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a b s t r a c t

We show that, for every positive integer r, there exists an integer b = b(r) such that the 4-variable quadratic 
Diophantine equation (x1 − y1)(x2 − y2) = b is r-regular. Our proof uses Szemerédi’s theorem on arithmetic 
progressions.

1. Introduction

Denote N = {0, 1, 2, . . .} and N+ = N \ {0}. Given a polynomial f ∈ Z[x1, x2, . . . , xn], let D(f )
denote the corresponding Diophantine equation

f (x1, x2, . . . , xn) = 0.

This equation is said to be r-regular, for some integer r ≥ 1, if for every r-coloring of N+, there is
a monochromatic solution to it. It is said to be regular if it is r-regular for all r ≥ 1. The degree of
regularity of D(f ), denoted dor(D(f )), is defined to be infinite if D(f ) is regular, or else, it is the largest
r such that D(f ) is r-regular. Determining the degree of regularity of a given Diophantine equation is
difficult in general, even if it is linear.

In this paper, we shall consider the 4-variable Diophantine quadratic equation

(x1 − y1)(x2 − y2) = b, (1)
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denoted Q (b), where b is a given positive integer. This equation is not regular. Indeed, it is not
b-regular, and actually not even s-regular where s = ⌊

√
b⌋ + 1, as witnessed by the s-coloring given

by the class mod s; for if x1, y1, x2, y2 are all congruent mod s, then (x1 − y1)(x2 − y2) is divisible by
s2, and hence cannot equal b since s2 > b. That is, we have dor(Q (b)) ≤ ⌊

√
b⌋. Our purpose in this

paper is to show that, nevertheless, the numbers dor(Q (b)) are unbounded as b varies. Here is our
main result.

Theorem 1.1. Given a positive integer r, there is a positive integer b = b(r) such that the equation
(x1 − y1)(x2 − y2) = b is r-regular.

A more specific version is stated and proved in Section 3.
Ourmotivation to study this particular quadratic equation comes from previouswork on the linear

version

(x1 − y1) + (x2 − y2) = b,

and more generally on the 2k-variable linear Diophantine equation

(x1 − y1) + · · · + (xk − yk) = b, (2)

the object of the following conjecture by Fox and Kleitman [6].

Conjecture 1.2. Let Lk(b) denote Eq. (2). Then

max
b∈N+

dor(Lk(b)) = 2k − 1.

If true, that estimate would be best possible, since it is shown in [6] that dor(Lk(b)) ≤ 2k− 1 for all
k, b ≥ 1. See [1,2] for solutions of the Fox–Kleitman conjecture for k = 2 and 3, respectively, and [12]
for a very recent full proof.

Note that the solved case k = 2 of the conjecture and Theorem 1.1 imply a sharp contrast between
the additive and the multiplicative versions of the equation, namely maxbdor(L2(b)) = 3 versus
maxbdor(Q (b)) = ∞.

1.1. Contents

Here is a brief description of the contents of the paper. In Section 2, we recall some classical
problems on partition regularity. In Section 3, after recalling Szemerédi’s theorem on arithmetic
progressions, we prove our main result on the unboundedness of dor(Q (b)) as b varies. In Section 4,
after setting up specific tools for the task at hand, we provide estimates for one of the numbersM(k, δ)
involved in Szemerédi’s theorem. In Section 5, we determine all b ≥ 1 for which Q (b) is 2-regular, as
well as the smallest b ≥ 1 for which Q (b) is 3-regular. The last section is devoted to a few remarks
and open questions.

2. Background

We first recall some background results and problems on partition regularity. The following
abridged version of a theorem of Rado [9–11] characterizes the regular linear homogeneous equations
on Z.

Theorem 2.1 (Rado’s Theorem, Abridged Version). For n ≥ 2 and c1, . . . , cn ∈ Z \ {0}, the Diophantine
equation

c1x1 + · · · + cnxn = 0 (3)

is regular if and only
∑

i∈Ici = 0 for some non-empty subset I ⊆ {1, . . . , n}.



One of the main open problems in the linear case is Rado’s boundedness conjecture. A simplified
version of it states that if Eq. (3) is r-regular for some integer r = r(n) only depending on n, then it is
regular. See for instance [6], where the conjecture is settled for n = 3 with the value r(3) = 24. See
also [3,4,7] for related papers.

Other open problems in the linear case concern the m-color Rado number of a given equation.
Recall that for aDiophantine equationD, them-color RadonumberRm(D) ofD is defined as the smallest
positive integerN such that for everym-coloring of [1,N], there is amonochromatic solution in [1,N]

to D. If no such N exists, then Rm(D) = ∞ by definition.
Still less is known in the nonlinear case. For instance, it is an open question whether the quadratic

Diophantine equation

x2 + y2 = z2 (4)

is regular. According to a recent preprint using massive computer computations with a SAT solver,
Eq. (4) turns out to be 2-regular [5]. More precisely, for every 2-coloring of the integer interval
[1, 7825], there is a monochromatic solution in that interval to Eq. (4), and 7825 is minimal in that
respect. However, it is not knownwhether that equation is 3-regular, and it remains an open problem
to determine its precise degree of regularity. Note that some other homogeneous quadratic equations
in three variables have recently been shown to be regular [8].

