be classified . This
metric is provided by the similarity degree.

8.2 Translation

The trajectories r2, . . ., r N are translated to the first tra-
jectory r 1 . Let s be a trajectory s E {r2 , . . ., r N } . For
each trajectory s is defined TS = s 2 — s 1 (figure 3) .

Hms

Figure 3: Translation and periodicity

The translation of s is obtained by solving the follo-
wing system :

t 1 = a * s 1 + b

	

( g )t2 =a*s2+ b

being a the homotecy between both trajectories and b
the translation . Solving this system, it is obtained tha t

117



the values of a, b are :

t2 — tl

	

Tl

	

tls2 — t2s1

	

t1s2 — t2s 1
S 2 — 81

	

Ts

	

8 2 — s1

	

Ts
( 9 )

By substituting (9) in (8) and operating, we obtain th e
translation

t1 s 2 +t2S1 —t 1Ts
t s

		

(10 )
T1

8 .3 Weighting

Once every trajectory has been translated, it is no t
possible to compare them directly. Therefore, it is ne-
cessary to interpolate these values .

Let r be a fixed trajectory and let s be the one tha t
will be interpolated . Let is be the value obtained by th e
translation (10) . Let ti , t j be where ti = to + kzt and
tj = ti + At where k is a natural number that verifie s
that is E [t i , tj ] . Let y i , yj be the translated values
stored in the database for t i ,tj respectively. We are
interested in calculating the value t s . There are severa l
ways to calculate it : linear approximations, 0-splins, . . .
In this paper, the value ys is calculated by means of a
linear approximation as follows :

ys = yi + yJyi (ts — t i)

	

( 11 )

being At = tj — t i . This is the value of trajectory s
that may be compared with the corresponding on the
trajectory r .

9 Distance among trajectorie s

Let T be a database with N normalized trajectories . I t
is calculated a distance matrix D among these trajec-
tories . It is a triangular matrix with its main diagona l
equal to zero . This matrix is necessary for the clusterin g
algorithm .

Let 6(ri ,r j ) be the distance between two trajecto-
ries . A possibility consists of calculating 6 by means
of the Euclidean distance . However, we know that tra-
jectories are time series, therefore is better to calcu-
late 6 by means of the Fourier coefficient s
There are several reasons to elect the Fourier coefficient s
[Agrawal et al . 1995] : the distance is preserved, they
are easy to calculate, they concentrate the signal ener-
gy in a few coefficients and there is an algorithm Fast
Fourier Transform (FFT) that calculate this coefficient s
efficiently . Therefore, Fourier transform is an appropri-
ate way to calculate the distance in time series .

In this i per the distance 6 between two trajectories

r i , rj is defined by means of :

polaoi — a oj 1 z +
plIali — a ijI 2 +
pz nazi — a zj 1 z +
P3 f x i (t) — x j (t)1 2 dt+
P4 1 lx i (t) — x'j (t)l 2 dt+
P5 J ( x z' ( t) — x~ ( t )I2dt

being x the state variables, po, pi, . . .,P5 weights, a u „ the
u-th Fourier coefficient, x i , x j normalized values store d
in the database for the trajectories i, j respectively, an d
x'i , x'j and x'i', xl first and second derivative of x i , x j
values respectively.

This distance (12) is defined as an expression depen-
ding on : Fourier coefficients, weights, variable magni-
tude and first and second variable derivatives . The jr..
tification is as follows :

• In accordance to [Agrawal et al . 1995] only with a
few Fourier coefficients the features of the origi-
nal trajectory are obtained. Therefore, the ter m
p3 f Ix, — xj 1 2 dx provides the same information as
the three first Fourier coefficients .

• Besides the magnitude, there are other features tha t
are interesting to take into account from a quali t
tive perspective : the shape (first derivative) any .
the concavity (second derivative) .

• Weights are introduced to take precedence over th e
magnitudes, the shapes or the concavity of the tra-
jectories . We had not study the relation and rele-
vance among these weiol :s and the distance . A l
the tests have been carried out with a weight o f

A distance matrix D is obtained using the proposed defi-
nition of 6 . The completeness of the algorithm to obtain
D is exponential .

