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Why fly blind? Event-based visual guidance for ornithopter robot flight
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Abstract— The development of perception and control meth-
ods that allow bird-scale flapping-wing robots (a.k.a. or-
nithopters) to perform autonomously is an under-researched
area. This paper presents a fully onboard event-based method
for ornithopter robot visual guidance. The method uses event
cameras to exploit their fast response and robustness against
motion blur in order to feed the ornithopter control loop at
high rates (100 Hz). The proposed scheme visually guides
the robot using line features extracted in the event image
plane and controls the flight by actuating over the horizontal
and vertical tail deflections. It has been validated on board
a real ornithopter robot with real-time computation in low-
cost hardware. The experimental evaluation includes sets of
experiments with different maneuvers indoors and outdoors.

Index Terms— ornithopter, flapping-wing, event camera, line
features, tracking, visual servoing, computer vision.

I. INTRODUCTION

In the last years, flapping-wing robots have attracted sig-
nificant R&D interest. They have the potential of performing
forward, backward, and lateral flight, other agile maneuvers,
and hovering [1]. They are robust against collisions and
less dangerous than multirotors. Moreover, their flapping
and gliding capabilities can be combined to perform energy-
efficient flights. A number of works have explored small
scale flapping-wing Micro Aerial Vehicles (MAVs), see e.g.,
[2], [3]. Some of them have even explored visual perception
for flapping-wing MAVs [4]. We are interested in bird-scale
flapping-wing robots, also called ornithopters, which have
enough payload capability to install onboard sensors and
embedded computers that can enable their fully autonomous
operation.

Flapping-wing flight entails a number of perception chal-
lenges that differ from multirotor flight. Ornithopters suffer
from mechanical vibrations and wide abrupt movements due
to the flapping strokes , which highly impact onboard percep-
tion [5]. Besides, their strict payload and energy limitations
severely constrain the sensors, gimbals, and computing or
additional hardware that can be installed on board. Further,
increasing the payload reduces the ornithopters’ maneuver-
ability. Although the vibrations and abrupt motion issues are
less acute when the ornithopter flies in gliding mode than
in flapping mode, their strict payload limitations preclude
the installation of different sensors for each flight mode.
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Fig. 1: The GRIFFIN E-Flap ornithopter during an outdoor
fully onboard guidance experiment.

Finally, the ornithopter payload entails strict limitations on
the onboard processing capabilities. In fact, most of the
reported ornithopter control methods, see e.g., [6]–[8], are
executed offboard using measurements from very accurate
external perception systems such as motion capture systems.

The proposed perception scheme is based on event cam-
eras. Event cameras are robust to motion blur and lighting
conditions; they are compact, have moderate weight, and
low energy consumption. Hence, they are suitable onboard
sensors to deal with the perception challenges of flapping-
wing flight [5]. Besides, efficient event-based processing
techniques can provide estimates at high rates, as required to
cope with ornithopters’ agility and maneuverability. A good
number of successful event-based perception techniques have
been developed, see e.g. [9]. Although they have been used
on board multirotors, no event-based technique dealing with
the perception issues of ornithopters has been reported.

This paper presents a fully onboard event-based scheme
for guidance of ornithopter robots. It tracks intersections of
line segments, which are used in a visual servoing system
to compute the velocity commands to the ornithopter con-
troller. The scheme closes the control loop fully onboard
at rates of 100 Hz in low-cost lightweight hardware. It has
been evaluated using the GRIFFIN E-Flap ornithopter [7]
in both indoor and outdoor scenarios, see Figures 1 and
3. The contribution of the paper is three-fold: an event-
based line tracking method that enhances the robustness and
efficiency of the method presented in [10]; an efficient visual
servoing method that exploits event-based vision to perform
ornithopter guidance; and the experimental validation in short
flapping and gliding maneuvers indoors and outdoors. To the
best of the author’s knowledge, this is the first method in
which a bird-scaled flapping-wing robot is controlled using
a fully onboard event-based perception system.
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This paper is structured as follows. Section II summarizes
the main works in the topics addressed in the paper. The gen-
eral scheme of the event-based ornithopter guidance system
and its main components are described in Sections III and IV,
respectively. Section V presents the experimental validation
and robustness analyses. Finally, Section VI concludes the
paper and highlights the main future research steps.