3. Main result

In this section, we show that the numbers dor(Q (b)) are unbounded as b varies.

3.1. Some tools

To start with, for the statement and proof of our main result, we need the deep theorem of Sze-
merédi about the existence of long arithmetic progressions in sufficiently dense subsets of sufficiently
large integer intervals [13, p. 244, Corollary].

Theorem 3.1 (Szemerédi). Given a desired length k ∈ N+ and a specified density 0 < δ ≤ 1, there
exists a positive integer N = N(k, δ) such that every subset A ⊆ [1,N] of density |A|/N ≥ δ contains an
arithmetic progression of length k.

For definiteness and in the sequel, we shall denote by M(k, δ) the smallest positive integer N with
the above property.

We also need an elementary folklore lemma about the preservation of density under partitions of
finite sets.

Lemma 3.2. Let A ⊆ E be nonempty finite sets. Denote δ = |A|/|E| the density of A in E. Let
E = E1 ⊔ · · · ⊔ Er be a partition of E into r nonempty parts. Then there exists an index i ≤ r such
that |A ∩ Ei|/|Ei| ≥ δ.

Proof. Assume for a contradiction that |A ∩ Ei|/|Ei| < δ for all i ≤ r . Then |A ∩ Ei| < δ|Ei| for all i ≤ r
and, summing over i, we get∑

i

|A ∩ Ei| < δ
∑

i

|Ei|.

Since
∑

i|A ∩ Ei| = |A| and
∑

i|Ei| = |E|, the above inequality leads to |A| < δ|E| = |A|, a
contradiction. □

3.2. Unboundedness of dor(Q (b))

Let r ∈ N+ be given. For the statement below, we invoke Szemerédi’s theorem with the desired
length k = r! + 1 and density δ = 1/r . Let N = M(r! + 1, 1/r). Then N has the property that every



subset B ⊆ [1,N] of density |B|/N ≥ 1/r contains an arithmetic progression of length r! + 1. Clearly, the
same property holds for any integer interval [a, a + N − 1] of length N .

Recall that Q (b) denotes the Diophantine equation (x1 − y1)(x2 − y2) = b.

Theorem3.3. Let r ∈ N+, and let N = M(r!+1, 1/r) be as defined above. Then the Diophantine equation
Q (N!r!) is r-regular.

Proof. Let ∆ be an arbitrary r-coloring of the integer interval E = [1, (r + 1)N!]. Then there exists a
color class S ⊆ E of density |S|/|E| ≥ 1/r .

Let us partition E into subintervals of length N , as is possible since N divides |E|. By Lemma 3.2,
there exists one such subinterval A ⊆ E of size |A| = N such that |S ∩ A|/|A| ≥ 1/r . By the defining
property of N , the subset S ∩ A contains an arithmetic progression of length r! + 1, with common
difference d for some d ≥ 1. Thus, there exists s ∈ S ∩ A such that

{s, s + d, . . . , s + r!d} ⊆ S ∩ A. (5)

Not much is known about d besides the inequality r!d ≤ N . As customary in additive combinatorics,
let us denote S − S = {s1 − s2 | s1, s2 ∈ S}.

Fact 1. We have [1, r!]d ⊆ S − S.

Indeed, for all 1 ≤ j ≤ r!, we have jd = (s + jd) − s, and so jd ∈ S − S by (5).
Setm = N!/d. Partition E into its classes modm, and then partition each class modm into subsets

of cardinality r +1 of the form C = {a, a+m, . . . , a+ rm} ⊂ E. This is possible sincem divides |E| and
r+1 divides |E|/m. By Lemma 3.2 again, for at least one such subset C , wemust have |S∩C |/|C | ≥ 1/r .
But since |C | = r + 1, this implies |S ∩ C | ≥ 2. Thus, there exist two distinct indices 0 ≤ i < j ≤ r
such that a + im, a + jm ∈ S ∩ C .

Fact 2. We have um ∈ S − S for some u ∈ [1, r].

Indeed, simply take um = (a + jm) − (a + im) for the two elements in S ∩ C found above. Note that
1 ≤ u = j − i ≤ r , as desired.

We now combine the above facts. Sincem = N!/d, by Fact 2 we have

uN!/d ∈ S − S

for some u ∈ [1, r]. Now since u divides r!, we have r!/u ∈ [1, r!], and hence (r!/u)d ∈ [1, r!]d.
Therefore

(r!/u)d ∈ S − S

by Fact 1. Multiplying these two elements of S − S together, it follows that

N!r! ∈ (S − S)(S − S).

