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ABSTRACT
The Ablowitz–Ladik system, being one of the few integrable nonlinear lattices, admits a wide class of analytical solutions, ranging from exact
spatially localized solitons to rational solutions in the form of the spatiotemporally localized discrete Peregrine soliton. Proving a close-
ness result between the solutions of the Ablowitz–Ladik system and a wide class of Discrete Nonlinear Schrödinger systems in a sense
of a continuous dependence on their initial data, we establish that such small amplitude waveforms may be supported in nonintegrable
lattices for significantly large times. Nonintegrable systems exhibiting such behavior include a generalization of the Ablowitz–Ladik system
with power-law nonlinearity and the discrete nonlinear Schrödinger equation with power-law and saturable nonlinearities. The outcome
of numerical simulations illustrates, in excellent agreement with the analytical results, the persistence of small amplitude Ablowitz–Ladik
analytical solutions in all the nonintegrable systems considered in this work, with the most striking example being that of the Peregine
soliton.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0072391

I. INTRODUCTION
The Ablowitz–Ladik (AL) equation,1–3

iψ̇n = κν(ψn+1 − 2ψn + ψn−1) + μ ∣ψn∣
2
(ψn+1 + ψn−1), n ∈ Z, (1.1)

is the famous integrable discretization of the cubic nonlinear Schrödinger partial differential equation (PDE),

i∂tu + νuxx + γ∣u∣2u = 0, x ∈ R. (1.2)

The integrability of (1.1) was proved by the discrete version of the inverse scattering transform.1 The AL is one of the few known completely
integrable (infinite) lattice systems admitting exact soliton solutions.4–7 The one-soliton solution of AL reads1,2 as follows:
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ψs
n =

sinh β
√μ

sech[β(n − ut)] exp(−i(ωt − αn)),

ω = −2 cos α cosh β,

u = 2β−1 sin α sinh β,

(1.3)

with α ∈ [−π,π] and β ∈ [0,∞). In Refs. 8 and 9, it was shown that the AL equation (1.1) admits [again in similarity with the integrable
Nonlinear Schrödinger (NLS) equation (1.2)] rational solutions as the discrete counterpart of the Peregrine soliton (AL-PS),

ψr
n(t) = q[1 −

4(1 + q2
)(1 + 4iq2t)

1 + 4n2q2 + 16q4t2(1 + q2)
]e2iq2t , (1.4)

where the parameter q fixes a background amplitude. Such exact solutions do not exist for the the more relevant (with regard to applications
in physics) non-integrable Discrete Nonlinear Schrödinger (DNLS) equation,

iϕ̇n + κν(ϕn+1 − 2ϕn + ϕn−1) + γ∣ϕn∣
2ϕn = 0, n ∈ Z, γ ∈ R. (1.5)

However, in Ref. 10, we established the closeness of the solutions of the AL system (1.1) to the DNLS (1.5) in the l2 and l∞-metrics in a sense
of a continuous dependence on their initial data. The most significant application of this closeness result is that the DNLS lattice admits small
amplitude solutions of the order O(ε) that stay O(ε3

)-close to the analytical solutions of the AL for any finite time 0 < Tf <∞. Furthermore,
taking the advantages offered by the discrete ambient space, we extended the result to higher dimensional lattices and other examples of
nonlinearities. The numerical studies of Ref. 10, for the persistence of the AL-soliton in the cubic DNLS (1.5) and the saturable one (see
below), corroborated to high accuracy the analytical predictions, that these non-integrable DNLS models sustain small amplitude solitary
waves preserving for significantly large time intervals, the functional form and characteristics (as the velocity) of the analytical AL-one-soliton
solution.