II. RELATED WORK

In recent years, the development of a wide variety of
flapping-wing robots has motivated increasing interest in
methods for their control and guidance. A number of meth-
ods for ornithopter flight control, obstacle avoidance, or
control during maneuvering among others, have been devel-
oped [3], [4], [6]–[8]. However, most existing works used
sophisticated methods involving significant computational
requirements that preclude their onboard execution [3] [8],
relied on measurements from external sensors to close the
control loop [6] [7], or performed onboard image-based
processing running at typical frame rates (≤ 30 Hz) [4].
Our objective is to guide and control bird-scaled ornithopters
using solely onboard sensors while processing at high fre-
quency rates.

The perception of the environment by ornithopter robots
is challenging as abrupt movements and strong mechanical
vibrations are recurrent during the flight. The intrinsic nature
of ornithopter flight requires the development of perception
systems for both gliding and flapping-wing flight, ideally
using the same sensors to keep the payload as low as
possible. One of the first approaches to robotic visual percep-
tion for ornithopters was ROSS-LAN, a simulation scheme
to obtain synthetic data of a number of sensors during
landing and perching maneuvers [11]. The work in [12]
developed a vision stabilizing system to address the pitch and
roll fluctuations during each flapping period. The required
payload for installing the hardware for their proposed vision
system was <100 g, which could be carried within the 150
g payload of their robot. Although their system provides
a valid solution to some of the problems that arise during
flapping-wing flight, increasing the payload often entails
that the maneuverability and autonomy are reduced [7]. The
work in [5] studied the potential issues and opportunities of
using LiDAR, conventional, and event-based vision sensing
on board ornithopter robots. They concluded that event-
based vision provides a promising solution to many of the
perception challenges that arise during flapping-wing flight.

The advent of event cameras has recently attracted signif-
icant research interest in the robotics and computer vision
communities [9]. A number of works have explored the
advantages of event cameras on aerial robots. A method for
detection and tracking of moving objects onboard a Micro
Aerial Vehicle (MAV) was presented in [13]. A model of the
affine transformation between two consecutive event images
was used to compensate for the global motion of a MAV and,
the resulting events were assumed to represent the moving
objects. In [14], an autonomous MAV landing approach
based on the optical flow of event frames obtained from a

downwards-pointing DVS sensor was presented. The authors
compared to other landing approaches based on frame-based
cameras showing that their approach was the most accurate at
high speed. The work in [15] proposed a high-speed dodging
system for UAVs. A Deep Learning solution used event
images to detect independent moving objects, estimate their
3D motion, and avoid collisions. Another dodging system for
UAVs was presented in [16]. The authors relied on the spatio-
temporal continuity of events to detect and track moving
objects and proposed a method based on potential fields to
execute the evasive maneuver. Recently, event images have
been used in [17] to estimate the position and yaw orientation
of a quadrotor using Visual-Inertial Odometry (VIO) and
closing the loop for autonomous flight subject to failures.

Although the output of event cameras are asynchronous
event streams, all the above techniques group the temporally-
close received events in frames called event images. Hence,
they do not fully exploit the sequential and asynchronous na-
ture of event cameras and, in fact, some of them [15] include
motion blur cancellation mechanisms. Various asynchronous
event-by-event methods have been proposed for feature de-
tection, [18] feature tracking [19] [10], clustering [20], pose
tracking [21], and VIO [22]. Although these methods provide
valid solutions, few of them have considered computational
constraints like those on board aerial robots.

The work presented in [21] performs onboard tracking of a
drone’s 6-DoF pose during high-speed maneuvers by looking
at a previously known planar shape on a wall. More recently,
a bio-inspired visual servoing method was presented in [10]
mimicking the approach followed by pigeons while perching
and relying on the time-to-contact to guide a multirotor UAV
in vertical descent maneuvers. The work in [23] implements a
closed-loop control of a dualcopter. Using an event camera,
their method was capable of estimating the robot state on
board and enabling attitude tracking at speeds of 1600 deg/s.

Although all these works present relevant contributions
to event-based vision for robotics, none of them have been
designed for or tested in ornithopter robots. The GRIFFIN
perception dataset [24] includes data collected from a con-
ventional camera, event camera, and two Inertial Measure-
ment Units (IMU) on board an ornithopter. Despite being
a first approximation, the use of onboard sensing for close
loop control in ornithopter robots is still an under-researched
area. In fact, to the author’s knowledge, there are no previous
works in which a bird-scale flapping-wing robot is controlled
using a fully onboard perception system.

III. GENERAL DESCRIPTION

Autonomous maneuver execution of ornithopter robots
using a fully onboard perception and control system is signif-
icantly different from how the same problem is approached in
multirotor UAVs, and involves dealing with relevant issues.
In ornithopters, the lift and thrust are generated by flapping
strokes. They are strongly underactuated platforms, their 6-
DoF motion should be controlled by a few number of actu-
ations. Flapping-wing flight suffers from mechanical vibra-
tions and wide abrupt movements that impose limitations in
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the perception systems [5]. Ornithopters are also affected by
aerodynamic disturbances, which impact the control meth-
ods. Moreover, they have strict payload limitations, which
constrain the installation of onboard sensors and hardware.