That is, there exist x1, y1, x2, y2 ∈ S such that (x1−y1)(x1−y1) = N!r!, thus yielding amonochromatic
solution of equation Q (N!r!). Therefore this equation is r-regular, as claimed. □

3.3. More properties of dor(Q (b))

The problem of determining dor(Q (b)) as a function of b ∈ N+ is probably very difficult. In
Section 5.1, we show that dor(Q (b)) ≥ 2 if and only if b ∈ 4N+, thereby improving the case r = 2
of Theorem 3.3. The case r = 3 of that result is improved in Section 5.2, where we show that
dor(Q (36)) = 3. We conclude this section with some general properties of dor(Q (b)).

Proposition 3.4. Let b,m ∈ N+. If b ̸≡ 0modm2, then dor(Q (b)) ≤ m − 1.



Proof. Consider the m-coloring of N+ given by the class mod m. That is, color classes correspond
to congruence classes mod m. If m2 does not divide b, then equation (x1 − y1)(x2 − y2) = b has no
monochromatic solutionunder this coloring, for if x1, y1, x2, y2 are of the same color, i.e., are congruent
modm, then m2 divides (x1 − y1)(x2 − y2). □

For instance, if b is not divisible by 36 = 62, then equation Q (b) is not 3-regular, as follows by
successively takingm = 2 andm = 3 in the above result.

Proposition 3.5. Let b, t ∈ N+. Then

dor(Q (b)) ≤ dor(Q (t2b)).

Proof. Set r = dor(Q (b)). Let c : N+ → [1, r] be an r-coloring. Define a new r-coloring c ′
:

N+ → [1, r] by setting c ′(n) = c(tn) for all n ≥ 1. Since Q (b) is r-regular by hypothesis, there is
a solution (x1, y1, x2, y2) of equation Q (b) which is monochromatic under c ′. Hence (tx1, ty1, tx2, ty2)
is monochromatic under c. Moreover, since (x1 − y1)(x2 − y2) = b by hypothesis, it follows that

(tx1 − ty1)(tx2 − ty2) = t2b.

Therefore (tx1, ty1, tx2, ty2) is a solution of equationQ (t2b), and it ismonochromatic under c as already
seen. We conclude that Q (t2b) is r-regular. □

4. OnM(3, 1/2)

Theorem3.3 involves the numbersM(r!+1, 1/r) arising from Szemerédi’s theorem. In this section,
after setting up some useful tools, we determine this number for r = 2, namelyM(3, 1/2).

4.1. Detecting arithmetic progressions

Let (G, +) be an abelian group. Here we set up some notation and terminology to help determine
the presence or absence of arithmetic progressions of a given length in sequences in G. This will then
be used in G = Z to showM(3, 1/2) = 17.

Let A = (a1, . . . , an) be a sequence in G of length |A| = n. A block in A is any subsequence of
consecutive elements, i.e., of the form

A[i, j] = (ai, ai+1, . . . , aj)

for some indices 1 ≤ i, j ≤ n, allowing the empty subsequence if j < i. We denote by σ (A) =
∑

iai
the sum of the elements of A.

Definition 4.1. Let A be a finite sequence in G. A block decomposition of A is a sequence (A1, . . . , Am)
of consecutive blocks At of A, 1 ≤ t ≤ m, whose concatenation is A. A contraction of A is a sequence in
G of the form (σ (A1), . . . , σ (Am)) where (A1, . . . , Am) is a block decomposition of A. A minor of A is a
contraction of a block B of A or, equivalently, a block in a contraction of A.

For instance, if A = (1, 5, 1, 8, 2, 3, 1) in G = Z, then ((1, 5, 1), (8, 2), (3, 1)) is a block decompo-
sition of A and (7, 10, 4) is the corresponding contraction of A. Some minors of A are (6, 1, 8), (7, 10),
(9, 5, 1), (10, 3) and (10, 4). Note that (6, 1, 8) is a contraction of the block (1, 5, 1, 8) in A, and a block
in the contraction (6, 1, 8, 6) of A.

Definition 4.2. Let X = (x0, x1, . . . , xn) be a sequence in G with n ≥ 1. The discrete derivative of X is
its sequence of successive jumps, i.e.,

∆(X) = (x1 − x0, . . . , xn − xn−1).

For instance, X is an arithmetic progression of length n + 1 in G if and only if ∆(X) is a constant
sequence of length n.

Let us now observe that for a sequence X , block sums in ∆(X) correspond to differences of two
terms in X .



Lemma 4.3. Let X = (x0, x1, . . . , xn) be a sequence in G. Let A = ∆(X) = (a1, . . . , an) where
ai = xi − xi−1 for i ≥ 1. Let B = A[i, j] for some 1 ≤ i ≤ j ≤ n. Then σ (B) = xj − xi−1.

Proof. We have σ (A[i, j]) =
∑
i≤t≤j

(xt − xt−1) = xj − xi−1. □

Here is a correspondence between subsequences of X and minors of ∆(X).