In the present paper, we provide further analytical and numerical extensions of the results of Ref. 10: On the analytical side, we establish
the closeness of the solutions between the generalization of the Ablowitz–Ladik (G-AL) lattice,

iU̇n = κν(Un+1 − 2Un +Un−1) + δ ∣Un∣
2σ
(Un+1 +Un−1), n ∈ Z, (1.6)

and the integrable AL (1.1). Our study in this paper for the G-AL (1.6) is motivated by the work in Ref. 11, where numerous features were
explored, ranging from the derivation of conservation laws of the model, the numerical identification of discrete solitons, and the study of
their stability—as the nonlinearity exponent σ is varied—through extended Vakhitov–Kolokolov criteria, to the presentation of numerical
evidence for quasi-collapse as indicated by the appearance of large amplitudes for large values of σ. The results of Ref. 11 justified that the
G-AL (1.6) similar to the other important generalized DNLS models with power nonlinearity,12–14

F(z)z = γ∣z∣2σz, (1.7)

is significant for the study of the transition from integrability when σ = 1 to non-integrability for σ > 1, and the potential structural changes to
the dynamics of intrinsic localized modes possessed by these systems.13,15 In this regard, we think that our closeness approach is of particular
relevance: it simultaneously establishes the existence and persistence of small amplitude localized waveforms for a general class of non-
integrable DNLS systems, which approximate the functional form of the analytical solutions of the integrable AL (1.1). As mentioned above,
the analysis also covers the DNLS with saturable nonlinearity,

F(z)z =
γz

1 + ∣z∣2
, (1.8)

a model governing the dynamics of photo-refractive media; we refer to the works16–20 concerning the propagation and stability of discrete
solitons. Thus, extra motivation is given to pursue further numerical studies exploring the closeness of solutions of the integrable AL to the
solutions of the above generalized G-AL and DNLS systems.

The presentation of this paper is as follows: in Sec. II, we recall useful information on the conserved quantities and the Hamiltonian
structure of the AL and DNLS lattices studied herein. In Sec. III, we prove the closeness of the solutions between the integrable AL (1.1) and
its generalization (1.6). The proof follows the lines in Ref. 10, aided this time, by the nontrivial conserved quantity of the G-AL, which involves
the Gauss hypergeometric function.11 We also prove that the solutions remain close in the sense of momenta. Section IV is devoted to the
numerical studies and is divided into three parts. In Subsection IV A, we present the results of the numerical study concerning the persistence
of small amplitude single-soliton solutions (1.3) of the AL in the quartic G-AL (1.6), corresponding to the case σ = 2. It is shown that the
AL-soliton persists when implemented as an initial condition to the G-AL for significantly large times. Furthermore, the numerical results for
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the evolution of the norms of the distance function of the corresponding solutions not only fulfill but also turn out to be even sharper than
the respective analytical estimates. A notable feature is that the evolving soliton in the G-AL lattice preserves with a high accuracy the speed
of the analytical AL-soliton solution, as well as, its momentum. The same excellent agreement with the analytical predictions is illustrated in
Subsection IV B for the dynamics of the analytical AL-soliton in the DNLS with the power nonlinearity (1.7) in its quintic case σ = 2. We also
test the limits of the analytical persistence results regarding the smallness of the amplitudes of the AL-soliton initial conditions in the cubic
σ = 1 and in the quintic DNLS σ = 2. While the analytical estimates are again satisfied, we find that the persistence of the AL-soliton in these
non-integrable lattices lasts for significantly lower times (in comparison to the smaller amplitude cases); this is in accordance with the analysis,
as our closeness results rely, in the notion of continuous dependence, on the initial conditions. Furthermore, we observe the emergence of
novel dynamical features: in the cubic DNLS, the AL-soliton evolves as a high time-period-spatially localized breather, while in the quintic
DNLS, we observe a self-similar decay of the initial condition. Still, in both cases, we observe the preservation of the speed of the initial
pulse. Subsection IV D concludes with the presentation of a particularly interesting application of the closeness of the solution approach: the
persistence of small amplitude rational solutions of the form of the AL-PS (1.4). Remarkably, and yet in excellent agreement with the analytical
considerations, the numerical findings corroborate the existence/persistence of spatiotemporal localized waveforms significantly close to the
AL-PS, in all the cases of the non-integrable lattices considered herein. Finally, Sec. V summarizes the main findings and gives an outlook to
extensions for future studies.