10 Clustering and decision rule s

Clustering is a discovery process in data mining . I t
groups a set of data in a away that maximizes th e
similarity within clusters and minimizes the similarit y
between two different clusters . These discovered clu s
ters can help to explain the features of the underlyin g
data distribution . In recent years, a number of clus-
tering algorithms for databases have been proposed :
DBScan [Ester et al . 1996], CURE [Guha et al . 1998] .
Chameleon [Karypis et al . 1999], . . .

A scalable clustering algorithm is proposed in this pa -
per . Its execution puts together a trajectory and a label .
This label determines the behaviour pattern of the tra-
jectory .

6a (ri, rj (12 )

118



1. Clustering(D, M) return ME
2.

	

dmean = Mean(D )
3.

	

G := Graph(D, dmean )
4.

	

ME := Clusters(G, a )

being a the similarity degree previously commented .
This algorithm begins obtaining the distance matrix D
among trajectories . Next, it calculates the mean of D .
This mean distance dmean is calculated to know the
magnitude of the distance .

A weighted graph G is obtained with the k-neighbour s
of every trajectory . The vertex of G are the trajecto-
ries . The arcs are weighted with the relationship bet-
ween dmeans and the distance between two trajectories .
Figure 4 shows examples of graphs building : original (a )
and with 1- (b), 2- (c) and 3-(d) neighbours .

11 Application to a logistics
growth model with a delay

It is very common to find growth processes in which an
initial phase of exponential growth is followed by ano-
ther phase of approaching to a saturation value asymp-
totically (figure 5) . These are given the following generic
names : logistic, sigmoidal, and s-shaped processes .

exponential

	

avymtotic behavior
growth

Figure 5: Logistics growth curve

a) b)

•

'

•
•

•

''

L.
c) d)

Figure 4: Graph with k-neighbour s

It is applied an algorithm to the k-neighbours graph .
The algorithm breaks those arcs between neighbour s
vertices whose weight w is less than

a * d mean
10 0

being a the similarity degree .

The connected graphs represent every different be-
haviour pattern of the dynamic system . All the trajecto-
ries of every connected graph are classified with the same
lake This is carried out by the function Clusters(G, a) .

Once the database has been labelled, the pattern be-
haviour of the system is represented by means of a se t
of hierarchical decision rules . These rules are obtaine d
using the program COGITO [Aguilar et al. 1998] to th e
bidimensional dynamic array described in the section 7
of this paper .

This growth is exhibited by systems for which expo-
nential expansion is truncated by the limitation of the
resources required for this growth . This behaviour is
due to a positive feedback that is dominant in the ini-
tial phase, and a negative feedback that is dominant i n
the final phase .

In literature, these models have been profusely stu-
died. They abound both in natural processes, and i n
social and socio-technical systems . They appear in th e
evolution of bacteria, in mineral extraction, in worl d
population growth, and in economic development . Lear-
ning curves also show this type of behaviour .

The same thing happens with some diffusion pheno-
mena within a given population, such as epidemics o r
rumors . Other examples of this behaviour are a popu-
lation that grows in a habitat with limited resources ,
a technological innovation that is being introduced, o r
a new product that is being put on the market . In al l
these cases, their common behaviours are shown in fi-
gure 6 . There is a bimodal behaviour pattern attractor :
A stands for normal growth, and 0 for decay . It can
be observed how it combines exponential with asymp-
totic growth . This phenomenon was first modeled b y
the Belgian sociologist P . F. Verhulst in relation with
human population growth . Nowadays, it has a wide va-
riety of applications, and some of them have just bee n
mentioned .