The proposed scheme is based on event cameras, which
are neuromorphic sensors that capture the visual information
in the form of events representing changes of illumination
in the scene. Events are triggered asynchronously with high
temporal resolution (µs), hence event-based processing can
provide estimates at very high frequencies. Moreover, they
are robust to changes in lighting conditions due to their high
dynamic range (∼120 dB), and do not suffer from motion
blur. Finally, they are compact, have moderate weight, and
low energy consumption.

The adopted event-based processing scheme is based on
an efficient Image Based Visual Servoing (IBVS) method
in which the goal position is defined w.r.t. a reference
pattern. The reference pattern is assumed to be defined by the
intersections of a set of straight-line segments. Lines contain
richer structure than punctual features such as corners, and
can be more robustly extracted than them. Besides, a wide
variety of objects originate lines in the event camera, some of
which, such as landing pads, are actually used for aerial robot
maneuvers. Using line intersections provides the accuracy
of feature points with the robustness of line extraction. The
ornithopter platform actuates over the tail pitch and direction
of the rudder while flapping is at a constant rate. Thus, trans-
lation and rotation are coupled. The method assumes that the
maneuver meets the kinematic and dynamic restrictions of
the platform while keeping the reference pattern in the field
of view (FoV) of the camera. The initial maneuver position
is assumed to allow the reference pattern to be detected in
a reliable manner. Under these assumptions, the proposed
IBVS approach can be simplified to provide translational
reference commands as the constrained control actions do
not entail orientation changes that require significant robot
attitude corrections. Finally, the event processing scheme is
endowed with ASAP [25], which synchronizes event packag-
ing such that events are processed as soon as possible while
avoiding overflow. ASAP enables executing the proposed
event-based method at a guaranteed frequency of 100 Hz.

The adopted controller meets both robustness and sim-
plicity requirements, and actuates only on the horizontal
and vertical tail deflections. The efficient controller, based
on well-established high-gain nonlinear control theory [26],
is explicit thus enabling high execution frequency on the
onboard hardware where many other processes are running
simultaneously. A feedback frequency of 100 Hz allows a
continuous-time design methodology, and hence to assess its
robustness using Lyapunov-like stability theory, see Section
IV-C.

IV. METHODS

A. Event-based line detection and tracking

This section presents a method to track the lines of a
reference pattern along the full guidance trajectory. Based
on the work we proposed in [10], this new method was

enhanced to improve line tracking robustness and reduce bur-
den. It includes two main modules. First, a spatio-temporal
consistency filter is applied to remove events caused by
the sensor’s noise and events triggered from objects with
low spatio-temporal consistency in the event stream. Next,
an Extended Kalman Filter (EKF) is used to track lines
fusing fast-response (but noisy) event-by-event line estimates
together with robust (but slower) line measurements obtained
from event-image processing.

An event binary filtering mask Ω is computed by accu-
mulating the last received events in a binary event image,
and applying erode and dilate morphological operations to
delete noise and enhance regions with a high number of event
neighbors. Ω is updated every 10 ms, it has the same size as
event images, and contains a spatio-temporal representation
of the scene structure computed from the events triggered
during the last 40 ms. An input event at coordinates (u, v) is
considered valid if it has spatio-temporal consistency with Ω,
i.e. if Ω(u, v) = 1. The rest are filtered out. Figure 2 shows
the result of the adopted event filter in one experiment.

The line extraction and tracking methods use the polar
representation of lines: ρ = u cos θ + v sin θ, with each line
defined by l(θ, ρ) in the Hough space. First, the lines to be
tracked by the EKF, represented as LT = (l0, ..., ln), are
initialized with the n lines that define the reference pattern.
The EKF keeps track of the lines in LT by integrating in
the prediction stage the line estimates resulting from event-
by-event processing, and in the update stage, the estimates
resulting from event-image processing.