II. CONSERVED QUANTITIES AND SYMPLECTIC STRUCTURE OF THE AL AND DNLS SYSTEMS
For simplicity, we set in (1.1), (1.5), and (1.6), κ = ν = 1. It is useful to recall that all the lattice systems, which are subject of the present

study, are particular cases of the general lattice dynamical system studied in Refs. 11, 23, and 24,

iȦn + f (∣An∣
2
)(An+1 + An−1) + F(∣An∣

2
)An = 0. (2.1)

Considering the functions

g(ρ) = ∫
ρ

0

dy
f (y)

, G(ρ) = ∫
ρ

0

F(y)dy
f (y)

,

it can be proved that the system admits a Hamiltonian structure with the Hamiltonian

H =∑
n∈Z

An(An+1 + An−1) +∑
n∈N

G(∣An∣
2
).

Then, system (2.1) can be written as

iȦn = f (∣An∣
2
)
∂H
∂An

.

System (2.1) has also the constant of motion

P = ∑
n∈Z

g(∣An∣
2
), (2.2)

known as the power (or the number, or norm). The Poisson bracket is given as

{Φ,Ψ} = −i∑
n∈Z
(
∂Φ
∂An

∂Ψ
∂An

−
∂Φ
∂An

∂Ψ
∂An
) f (∣An∣

2
),

where Φ and Ψ are arbitrary functionals of the variable An. As a particular case, we have that

{An, An} = −i f (∣An∣
2
),

and
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{An, Am} = {An, Am} = 0.

With respect to the Poisson bracket, system (2.1) is written in the following form:

Ȧn = {H, An}.

Now, let us return to the particular cases of the DNLS systems studied herein.

● The AL equation (1.1): It corresponds to the case of system (2.1) for f (ρ) = 1 + μρ and F(ρ) = −2. We remark that the integrable AL
conserves the momentum

M = 2Im∑ψnψn+1. (2.3)

● The generalization AL equation (1.6): It is the case of f (ρ) = 1 + μρσ and F(ρ) = −2.
● The cubic DNLS equation (1.5): f (ρ) = 1 and F(ρ) = −2 + γρ.
● The DNLS equation with general power nonlinearity (1.7): f (ρ) = 1 and F(ρ) = −2 + γρσ .
● The DNLS equation with saturable nonlinearity (1.8): f (ρ) = 1 and F(ρ) = −2 + γ

1+ρ2 .

Another important case that we will not study in the present paper is the Salerno model (SM).25,26 It corresponds to the case of f (ρ)
= 1 + μρ and F(ρ) = −2 + γρ, that is, a combination of the AL and DNLS systems. The study of the Salerno model provides information
about the intrinsic collapse of localized states in the presence of integrability-breaking terms, in particular, how the reflection symmetry and
translational symmetry of the integrable AL are broken by the on-site nonlinearity of the DNLS. The review article24 highlights the relation
between the AL and SM systems and establishes a link between the classical systems considered in the present paper, and their quantum
counterparts in the form of Bose–Hubbard models. For the global in time existence of solutions of the SM, we refer to Ref. 10.

For the proof of the main results, which are given in Sec. III, we will explicitly refer to the power (2.2) associated with the generalized
G-AL system (1.6). It has a non-trivial functional form provided and studied in Ref. 11 and is a key ingredient for the implementation of the
closeness arguments.

III. PROOF OF CLOSENESS OF THE AL AND G-AL SOLUTIONS
The analytical proof of closeness we shall demonstrate concerns the infinite lattice with vanishing boundary conditions. However, we

remark that the argument can be easily modified to cover other cases of boundary conditions, such as periodic ones. Consider, then, the initial
conditions for the integrable AL (1.1) and the non-integrable G-AL,

ψn(0) = ψn,0, n ∈ Z, (3.1)

and

Un(0) = Un,0, n ∈ Z, (3.2)

respectively. We start with the statement of the following theorem.