Let S be the qualitative model . If we add a delay i n
the feedback paths of S, then its differential equations
are

x=x(nr—m) ,
y = delay,(x), x > 0, r = h i (y) ,
h l

	

{(—oo, —oo), +, (do, 0), +, (0, 1) ,
+, (dr, eo), —, (1, 0), —(+oo, —oo) }

being n the increasing factor, m the decreasing fac-

w <

11 9



A

0

t

Figure 6 : Logistics growth model

tor, and h l a qualitative continuous function defined by
means of points and the derivative sign among two con-
secutive points . These functions are explained in detai l
in [Ortega 2000] . This function has a maximum poin t
at (x 1 , yo) . The initial conditions are

x ° E [LPx , MPx] ,
_ LPx (m) ,

le0

	

LPx (n) ,
T E [MP, ,VP,- ]

where LP, MP, VP are the qualitative unary operator s
slightly positive, moderately positive and very positive fo r
x, T variables .

We would like to know :
1. if an equilibrium is always reache d
2. if there is an equilibrium whose value is not zer o
3. if all the trajectories with value zero at the equili-
brium are reached without oscillations .
4. To classify the database in accordance to the be-
haviours of the system .

The methodology is applied to this model . Firstly ,
it is necessary to define the intervals associated with
every qualitative operator, they have been defined fo r
this problem by the experts as follows :

LP, = [0,1]

	

MP, = [1,3 ]
MPT = [0 .5, 4] V PT = [4,10 ]

The methodology described in [Ortega et al. 1999] i s
applied to obtain the trajectory database T . The
proposed methodology transforms this semiqualitativ e
model into a family of quantitative models . Stochasti c
techniques are applied to choose a quantitative model o f
the family . The simulation of every quantitative mode l
generates a trajectory. All trajectories put together
constitute the database T .

Applying the proposed language, the proposed querie s
are formulated as follows :
1.VrET•EQ
2. 2rET•(EQAsometimet t f x00)
3.drET•(EQAsometimet t f x^:0 A

length(x = 0 A i < 0) )
The list of points where ± = 0 and i < 0 is the list with
the maximum points . There are no oscillations when it s
length is 0 .

The answers to the proposed questions were :
1. b l = True, all the trajectories of T reach a stable
equilibrium . Therefore, we conclude : there is no cycl e
limit.
2. b2 = True, some trajectories of T reach an equili-
brium whose value is not zero . Therefore, this is the
first behaviour we have obtained . We know it as re -
covered equilibrium . 3 . b3 = False, there are at leas t
two ways to reach this equilibrium : with oscillation s
(this behaviour is called as retarded catastrophe) and
the other way is without oscillations (that it is called as
decay and extinction) .

We apply to T the described clustering algorithm wit h
a similarity degree of a = 0 .1 . This algorithm foun d
the three possible behaviours patters for this system .
This result is in accordance to the previous queries . Th e

equilibrium recovered

decay and exnnclion

Figure 7 : Logistics growth model with a delay

obtained results with this way to discover the behaviou r
patterns are in accordance to others appeared in the bi-
bliography [Aracil et al . 1997] and [Karsky et al . 1992 ]
where the results are concluded by means of a mathe-
matical reasoning . This circumstance encourages us t o
continue developing this methodology and to apply it t o
other systems with qualitative and quantitative know -
ledge .

12 Conclusions and further work

In this paper, we have presented a way to obtain tempo-
ral and semiqualitative behaviour patterns of dynami c
systems with qualitative and quantitative knowledge .
This approach is based on a transformation process, de-
finition of a query/classification, language on a quanti-
tative behaviours database, and clustering techniques .
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There is enough bibliography that studies stationar y
states of dynamic systems . However, the study of tran-
sient states is also necessary. These studies are possible
with the proposed language .

In the future, the query/classification language mus t
be enriched with operators for comparing trajectories ,
spatial operators, etc . Dynamic systems with cons-
traints and with multiple scales of time are also one of
our future points of interest .

The methodology is being applied in a real computer-
controlled process . It is a production industrial system .
Altos Hornos de Sevilla is a metallurgical Company in-
terested in modifying its steel control production system
applying the whole methodology ([Ortega et al. 1999]
and this paper) . The production engineers of this com-
pany wish to improve the steel quality, and, if possible ,
reduce the production costs . This collaboration is now
developing and in forthcoming papers, we will describ e
this system in detail and the conclusions we shall obtain .
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