The events received by the EKF are divided into two sets
with 50% probability: eP and eU , which are used in the EKF
prediction and update stages, respectively. In the EKF update,
an event image S is updated every 10 ms with the events eU

received during last 20 ms to render a suitable representation
of LT in S. Line candidates are extracted from S using
the Hough transform adapted –to reduce computational cost–
with a clustering phase to avoid redundant candidate lines in
the Hough space. The set of extracted candidate lines LC are
used in the EKF update. First, candidate lines are evaluated
to find possible associations with reference lines in LT . If
the distance in the Hough space between a candidate line
and tracked line li in LT is lower than a threshold ηT , the
candidate line is associated to li. If only one candidate line is
associated to li, li (and also its covariance) is updated. In case
several line candidates are associated to li, the line candidate

Fig. 2: Results from the event line tracker during a guidance
experiment: left) input events; center) events after applying
the spatio-temporal consistency filter; and right) resulting
tracked lines. For better visualization left) and center) are
shown as event images accumulated during 20 ms, and right),
overlaid on a visual frame image from the DAVIS 346 APS.
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closer to li is used for update, and the rest is discarded.
Conversely, events in eP are used in the EKF prediction.

Each event is evaluated to determine if it can be associated
to a line in LT or not. The association consists of evaluating
if the event lies in a region in the Hough space close to any
of the lines in LT . If the event is associated with just one
line, it updates the line and its covariance matrix. If the event
is associated to more than one line or is not associated to
any line, it is considered as noise and discarded. If a tracked
line has not been updated in the last 100 ms, it is deleted
and substituted by a new line in the Hough neighborhood of
the deleted line, selected using minimum distance criteria.

The proposed line tracker discards events caused by noise,
increasing robustness and saving computational effort. As
shown in Section IV-A, it obtains burden reductions of ∼40%
over the method in [10], reduces line prediction error in
∼5%, and increases the tracked line lifetimes in ∼10%.

B. Visual servoing using event-based vision

This section presents a visual servoing method to guide
the ornithopter towards the goal pose using the difference
in the image plane between the current features and their
goal positions. The adopted features are intersections of lines
extracted as in Section IV-A, and correspond to coplanar
3D points of a reference target. As with many other IBVS
techniques, our method assumes known the geometry of the
target, and the ornithopter goal pose in the reference frame
attached to the plane defined by the 3D points. Using a
calibrated camera, the goal position of features in the image
plane are computed projecting the 3D points as if the robot
were at the goal pose before the maneuver starts.

First, the intersections of the tracked lines are computed.
For each tracked line li, two points (ui,1, vi,1) and (ui,2, vi,2)
laying in li are obtained by choosing ui,1 and ui,2 and using
the Hough space equation (see Section IV-A) to obtain vi,1
and vi,2. The intersection point p of two non-parallel lines
li and lj is computed as follows:

p =


∣∣∣∣LA XA
LB XB

∣∣∣∣∣∣∣∣XA YA
XB YB

∣∣∣∣ ,
∣∣∣∣LA XA
LB XB

∣∣∣∣∣∣∣∣XA YA
XB YB

∣∣∣∣
 , LA =

∣∣∣∣ui,1 vi,1
ui,2 vi,2

∣∣∣∣ , LB =

∣∣∣∣uj,1 vj,1
uj,2 vj,2

∣∣∣∣ ,
XA =

∣∣∣∣ui,1 1
ui,2 1

∣∣∣∣ , YA =

∣∣∣∣vi,1 1
vi,2 1

∣∣∣∣ , XB =

∣∣∣∣uj,1 1
uj,2 1

∣∣∣∣ , YB =

∣∣∣∣vj,1 1
vj,2 1

∣∣∣∣ ,
(1)

where for a matrix A, |A| denotes its determinant.
Next, the ornithopter velocity commands are computed

using IBVS. Let pi(t) be the coordinates u and v of feature
i detected at time t. Let p∗i be the goal position of feature
i. We can define e(t) as an n x 2 matrix with the difference
between pi(t) and p∗i . The camera velocity error at time t
can be computed as, [27]:

ν(t) = −KJ†e(t), (2)

where K is a positive definite diagonal weighting matrix,
and J† is the pseudoinverse of J, the interaction matrix that
describes the variation of the feature position as a function
of camera velocity. The resulting camera velocity error ν(t)
is sent to the ornithopter controller (see Section IV-C).

Fig. 3: Diagram of the coordinate frames used by the pro-
posed event-based visual servoing method. C is the camera
frame, P is the frame attached to the pattern’s plane, and W
is the world frame used by the Optitrack system.

J is computed as follows. The kinematics of image feature
p can be expressed as ṗ = Jpν, where ν is the camera
(linear and angular) velocity vector and Jp is the Jacobian
that describes the variation of the position of p as a function
of the camera velocity, and is computed as:

Jp =

− λ
ρud

0 u
d

ρuuv
λ −λ

2+ρ2uu
2

ρuλ
v

0 − λ
ρvd

v
d

λ2+ρ2vv
2

ρvλ
−ρvuvλ −u

 , (3)

where λ is the camera focal distance, ρu and ρv are the pixel
size of the camera (in µm), and d is the distance between
the camera and the position of the 3D point corresponding
to p expressed in axis Z of the camera reference frame C.