Theorem III.1

a. We assume that for every 0 < ε < 1, the initial conditions (3.1) of the AL (1.1) and the initial conditions (3.2) of the G-AL (1.6) satisfy the
following:

∥ψ(0) −U(0)∥l2 ≤ C0 ε3, (3.3)
∥U(0)∥l2 ≤ Cδ,0 ε, (3.4)

Pμ(0) =∑
n

ln(1 + μ∣ψn(0)∣2) ≤ ln(1 + (Cμ,0 ε)2
), (3.5)

for some constants C0, Cδ,0, Cμ,0 > 0. Then, for arbitrary Tf > 0, there exists a constant C = C(δ, μ, Cμ,0, Cδ,0, Tf , σ) such that the
corresponding solutions for every t ∈ [0, Tf ], satisfy the estimate
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∥y(t)∥l2 = ∥ψ(t) −U(t)∥l2 ≤ Cε3. (3.6)

b. Under assumptions (3.4) and (3.5), for every 0 < ε < 1 and t ∈ [0, Tf ], the maximal distance ∥y(t)∥l∞ = supn∈Z ∣yn(t)∣ = supn∈Z ∣ψn(t)
−Un(t)∣ between individual units of the systems satisfies the estimate

∥y(t)∥l∞ ≤ Cε3. (3.7)

Proof. For simplicity, we set κ = ν = 1. The corresponding evolution equation for the local distance yn = ψn −Un reads

iẏn = Δdyn + [μ∣ψn∣
2
(ψn+1 + ψn−1) − δ ∣Un∣

2σ
(Un+1 +Un−1)], (3.8)

where Δdyn = yn+1 − 2yn + yn−1 is the 1D discrete Laplacian. Let us recall that when un ∈ C, the space l2
(Z;C) becomes a real Hilbert space,

l2
(Z;C) ≡ l2

(Z;R) × l2
(ZN ;R), if endowed with the real inner product

(u, v)l2 = Re∑
n∈ZN

unv̄n.

In this setting, the operator Δd : l2
→ l2 is bounded and self-adjoint,

(Δdu, v)l2 = (u,Δdv)l2 , u, v ∈ l2,

∥Δdu∥2
l2 ≤ 4∥u∥2

l2 .

Moreover, it satisfies

(Δdu, u)l2 = −∑
n∈Z
∣un+1 − un∣

2
≤ 0 for all u ∈ l2. (3.9)

When multiplying Eq. (3.8) by yn, summing over Z, and keeping the imaginary parts, we may use (3.10) and get that

1
2

d
dt
∥y(t)∥2

l2 = μIm∑
n∈Z
[∣ψn∣

2
(ψn+1 + ψn−1)]yn − δIm∑

n∈Z
[∣Un∣

2σ
(Un+1 +Un−1)]yn. (3.10)

To estimate the terms on the right-hand side of (3.10), we use the Cauchy–Schwarz inequality and the continuous embeddings

lr ⊂ ls, ∥ϕ∥ls ≤ ∥ϕ∥lr , 1 ≤ r ≤ s ≤∞. (3.11)

For the first term on the right-hand side of (3.10), we get

∣Im∑
n∈Z
[∣ψn∣

2
(ψn+1 + ψn−1)]yn∣ ≤ 2 sup

n∈Z
∣ψn∣∑

n∈ZN

∣ψn∣
2
∣yn∣

≤ 2(sup
n∈Z
∣ψn∣)

2

∑
n∈ZN

∣ψn∣ ∣yn∣ ≤ 2(sup
n∈ZN
∣ψn∣)

2

∥ϕ∥l2∥y∥l2

≤ 2∥ψ∥3
l2∥y∥l2 .