Lemma 4.4. Let X be a finite sequence in G. If Y is a subsequence of X, then ∆(Y ) is a minor of ∆(X).
Conversely, if C is a minor of ∆(X), then C = ∆(Y ) for some subsequence Y of X.

Proof. Let X = (x0, x1, . . . , xn) and A = ∆(X) = (a1, . . . , an) where ai = xi − xi−1 for i ≥ 1.
Let Y = (xi0 , xi1 , . . . , xim ) be a subsequence of X , with 0 ≤ i0 < i1 < · · · < im ≤ n. Then
∆(Y ) = (xi1 − xi0 , . . . , xim − xim−1 ). Let Bt = A[it−1 + 1, it ] for 1 ≤ t ≤ m. By Lemma 4.3, we
have

∆(Y ) = (σ (B1), . . . , σ (Bm)).

Let B = A[i0 + 1, im]. Then (B1, . . . , Bm) is a block decomposition of B. Therefore ∆(Y ) is a contraction
of block B and hence a minor of A.

Conversely, let C be a minor of A. Hence there is a block B in A such that C = (σ (B1), . . . , σ (Bm))
for some block decomposition (B1, . . . , Bm) of B. For each 1 ≤ t ≤ m, we have Bt = A[jt , it ] for some
1 ≤ jt ≤ it ≤ n. Since the Bt ’s are consecutive blocks in B, and hence in A, we have jt = it−1 + 1 for
t ≥ 2. Thus, denoting i0 = j1 −1, we have Bt = A[it−1 +1, it ] for all 1 ≤ t ≤ m, and σ (Bt ) = xit − xit−1
by Lemma 4.3. Therefore C = ∆(Y ) where Y = (xi0 , xi1 , . . . , xim ). □

This correspondence yields the following convenient tool to determine the presence or absence of
arithmetic progressions of a given length in sequences in G.

Proposition 4.5. Let X be a finite sequence in G. Then X contains an arithmetic progression of length
k ≥ 3 if and only if ∆(X) has a constant minor of length k − 1.

Proof. If X contains an arithmetic sequence Y of length k, then ∆(Y ) is a constant sequence of length
k−1, and it is aminor of∆(X) by the preceding lemma. Conversely, let C be a constantminor of length
k − 1 of ∆(X). Then by the above lemma, there exists a subsequence Y of X such that C = ∆(Y ), and
Y is an arithmetic progression of length k since ∆(Y ) is constant of length k − 1. □

For instance, letX = (1, 2, 4, 5, 10, 11, 13, 14) inG = Z. LetA = ∆(X). ThenA = (1, 2, 1, 5, 1, 2, 1)
and A contains no constant minor of length 2 as easily checked by inspection. Therefore X contains no
arithmetic progression of length 3.

4.2. Determining M(3, 1/2)

As an application in G = Z, we obtain here the exact value ofM(r!+1, 1/r) for r = 2. Even though
the result is easy to obtain by computer, the present method will hopefully, in future works, yield
exact values or good bounds in harder cases.

Proposition 4.6. Every subset X ⊂ [1, 17] of cardinality |X | = 9 contains an arithmetic progression of
length 3.

Proof. We first claim that the only sequences B in N+ such that |B| = 4, σ (B) ≤ 8 and admitting
no constant minor of length 2 satisfy σ (B) = 8. More precisely, the only such sequences are, up to
reversal, (1, 2, 4, 1) and (2, 1, 4, 1). This is easy. Indeed, let (C1, C2) be a block decomposition of B
with |Ci| = 2 for i = 1, 2. Since σ (C1) + σ (C2) = σ (B) ≤ 8, and no Ci can be constant, then each Ci
coïncides, up to reversal, with one of the sequences

(1, 2), (1, 3), (1, 4), (2, 3).



Moreover σ (C1) ̸= σ (C2), for otherwise (σ (C1), σ (C2)) would be a constant minor of length 2 of B. Up
to reversal of B, we may assume σ (C1) < σ (C2). Hence C1 = (1, 2) up to reversal, and σ (C2) = 4 or 5.
By considering all possible combinations, it is easily seen that C2 = (4, 1) is the only valid possibility.
This proves the claim.

Assume, for a contradiction, that there exists X ⊂ [1, 17] of cardinality |X | = 9 containing no
arithmetic progression of length 3. Let A = ∆(X), when X is viewed as an increasing sequence. Then
|A| = 8, σ (A) = max(X) − min(X) ≤ 16 and A admits no constant minor of length 2. Let (B1, B2) be
a block decomposition of A with |B1| = |B2| = 4. Then neither B1 nor B2 admits a constant minor of
length 2. Moreover, since σ (B1) + σ (B2) = σ (A) ≤ 16, we may assume σ (B1) ≤ 8 up to reversal of A.
Hence σ (B1) = 8 by the above claim. Therefore σ (B2) ≤ 8 as well, whence σ (B1) = 8 by the above
claim again. But then, (σ (B1), σ (B2)) = (8, 8) is a constant minor of length 2 of A, a contradiction. □

Corollary 4.7. We have M(3, 1/2) = 17.