It is worth considering that, despite the line feature motion
is subject to both translation and rotation, ornithopters are
underactuated systems. For instance, the robot must tilt to
control the altitude, and the roll and yaw rotations are
coupled to control the lateral motion. A common practice
when using IBVS in multirotor UAVs is to compensate
for the rotational motion by projecting the feature into a
virtual frame, e.g. [10] [28]. However, the kinematics of the
ornithopter precludes the use of such rotation compensation
without significantly increasing the risk of missing the fea-
ture tracks, e.g. due to the pattern leaving the camera Field
of View (FoV). Therefore, a compromise solution should
guide the ornithopter in translation while keeping the features
within the camera FoV. This is taken into account when
computing the Jacobian Jpi

by setting its three last columns
(those corresponding to the angular velocities) to zero. This
is consistent with the adopted ornithopter controller, which
actuates over the tail pitch and direction of the rudder,
and saves computational burden enabling faster control loop
closing. Finally, we are dealing with n features, pi with i ∈
[1, n]. Hence, the interaction matrix J is built through row-
wise concatenation of the Jacobians for all the n features.

Computing Jpi
requires having di, the distance between

the camera and the 3D point corresponding to pi, expressed
in axis Z of the camera frame. IBVS is well known to be
quite robust to errors in the estimation of di. For efficiency,
our method computes the distance between the robot and
plane Π, which contains the n 3D points, and uses that
distance for all the features. Figure 3 shows a diagram
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of the reference frames adopted. Let P be the reference
frame attached to plane Π with origin at the centroid of
the n 3D points. The camera pose w.r.t. P can be obtained
using the Direct Linear Transformation (DLT) algorithm
[29]. The transformation between a point

[
px py

]T
in Π

expressed in coordinates in P and its projection
[
u v

]T
on the camera plane can be expressed as ω

[
u v 1

]T
=

H
[
px py 1

]T
, where ω is a scaling factor and H is

the homography matrix between Π and the image plane.
From the correspondence between 3D point pi in Π and
its corresponding point in the image plane, Mp is built:

Mp =

[
−px −py −1 0 0 0 pxu pyu u

0 0 0 −px −py −1 pxv pyv v

]
(4)

Let M be a 2n×9 matrix built by row-wise concatenating
Mpi

for each of the n correspondences. Computing the
Singular Value Decomposition (SVD) M = UΣVT and
assuming n ≥ 4 –e.g., three line intersections and the
centroid of the intersections, H can be obtained from the
entries in the last column of V. Using the camera matrix
A, H can be decomposed into the rotation matrix and the
translation vector between P and C. Finally, d is obtained
as the module of the vector resulting from projecting the
translation vector on axis Z of the camera frame C.

The computation of J† requires at least three points. This is
a well known limitation in IBVS and, in fact, choosing more
than three points is a common practice to avoid singularities
of J, [27]. Besides, the computation of d also requires at least
three features –using their centroid as forth point. Hence, our
method requires ≥ 3 non-overlapping lines, which create ≥ 3
intersections, sufficient to compute d and J†.

C. Ornithopter control

The ornithopter controller uses ν(t) from (2) provided
by IBVS to compute the control actions. The high ma-
neuverability and aggressive motion of ornithopter robots
require control frequencies >100 Hz. Unlike works such as
[6], [7], or [8], our method closes the control loop using
solely onboard sensors and processing, without any external
measurements or sensors. Controlling ornithopters using on-
board perception with strict payload and energy limitations
have high uncertainty levels. Robustness to minimize the
influence of uncertainty and computational efficiency are
main requirements in the adopted controller. One control
method that accomplishes both requirements is the high-
gain feedback controller [26]. Besides, the proposed onboard
perception system provides ν(t) at guaranteed frequencies
of 100 Hz enabling the use of a continuous-time design
methodologies. Thus, the proposed controller is derived in
continuous time, and robust stability results are provided
through Lyapunov-like theory. Let x ∈ Rn denote the full
state vector of the ornithopter, and v = [vy, vy]T ∈ R2 the
velocity of the ornithopter flight obtained from the (x, y)
linear velocity components of ν(t), provided by the onboard
perception algorithms computed as in Section IV-B. Thus,
the velocity dynamics can be formulated from the flight

equations of motion in the camera reference frame [30] as1

v̇ = f(x) + g(x) ◦ u + ∆∆∆(x, t), (5)

where f and g are smooth vector functions of the appropriate
dimension, u ∈ R2 is the control input vector, ∆∆∆ ∈ R2 is an
additive disturbance including e.g. the perception uncertainty
among others. The control actions are the horizontal (δe) and
vertical (δr) tail deflections so that u = [δe, δr]

T .
Consider the ornithopter velocity dynamics (5) in the flight

envelope, with v the only available measure, i.e. the state
vector x is not available for feedback since no external
sensors are used. The control objective is to design u(v) so
that (5) is practically stable and hence, there exist positive
constants B and T such that ‖v(t)‖ ≤ B for some t ≥ T .