(3.12)

For the second term on the right-hand side of (3.10), we obtain

∣Im∑
n∈Z
[∣Un∣

2σ
(Un+1 +Un−1)]yn∣ ≤ 2 sup

n∈Z
∣Un∣∑

n∈ZN

∣Un∣
2σ
∣yn∣

≤ 2(sup
n∈Z
∣Un∣)

2σ

∑
n∈ZN

∣Un∣ ∣yn∣ ≤ 2(sup
n∈ZN
∣Un∣)

2σ

∥U∥l2∥y∥l2

≤ 2∥U∥2σ+1
l2 ∥y∥l2 .

(3.13)

Then, from (3.10)–(3.13), we get the inequality
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1
2

d
dt
∥y(t)∥2

l2 ≤ 2(μ∥ψ∥3
l2 + δ∥U∥

2σ+1
l2 )∥y(t)∥l2 . (3.14)

Inequality (3.14), when combined with d
dt ∥y(t)∥

2
l2 = 2∥y(t)∥l2

d
dt ∥y(t)∥l2 , implies that

d
dt
∥y(t)∥l2 ≤ 2(γ∥ψ∥3

l2 + δ∥U∥
2σ+1
l2 ). (3.15)

For the solutions of the AL, the deformed norm

Pμ(t) =∑
n

ln(1 + μ∣ψn∣
2
)

is conserved, that is,

Pμ(t) = Pμ(0). (3.16)

This conservation implies the following bound (see Ref. 10, Lemma II.1 and Ref. 15):

∥ψ(t)∥2
l2 ≤ exp(Pμ(0)) − 1 ≤ C2

0,με
2, ∀t ≥ 0. (3.17)

On the other hand, the G-AL has a nontrivial conservation law,11

Pδ(t) =∑
n∈Z
∣Un∣

2
2F1(1,

1
σ

, 1 +
1
σ

;−∣Un∣
2σ
), (3.18)

where 2F1(a, b, c; z) is the Gauss hypergeometric function for a, b, c, z ∈ C. We recall that

2F1(a, b, c; z) = 1 +
ab
c

z +
a(a + 1)b(b + 1)

c(c + 1)2!
z2
+ ⋅ ⋅ ⋅ (3.19)

on the disk ∣z∣ < 1 and by analytic continuation outside this disk.
By using the expansion (3.19) for the term 2F1(1, 1

σ , 1 + 1
σ ;−∣Un∣

2σ
) of the quantity (3.18) and its conservation, as well as the embedding

relation (3.11) for r = 2 and s = 2σ, we may derive the following inequality for small values of ∥U∥l2 = (∑n∈Z ∣U∣
2
)

1
2 :

∑
n∈Z
∣Un(t)∣2 +O(∑

n∈Z
∣Un(t)∣2σ) =∑

n∈Z
∣Un(0)∣2 +O(∑

n∈Z
∣Un(0)∣2σ)

≤∑
n∈Z
∣Un(0)∣2 +O((∑

n∈Z
∣Un(0)∣2)

σ

)

≤ C2
δ,0ε

2
+O(ε2σ

), (3.20)

for which we have also used the smallness assumption (3.4) on the initial data. Hence, under these assumptions, we deduce the estimate

∥U(t)∥2
l2 ≤ Ĉ2

0,σ,δε
2
+O(ε2σ

), (3.21)

where Ĉ0,σ,δ will stand for a general constant depending on σ and Cδ,0. Then, using (3.17) and (3.21) in the differential inequality (3.15), we
get that

d
dt
∥y(t)∥l2 ≤ 2(μC3

0,μ + δĈ2σ+1
0,δ,σ )ε

3. (3.22)

Integrating the inequality (3.22) in the arbitrary interval [0, Tf ] and using the assumption (3.3) on the distance ∥y(0)∥l2 = ∥ψ(0) −U(0)∥l2 of
the initial data, we obtain that
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∥y(t)∥l2 ≤ 2(μC3
0,μ + δĈ2σ+1

0,σ,δ )Tf ε
3
+ ∥y(0)∥l2

≤ 2(μC3
0,μ + δĈ2σ+1

0,σ,δ )Tf ε
3
+ C0ε3.