Proof. The proposition yieldsM(3, 1/2) ≤ 17. In order to establish the equality, we must exhibit, for
all 1 ≤ m ≤ 16, a subset Xm ⊆ [1,m] of density at least 1/2 and containing no 3-term arithmetic
progression. Let X = {1, 2, 4, 5, 10, 11, 13, 14}. Then the set Xm defined as follows will do:

Xm =

{
X ∩ [1,m] if m ̸= 9
{1, 2, 4, 8, 9} if m = 9. □

4.3. Comparison with W (k, r)

It would be desirable to determine M(k, 1/r) for more instances of the pair (k, r), as nothing
precise seems to be known about these numbers. We have started tomake the first few steps towards
that objective in a paper under preparation. Of course, these numbers are bounded below by the
corresponding van der Waerden numbers. Given integers k, r ≥ 1, recall that the van der Waerden
number W (k, r) denotes the least integer M such that, for every r-coloring of [1,M], there is a
monochromatic arithmetic progression of length k in [1,M]. Clearly, we have

M(k, 1/r) ≥ W (k, r). (6)

Indeed, let N = M(k, 1/r), and consider any r-coloring of [1,N]. Then some color class X ⊆ [1,N]

is of density |X |/N ≥ 1/r , and hence X contains an arithmetic progression of length k, of course
monochromatic by construction.

The only exactly known van derWaerden numbers at the time of writing are given in the following
table. See e.g. [14], aweb pagewhich also displays lower bounds onW (k, r) formanymore pairs (k, r).

W (3, 2) = 9 W (3, 3) = 27 W (3, 4) = 76
W (4, 2) = 35 W (4, 3) = 293
W (5, 2) = 178
W (6, 2) = 1132

5. When r is small

In this section, we obtain sharper statements than Theorem 3.3 for r = 2 and 3. We also discuss
some corresponding Rado numbers.

5.1. The case r = 2

For r = 2, and with the notation of Section 3, our main result states that with N = M(3, 1/2),
equation (x1 − y1)(x2 − y2) = 2N! is 2-regular.

We have seen above that M(3, 1/2) = 17. Thus, Theorem 3.3 states that equation Q (2 · 17!) is
2-regular. However, we now show that the same already holds for equation Q (4), and more generally
for equation Q (b) whenever b ∈ 4N+.



Proposition 5.1. The equation (x1 − y1)(x2 − y2) = b is 2-regular if and only if b is a multiple of 4.

Proof. Proposition 3.4 implies that if b ̸≡ 0mod 4, then Q (b) is not 2-regular.
Assume now b ≡ 0mod 4. First some notation. Let X ⊆ N+ be any nonempty subset. We denote

D(X) = (X − X) ∩ N, the set of distances in X , and

D2(X) = {d1d2 | d1, d2 ∈ D(X)},

the set of products of two distances in X . Thus, equation Q (b) has a solution in X if and only if b ∈ D2(X).
Finally, we denote X = N+ \ X .

Claim 1. If m ∈ N \ D(X), then m + X ⊆ X.

Indeed, for any x ∈ X , we have m = (m + x) − x, and since m is not a distance in X , it follows that
m + x cannot belong to X .

Claim 2. If D(X) ̸= N, then D(X) ⊆ D(X).

Indeed, let d ∈ D(X). Then d = x − y for some x, y ∈ X with x ≥ y. Let now m ∈ N \ D(X). Then
d = (m + x) − (m + y), and m + x,m + y ∈ X by Claim 1. Hence d ∈ D(X).

Claim 3. Let t ∈ N satisfy t + X ⊆ X. Then tN ⊆ D(X).

Indeed, the hypothesis implies nt + X ⊆ X for all n ∈ N. Hence, for x ∈ X , we have nt + x ∈ X and
so nt = (nt + x) − x ∈ D(X).

Let now N+ = A0 ⊔ A1 be a partition of N+ into two nonempty parts. Thus A1−i = Ai for i = 0, 1.
We must show that Q (b) has a solution in either A0 or A1 or, equivalently, that b ∈ D2(A0) ∪ D2(A1).

Clearly, if D(Ai) = N for i = 0 or 1, we are done since then b ∈ D2(Ai). Assume now

D(A0), D(A1) ̸= N.

Claim 4. Let m ∈ N \ D(A0). Then 2mN+ ⊆ D(A0).

Indeed, Claim 1 implies

m + A0 ⊆ A0 = A1. (7)

Moreover, Claim 2 implies both D(A0) ⊆ D(A1) and D(A1) ⊆ D(A0). Therefore

D(A0) = D(A1).

Hencem ∈ N \ D(A1), and Claim 1 implies

m + A1 ⊆ A0. (8)

It follows from (7) and (8) that 2m + A0 ⊆ A0, and then Claim 3 implies

2mN+ ⊆ D(A0).

This settles Claim 4. We now examine four possible cases.