From the statement above, it is evident the need of a robust
controller, because of the high uncertainty and the lack of
measures. Roughly speaking the controller is ‘blind’ to the
remaining states. Additionally, flying in the flight envelope
ensures that: i) the state x is bounded, thus simplifying the
controller design, and; ii) g(x) is away from zero with known
signs elementwise. The latter allows us to assume without
any loss of generality that g(x) > 0, to ease the controller
derivation. Thus, consider the positive definite and radially
unbounded Lyapunov function V = (v · v)/2. Its derivative
along the trajectories of (5) becomes

V̇ = v · (f + ∆∆∆) + v · (g ◦ u) ≤|v| · η + v · (g ◦ u), (6)

where from boundedness i) above, the following upper bound
follows ‖f + ∆∆∆‖ < η, for some η > 0. It is not difficult to
see from (6) that the high-gain control structure as proposed
in [26] is suitable, which can be defined as

u = −βββ(v) ◦ v, (7)

for any positive vector function βββ(v) with βββ(0) > 0, such
that ‖g ◦ βββ(v)‖ ≥ η. To meet robustness and simplicity
requirements, we define βββ(v) = β0β0β0 + β1β1β1|v|.

Certainly, this controller behaves as desired, proportionally
around v ≈ 0 and reacting aggressively to leave that
neighborhood. Finally, recalling the fact ii) above on g, it is
straightforward to see that there always exists β0β0β0 satisfying
‖g ◦ βββ(v)‖ ≥ η in a neighborhood of v, and β1β1β1 such that
outside of that neighborhood V̇ ≤ 0. Moreover, an estimate
of the ultimate bound can be computed by using Young’s
inequality in (6) with (7) as B = η2/(β2

0 ḡ) with ḡ =
maxx{g(x)}. Therefore, under the aforementioned condi-
tions, we can conclude ultimate boundedness of trajectories
which means that the control objective is achieved.

V. EXPERIMENTAL RESULTS

The proposed scheme was validated in the E-Flap or-
nithopter robot [7], a custom design ornithopter developed
by the GRVC Robotics Lab. It has an empty weight of 510 g,
a total length of 95 cm, a maximal wing span of 1.5 m, and
a maximum payload of 520 g (with reduced maneuverability
and flight time). E-Flap was modified to equip a DAVIS 346

1Notation: ◦ denotes the Hadamard product and · the dot product. For
a vector z, |z| denotes the element-wise absolute value and ‖z‖ its norm.
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(a) Outdoors. (b) Indoors2. (c) Indoor3.

Fig. 4: Sequences of the experimental evaluation of three flapping-wing flight maneuvers: Outdoors, Indoors2, and Indoors3.

event camera, and its onboard computer was replaced by a
Khadas VIM3 for onboard perception and control processing.
The platform used the same power supply for both actuation
and perception. Similarly to the ornithopter used in [24], the
onboard computer and sensors were carefully installed to
keep balance and guarantee the stability and maneuverability
of the platform with an additional payload of ∼180 g. The
DAVIS346 embeds a dynamic vision sensor (DVS) that
outputs timestamped and polarized events, and an active
pixel sensor (APS) coincident with the DVS that outputs
grayscale images at 40 Hz. The low-weight Khadas VIM3
board mounted Ubuntu 18.04. The event-based processing
and the controller were programmed in C++ using ROS
Melodic.

The underactuated nature of the ornithopter and the func-
tionality requirements of IBVS were considered for the val-
idation of the proposed method. First, the E-Flap kinematic
constraints described in [7] along with the onboard percep-
tion restrictions influence the duration of the maneuver. From
the dynamic point of view, E-Flap typically requires a flying
speed of 4 m/s while flapping to maintain a constant height.
To correctly detect the lines, the maximum distance between
the onboard DAVIS346 and the reference pattern was 10
m. Under these considerations, the guidance maneuvers in
our experiments described trajectories of ∼2 sec. Second,
keeping the reference pattern in the camera FoV along the
maneuver is hindered by the robot’s attitude changes due to
flapping. Taking into account the ornithopter kinematics, to
keep the reference pattern within the camera FoV, we limited
the tail actuation to horizontal deflection δe ∈ [−30, 10] deg
and lateral deflection δr ∈ [−20, 20] deg.