Hence, for the constant

C = 2(μC3
0,μ + δĈ2σ+1

0,σ,δ ))Tf + C0, (3.23)

we conclude with the claimed estimate (3.6).
b. The result is an immediate consequence of embedding (3.11) and estimate (3.6) since ∥y(t)∥ł∞ ≤ ∥y(t)∥ł2 . ◻

Remark III.1 As in Ref. 10, we should also remark herein, that the Proof of Theorem III.1 establishes that the growth rate of the distance
∥y(t)∥l2 is uniformly bounded for any 0 < ϵ < 1 and t ∈ (0,∞), that is,

d
dt
∥y(t)∥l2 ≤ K ε3, (3.24)

where the constant K depends only on the parameters and the initial conditions, but not on t. Therefore, the distance of solutions grows at most
linearly for any t ∈ (0,∞) according to the estimate

∥y(t)∥l2 ≤M t ε3, (3.25)

and similarly for the case of the l∞-distance,

∥y(t)∥l∞ ≤ K1 t ε3, ∀ t ∈ (0,∞), (3.26)

with the constant K1 bearing a similar dependence as M. Such linear growth rates as (3.24) and (3.26) have been proved particularly relevant
in the context of nonlinear PDEs. We refer to the time-growth estimates for the relevant distant function between the solutions, when the NLS is
consdidered as the inviscid limit of the Ginzburg–Landau PDE.21 In such limits, the distance functions may grow even exponentially with respect
to time.22

As the momentum M (2.3) is conserved only by the integrable AL system (1.1), having the closeness result of Theorem III.1 in hand, we
may estimate the difference of momenta between the solutions of the integrable AL (1.1) and its non-integrable generalization (1.6).

Corollary III.1. Assume that the conditions of Theorem III.1 are satisfied. Then, for arbitrary Tf > 0, the difference of momentaΔM between
the solutions of the integrable AL (1.1) and (1.6) satisfies for every T ∈ [0, Tf ], the estimate

ΔM(t) ≤ Cε4 (3.27)

for some constant C > 0 depending on the same parameters and Tf as the constant C given in Theorem III.1.

Proof. We denote by

MAL(t) = 2Im∑
n∈Z
ψn(t)ψn+1(t)

the momentum associated with the solutions of the AL lattice (1.1) and by

MGAL(t) = 2Im∑
n∈Z

Un(t)Un+1(t)

the momentum associated with the G-AL lattice (1.6). Then, the difference ΔM =MAL −MGAL can be written as

ΔM = 2Im∑
n∈Z
ψn(ψn+1 −Un+1) + 2Im∑

n∈Z
Un+1(ψn −Un).
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Then, by using the Cauchy–Schwarz inequality and the estimates (3.17) for ψ and (3.21) for U and (3.6) for y = ψ −U, we get that

∣ΔM∣ ≤ 2∥ψ∥l2∥ψ −U∥l2 + 2∥U∥l2∥ψ −U∥l2

≤ 2C C0,με4
+ 2C Ĉ0,σ,δε

4

≤ Cε4,

and the proof is completed. ◻

IV. NUMERICAL RESULTS
A. Persistence of the AL-soliton in the G-AL lattice

In this section, we present a study of the generalized G-AL lattice (1.6) in the cubic case σ = 2 similar to the one presented in Ref. 10 for
the dynamics of the AL-soliton. As the initial condition, we use the one-soliton solution of the AL equation (1.3),

Un(0) = ψs
n(0)

=
sinh β
√μ

sech(βn) exp(iαn), n ∈ Z, (4.1)

∥ψs
(0)∥l2 = ∥U(0)∥l2 = ε, (4.2)

where α ∈ [−π,π] and β ∈ [0,∞). In order to comply with the smallness condition (4.2), we choose the parameter values accordingly so that
persistence of the corresponding AL-soliton in the DNLS can be expected.