Case 1. Assume 1 ̸∈ D(A0). Then Claim 4 implies 2N+ ⊆ D(A0). Hence 2, b/2 ∈ D(A0), implying
b = 2 · b/2 ∈ D2(A0).

Case 2. Assume 1 ∈ D(A0) and 2 ̸∈ D(A0). Then Claim 4 implies 4N+ ⊆ D(A0). Hence b ∈ D(A0), and
since 1 ∈ D(A0) it follows that b ∈ D2(A0).

Case 3. Assume 1 ∈ D(A0) and b/2 ̸∈ D(A0). Then Claim 4 implies b ∈ D(A0). But since 1 ∈ D(A0), it
follows that b ∈ D2(A0).

Case 4. Assume 1, 2, b/2 ∈ D(A0). Then b = 2 · b/2 ∈ D2(A0).

All four cases lead to the conclusion b ∈ D2(A0). Therefore Q (b) is 2-regular. □



Remark 5.2. As easily seen, the 2-color Rado number for equation Q (4) is equal to 5. That is, for any 
2-coloring of [1, 5], there is a monochromatic solution to that equation, and 5 is minimal for that 
property.

5.2. The case r = 3

We now show that equation (x1 −y1)(x2 −y2) = 36 is 3-regular. By Proposition 3.4, the right-hand 
side b = 36 is minimal for that property.

Again, this is a much sharper statement than that provided by Theorem 3.3 for r = 3. Indeed, the 
number N = M(6! + 1, 1/3) is huge already, since N ≥ W (721, 3) by (6), and even more so is the 
constant term b = 6N! involved in our main result.

As in [1], for a finite sequence A in N+, we denote by bs(A) the set of all signed block sums in A, i.e.,

bs(A) = {±σ (B) | B is a block in A}.

We shall also need the following ad-hoc definition, specifically tailored to deal with equation Q (36).
Of course, it may be easily adapted to deal with equation Q (b) for any b ≥ 1.

Definition 5.3. A sequence A = (a1, . . . , an) of positive integers is said to be admissible if bs(A)
contains no solution of the equation uv = 36, i.e., contains none of the following subsets:

{6}, {4, 9}, {3, 12}, {2, 18}, {1, 36}. (9)

Moreover, if A is admissible and σ (A) ≤ t for some integer t , then A is said to be t-admissible. Finally,
if A is not admissible then A is said to be forbidden.

For instance, the sequence A = (1, 1, 9, 1) is 12-admissible. Indeed, we have bs(A) ∩ N =

{0, 1, 2, 9, 10, 11, 12}, a set containing no subset {u, v} from list (9).

Remark 5.4. Every block in a t-admissible sequence is itself t-admissible. A sequence A is admissible
if and only if its reverse sequence A′ is admissible.

In the sequel, as in [1], we say that a set X ⊆ N+ is regular with respect to a Diophantine equation D
if X contains a solution of D.1

Lemma 5.5. Let X be a finite subset of N+. Let A = ∆(X) be the discrete derivative of X. Then X is regular
with respect to equation Q (36) if and only if A is forbidden.

Proof. We have X − X = bs(A) as follows from Lemma 4.3. Hence X is regular if and only if 36 = uv
for some u, v ∈ X − X , if and only if A is forbidden. □

Proposition 5.6. Every 18-admissible sequence A of length 6 satisfies σ (A) = 18 and contains 1. More
precisely, the list of all such sequences, up to reversal, is:

(1, 3, 1, 3, 7, 3), (1, 3, 4, 3, 4, 3), (1, 3, 7, 3, 1, 3),
(3, 1, 3, 1, 3, 7), (3, 1, 3, 4, 3, 4), (3, 4, 3, 1, 3, 4).

Proof. The proof is completely elementary but too long to be included here. It exploits the fact that
if (a1, . . . , ar , c) is t-admissible then (a1, . . . , ar ) is (t − 1)-admissible, and in fact (t − c)-admissible.
Thus, one may start with the set of all 13-admissible sequences of length 1, look for their respective
extensions of length 2 which are 14-admissible, and so on up to length 6. This process takes a few
hours by hand, or a few microseconds on a suitably programmed home computer.

As an illustrative example, consider the 8-admissible sequence A = (1, 3, 1, 3) of length 4. It is
admissible since the set bs(A)∩N+ = {1, 3, 4, 5, 7, 8} contains none of the forbidden subsets in list (9).

1 That is, if there is some solution (x1, . . . , xn) of D with xi ∈ X for all i.



We now seek all extensions C = (1, 3, 1, 3, c) of A which are 17-admissible, hence with 1 ≤ c ≤ 9.
Now c ̸= 1, for otherwise bs(C) would contain the prohibited subset {4, 9}, with 4 = σ ((1, 3)) and
9 = σ (C). Similarly, we have c ̸= 2, for otherwise bs(C) would contain the prohibited subset {6},
where 6 = σ ((1, 3, 2)). In the same way, one may exclude all values of c in the interval [1, 9] except
c = 7, and easily conclude that (1, 3, 1, 3, 7) is the only 17-admissible extension of length 5 of A. □

Corollary 5.7. Equation Q (36) is 3-regular. More precisely, every subset X ⊆ [1, 37] of density |X |/37 ≥

1/3 is regular with respect to Q (36).