The event-based ornithopter guidance scheme was vali-
dated in sets of experiments performing different maneuvers
in two scenarios: a testbed and an outdoor scenario. The
testbed was a 15 × 21 × 8 m room designed for testing
ornithopters equipped with 24 OptiTrack Primex13 cameras
that provided millimeter accuracy robot pose estimations,
used only as ground truth for evaluation. The outdoor sce-
nario was chosen to validate the robustness of the scheme to
the uncertainties arisen in open uncontrolled spaces.

A total of 20 flights were performed covering differ-
ent gliding and flapping maneuvers indoors and outdoors.
Four different experiments were evaluated: Indoors1, gliding
descending maneuvers indoors; Indoors2, flapping during
smooth descending maneuvers indoors; Indoors3, flapping
during horizontal flight maneuvers indoors; and Outdoors,
flapping during smooth descending maneuvers outdoors.

Figure 4 shows three sequences of experiments Outdoors,
Indoors2, and Indoors3. For brevity, a sequence for Indoors1
experiments is not shown as it is similar to Indoors2. In
all experiments, the goal position was chosen near the
reference pattern (a triangle), keeping it centered in the image
plane, and the ornithopter being parallel to the ground. All
the experiments were conducted using the same algorithm
parameters.

A. Feature detection and tracking evaluation

First, we evaluated the robustness of the proposed line
tracking method to the vibrations and changes in lighting
conditions that can be found in ornithopter flights. Figure 5-
top-left shows the module of the linear acceleration registered
by a VectorNav VN-200 IMU onboard the ornithopter during
a guidance experiment of type Indoors2. The evolution of the
three tracked lines in the Hough space along the experiment
is shown in Figure 5 (top-right and bottom). Despite the
high vibration level, the line tracker provided smooth line
estimates. Additionally, due to the wide dynamic range of
event cameras, the adopted method succeeded in tracking
lines with high robustness to lighting conditions. As an
example, Figure 6 shows its operation in two scenarios
with very different lighting conditions. The robustness to
vibrations and lighting changes was observed in all the
experiments performed. We also compared the robustness
of the proposed method against the method described in
[10]. The proposed method obtained tracked lines lifetimes
∼10% longer and line prediction errors ∼5% lower, denoting
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Fig. 5: Top-left) Module of the linear acceleration registered
onboard the ornithopter during a guidance experiment. Top-
right and bottom) Temporal evolution of the Hough (θ, ρ)
components of the three tracked lines along the experiment.
The ornithopter was launched at t ≈ 0.7 s.
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Fig. 6: Line tracking in outdoors under high intensity sunlight
(left) and indoor illumination conditions (right). For visual-
ization, the lines are drawn over a frame from the APS along
with the events from the DVS.

stronger robustness. The computational efficiency was also
compared. Both methods were executed on the Khadas VIM3
without other additional processes running in parallel, and
ASAP was configured to provide event packages at 500 Hz.
The proposed method obtained burden reductions of ∼40%,
providing average execution rates of ∼450 Hz, while the
method in [10] provided rates of ∼350 Hz. Thus, the pro-
posed line tracker absorbs the main sources of perturbations
in flapping-wing flight and provides high rates of accurate,
robust, and smooth line estimates suitable for ornithopter
guidance.

B. Autonomous maneuvers

Figure 7-top shows the values of the camera velocity error
ν(t) resulting of the IBVS method (used as input reference
to the controller) along the maneuver shown in Figure 5.
The figure is split in two stages in purple and yellow to
differentiate between the periods before launching and during
the maneuver. The camera velocity errors shown in Figure
7-top approached zero values during the maneuver, which
confirms that the robot is approaching the goal position
while keeping the line tracks. As the computation of ν(t)
is dependent on the feature error and the estimated distance
to the pattern, the reference commands were greater at the
beginning of the maneuver than at the end –hence, the control
actions too. The control actions δe and δr were obtained
from (7), see Figure 7-center. Recall from Section IV-C that
we choose to control the vertical and lateral components of
the error, vy and vx respectively. The controller gains βββ0

and βββ1 from (7) were tuned experimentally. The followed
criteria was to achieve a soft response from the controller
when the error v is small and aggressive (fast) response
for v large, property achieved thanks to the nonlinear nature
of the controller (see Section IV-C) for details. Notice that
the deflection δe saturated during the transient to keep
ornithopter in the flight envelope.