Proof. We first claim that there are no 36-admissible sequences B of length 12. Indeed, let B be a
sequence in N+ of length 12 such that σ (B) ≤ 36, and assume for a contradiction that B is admissible.
Then B = A1A2, the juxtaposition of two admissible sequences of length 6. As σ (B) ≤ 36, we have
σ (Ai) ≤ 18 for i = 1 or 2. Wemay assume σ (A1) ≤ 18 up to reversal of B. Now Proposition 5.6 implies
σ (A1) = 18, and therefore σ (A2) = 18 as well since σ (A2) = σ (B) − σ (A1) ≤ 36 − 18 = 18. Thus
σ (B) = 36, whence 36 ∈ bs(B). Now B contains 1, since A1 does by Proposition 5.6 again. Therefore
bs(B) contains {1, 36} and hence is not admissible, a contradiction.

Let now X ⊆ [1, 37] be of density at least 1/3, i.e., satisfying |X | ≥ 13. We must show that X
contains a solution ofQ (36). Removing elements if necessary, wemay assume |X | = 13. Let B = ∆(X),
the discrete derivative of X when X is viewed as an increasing sequence. Then B is of length 12, and B
satisfies σ (B) = max X −min X ≤ 36. Then B is not admissible by the above claim. Hence B is regular
with respect to Q (36) by Lemma 5.5. □

Corollary 5.8. We have dor(Q (36)) = 3. Moreover, for all t ∈ N+, equation Q (36t2) is 3-regular.

Proof. We have dor(Q (36)) ≥ 3 by the above corollary, and dor(Q (36)) ≤ 3 by Proposition 3.4. The
second assertion follows from the 3-regularity of Q (36) and Proposition 3.5. □

Corollary 5.9. The 3-color Rado number for equation Q (36) is equal to 37.

Proof. Let R denote the 3-color Rado number for Q (36). We have R ≤ 37, since Corollary 5.7 implies
that for every 3-coloring of [1, 37], there will be a monochromatic solution of Q (36). To see that
R ≥ 37, it suffices to exhibit a 3-coloring of [1, 36] admitting no monochromatic solution to Q (36).
Here is such a coloring, the three color classes being as follows:

X1 = {1, 2, 5, 6, 9, 16, 19, 20, 23, 24, 27, 34},
X2 = {3, 10, 13, 14, 17, 18, 21, 28, 31, 32, 35, 36},
X3 = {4, 7, 8, 11, 12, 15, 22, 25, 26, 29, 30, 33}. □

6. Concluding remarks

Several problems related to the contents of this paper remain widely open and would deserve
further investigation. Here is a short selection.

1. What is the degree of regularity of equation Q (b) as a function of b? We showed here that, as b
varies, the numbers dor(Q (b)) are both finite and unbounded.

2. Given r ≥ 1, can one determine all b ∈ N+ such that dor(Q (b)) = r? For r = 2, our answer is all
b ≡ 0mod 4. For r ≥ 3, can one similarly expect the answer to be given by suitable congruence
classes? For instance, for r = 3, is the answer given by b ≡ 0 or ±36mod 180? We do not
know, but some preliminary indices point to an answer of this type.

3. Given r ≥ 1, what is the smallest b = b(r) such that Q (b) is r-regular? Theorem 3.3 provides
the upper bound b(r) ≤ M(r! + 1, 1/r)!r! but, as observed in cases r = 2 and 3, this is very
far from being optimal. We have seen that b(2) = 4 and b(3) = 36. What is b(4), for instance?
More generally, what is the expected growth of b(r) as a function of r?

4. Given r, b ≥ 1, what is the r-color Rado number of equation Q (b)? In this paper, we provided
the answer for the pairs (r, b) = (2, 4) and (3, 36).



References

[1] S.D. Adhikari, L. Boza, S. Eliahou, M.P. Revuelta, M.I. Sanz, Equation-regular sets and the Fox-Kleitman conjecture, Discrete
Math. 341 (2018) 287–298.

[2] S.D. Adhikari, S. Eliahou, On a conjecture of Fox and Kleitman on the degree of regularity of a certain linear equation,
in: Combinatorial and Additive Number Theory II: CANT, New York, NY, USA, 2015 and 2016 Springer, New York,
in: Springer Proceedings inMathematics& Statistics Series, vol. 220, 2017. http://dx.doi.org/10.1007/978-3-319-68032-3.

[3] A. Bialostocki, G. Bialostocki, D. Schaal, A zero-sum theorem, J. Combin. Theory Ser. A 101 (2003) 147–152.
[4] A. Bialostocki, H. Lefmann, T. Meerdink, On the degree of regularity of some equations, Discrete Math. 4 (1996) 49–60.
[5] J. Cooper, R. Overstreet, Coloring so that no Pythagorean Triple isMonochromatic. Preprint 2015, available at http://people.

math.sc.edu/cooper/satpyth.pdf.
[6] J. Fox, D.J. Kleitman, On Rado’s Boundedness Conjecture, J. Combin. Theory Ser. A 113 (2006) 84–100.
[7] J. Fox, R. Radoičić, On the degree of regularity of generalized van der Waerden triples, Integers 5 (2005) A32, 6 pp.
[8] N. Frantzikinakis, B. Host, Higher Order Fourier Analysis of Multiplicative Functions and Applications, 2016. arXiv:1403.

0945v2 [Math.NT].
[9] R. Rado, Some recent results in combinatorial analysis, Congrès International des Mathématiciens, Oslo, 1936.

[10] R. Rado, Studien zur Kombinatorik, Math. Z. 36 (1933) 424–480.
[11] R. Rado, Verallgemeinerung eines Satzes von van der Waerden mit Anwendungen auf ein problem der Zahlentheorie,

Sonderausgabe aus den Sitzungsbericten der Preuss, Akad. Wiss. Phys. -Math. Klasse 17 (1933) 1–10.
[12] T. Schoen, K. Taczala, The degree of regularity of the equation

∑n
i=1xi =

∑n
i=1yi + b, Moscow J. Combin. Number Theory

7 (2017) 74–93 [162–181].
[13] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975) 199–245.
[14] Van der Waerden numbers, http://www.vdwnumbers.org.

http://refhub.elsevier.com/S0195-6698(17)30190-7/sb1
http://refhub.elsevier.com/S0195-6698(17)30190-7/sb1
http://refhub.elsevier.com/S0195-6698(17)30190-7/sb1
http://dx.doi.org/10.1007/978-3-319-68032-3
http://refhub.elsevier.com/S0195-6698(17)30190-7/sb3
http://refhub.elsevier.com/S0195-6698(17)30190-7/sb4
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://people.math.sc.edu/cooper/satpyth.pdf
http://refhub.elsevier.com/S0195-6698(17)30190-7/sb6
http://refhub.elsevier.com/S0195-6698(17)30190-7/sb7
http://arxiv.org/1403.0945v2
http://arxiv.org/1403.0945v2
http://arxiv.org/1403.0945v2
http://arxiv.org/1403.0945v2
http://arxiv.org/1403.0945v2
http://arxiv.org/1403.0945v2
http://arxiv.org/1403.0945v2
http://arxiv.org/1403.0945v2
http://arxiv.org/1403.0945v2
http://arxiv.org/1403.0945v2
http://arxiv.org/1403.0945v2
http://arxiv.org/1403.0945v2
http://arxiv.org/1403.0945v2
http://arxiv.org/1403.0945v2
http://arxiv.org/1403.0945v2
http://arxiv.org/1403.0945v2
http://arxiv.org/1403.0945v2
http://refhub.elsevier.com/S0195-6698(17)30190-7/sb10
http://refhub.elsevier.com/S0195-6698(17)30190-7/sb11
http://refhub.elsevier.com/S0195-6698(17)30190-7/sb11
http://refhub.elsevier.com/S0195-6698(17)30190-7/sb11
http://refhub.elsevier.com/S0195-6698(17)30190-7/sb12
http://refhub.elsevier.com/S0195-6698(17)30190-7/sb12
http://refhub.elsevier.com/S0195-6698(17)30190-7/sb12
http://refhub.elsevier.com/S0195-6698(17)30190-7/sb13
http://www.vdwnumbers.org
http://www.vdwnumbers.org
http://www.vdwnumbers.org
http://www.vdwnumbers.org
http://www.vdwnumbers.org
http://www.vdwnumbers.org
http://www.vdwnumbers.org
http://www.vdwnumbers.org
http://www.vdwnumbers.org
http://www.vdwnumbers.org
http://www.vdwnumbers.org
http://www.vdwnumbers.org
http://www.vdwnumbers.org
http://www.vdwnumbers.org
http://www.vdwnumbers.org
http://www.vdwnumbers.org
http://www.vdwnumbers.org
http://www.vdwnumbers.org
http://www.vdwnumbers.org
http://www.vdwnumbers.org
http://www.vdwnumbers.org
http://www.vdwnumbers.org
http://www.vdwnumbers.org
http://www.vdwnumbers.org
http://www.vdwnumbers.org

	On the degree of regularity of a certain quadratic Diophantine equation
	Introduction
	Contents

	Background
	Main result
	Some tools
	Unboundedness of dor(Q(b))
	More properties of dor(Q(b))

	On M(3,1/2)
	Detecting arithmetic progressions
	Determining M(3,1/2)
	Comparison with W(k,r)

	When r is small
	The case r=2
	The case r=3

	Concluding remarks
	References