Figure 7-top shows the smoothed input errors v provided
by the perception system. It can be seen than during the
initial stages of the flight, the magnitude of vy was large
compared to the magnitude of vx. This implies that the
initial deviation in the longitudinal dimension is larger and
requires a more aggressive control action to converge. After
an initial transient, both of the controlled states, vx and vy ,
were confined in a region around the origin, as predicted
by design. An estimate of this region can be computed as

Fig. 7: Evolution of ν(t) (top), δe(t) and δr(t) (center),
and ornithopter 3D positions (bottom) along the maneuver
in Figure 5. Purple and yellow colors differentiate between
before and after launching. The ornithopter 3D positions
were captured by the Optitrack system in the frame W .

described in Section IV-C. Figure 7-bottom shows the 3D
positions of the ornithopter in the reference frame W along
with the maneuver. The 3D position was obtained using
OptiTrack. The goal position is represented with dashed
lines. The ornithopter controlled its trajectory to perform a
smooth maneuver and reached the goal position when the
longitudinal position (i.e., y) reached the reference. At the
end of the maneuver the ornithopter had a 3D position error
w.r.t. the goal position of 0.207 m.

Table I shows the average results of different error metrics
in the conducted experiments. The table shows the root
mean square error (RMSE) and the normalized root mean
square error (NRMSE) normalized by max(v) − min(v)
to measure control performance in both dimensions. The
RMSE measures the performance in terms of the magnitude
of the final error, and the NRMSE allows to measure how
small the final values of v are relative to the range of values
of v during flight. Only the last 20 samples were taken to
compute the errors. The results show an average NRMSEy
of 8%, NRMSEx of 21%, RMSEy of 0.64, and an RMSEx
of 0.31 across all tests (indoors and outdoors). The obtained
errors in both dimensions are small in magnitude, but the
range of values found in the tests for vy is larger than
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Indoors1 Indoors2 Indoors3 Outdoors
Final error (m) 0.465 0.221 0.409 −
Controller NRMSEx 0.2482 0.1745 0.3810 0.0320
Controller RMSEx 0.3356 0.4192 0.4291 0.0227
Controller NRMSEy 0.1384 0.0300 0.1209 0.0331
Controller RMSEy 1.1665 0.2648 0.8214 0.3225

TABLE I: Average performance analysis of the proposed
method for the experiments.

for vx. This is a direct consequence of the dynamics of
the robot, the constraints of the tests, and the restrictions
imposed in δe and δr. Because of the above restrictions,
the robot was flying with reduced capabilities. The lateral-
directional dynamics of the robot are less maneuverable than
the longitudinal ones. It can be also noticed that flapping dur-
ing the maneuver provided better results than gliding when
executing smooth descending maneuvers (i.e., Indoors1 and
Indoors2 experiments) as the ornithopter is more responsive
at controlling the altitude. Although, the horizontal flights
executed in Indoors3 experiments were the most challenging,
the reported average goal position error was 0.40 m, which
is consistent with other state-of-the-art methods based on
external perception systems such as [6].

VI. CONCLUSIONS AND FUTURE WORK

This paper presented the first control method for bird-
scale flapping-wing robots that closes the loop using a fully
onboard perception system. The proposed approach exploits
the advantages of event-based vision to guide an ornithopter
robot towards a goal. Our scheme includes three main mod-
ules. First, an event-based line tracker provides fast-response
and robust line estimations during the maneuver by fusing
both event images and event-by-event processing. Second, an
efficient visual servoing approach guides an ornithopter robot
to match the current and goal features in the event camera
plane. Third, a control system actuates over the horizontal
and vertical tail deflections during the flight maneuver. The
scheme has been validated online and executed on board
a real ornithopter robot that equips low-cost processing
hardware. It has been experimentally validated with different
maneuvers in a number of indoor and outdoor scenarios.

Future work includes developing novel methods to endow
ornithopter robots with the necessary capabilities to perform
other challenging maneuvers such as obstacle avoidance,
landing, and perching.
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Martinez De-Dios, and A. Ollero, “Towards flapping wing robot visual
perception: Opportunities and challenges,” in IEEE RED-UAS, 2019.
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[24] J. Rodrı́guez Gómez, R. Tapia, J. Paneque, A. Gómez Eguı́luz, P. Grau,
J. Martı́nez de Dios, and A. Ollero, “The GRIFFIN perception dataset:
Bridging the gap between flapping-wing flight and robotic perception,”
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1066–1073,
April 2021.
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