Figure 1 depicts the spatiotemporal evolution of the density ∣Un(t)∣2 of the soliton initial condition when μ = 1, α = π/10, and β
= arcsinh(0.02) for the G-AL equation (1.6) with δ = 1. The evolution is shown for the time span t ∈ [0, 2500] (Tf = 2500) and for a chain of
K = 2400 units with periodic boundary conditions. The evolution of the soliton in the G-AL depicted in the top-left panel of Fig. 1 confirms
the persistence of the AL-soliton with amplitude of order O(ε). Notably, persistence lasts for a significant large time interval, particularly
when one has in mind that our analysis is a “continuous dependence on the initial data result” where, generally, the time interval of such a
dependence on the initial data for a given equation might be short. Note that for this example of initial condition, the value of its l2-norm (4.2)
is ε = 0.2.

Our numerical results confirm convincingly the analytical predictions presented by Theorem III.1, concerning the distance

y(t) = U(t) − ψ(t),

between the solutions of the AL and the G-AL. The top-right panel of Fig. 1 depicts the time evolution of ∥y(t)∥l2 , and the bottom-left panel
depicts the evolution of ∥y(t)∥l∞ , corresponding to the dynamics of the quintic G-AL shown in the top-left panel of Fig. 1. The time evolution
of the norm of the distance function is plotted with a green solid curve. Both panels illustrate the qualitative and quantitative relevance of the
growth estimates (3.24)–(3.26). Note that since U(0) = ψ(0), the constant C on the estimates (3.6) and (3.7) reads as

C = 2(μC3
0,μ + Ĉ0,σ,δ)Tf .

Since the considered example of the initial condition ϵ ∼ O(10−1
) and the time of integration is of order Tf ∼ O(103

), the constant C should
be of the order C ∼ O(1). Then, according to the analytical estimates, one has for this large Tf

∥y(t)∥l∞ ≤ ∥y(t)∥l2 ≤ Cε3
∼ O(1), t ∈ [0, Tf ].

The corresponding panels of Fig. 1 reveal that the numerical order is significantly lower: ∥y(t)∥l2 ∼ O(10−1
), for t ∈ [0, Tf ]. The variation of

∥y(t)∥l∞ is even of smaller order as shown in the bottom panel, showing that ∥y(t)∥l∞ ∼ O(10−2
).

For the numerical time-growth rate of ∥y(t)∥l2 , it holds that

d
dt
∥y(t)∥l2 ∼ O(10−4

), t ∈ [0, Tf ],

which is yet of lower order than the corresponding analytical prediction O(10−3
).
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FIG. 1. Top-left panel: spatiotemporal evolution of the initial condition (4.1) in the G-AL lattice with δ = 1 for the quintic non-linearity σ = 2. Parameters of the initial condition
α = π/10 and β = arcsinh(0.02), μ = 1. Top-right panel and bottom-left panel: time evolution of ∥y(t)∥l2 and ∥y(t)∥l∞ , respectively, corresponding to the soliton dynamics
shown in the top-left panel (details in the text of Sec. IV). Bottom-right panel: space time evolution of the soliton center XCM = (∑n n∣ϕn∣

2
)/(∑n∣ϕn∣

2
) for the AL (1.1) (black

dashed-dotted line) and G-AL (1.6) (green continuous line).

The bottom-right panel of Fig. 1 depicts the preservation of the soliton’s velocity in the G-AL lattice as the corresponding curves for the
G-AL evolution (green curve) and the analytical soliton (black curve) are indistinguishable. For the considered value of β, we have sinh(β) ≈ β
so that the soliton’s speed is c = 2 sin(α) = 0.6181.

B. The study of the evolution of the AL-soliton in the DNLS
1. The quintic DNLS

The same excellent agreement with the analytical predictions for the persistence of the AL-soliton is observed in the case of the
generalized DNLS with the power nonlinearity (1.7),

iϕ̇n + κν(ϕn+1 − 2ϕn + ϕn−1) + γ∣ϕn∣
2σϕn = 0, n ∈ Z, γ ∈ R, σ > 0. (4.3)

The analogous result to Theorem III.1 was proved in Ref. 10 even for higher-dimensional DNLS lattices, which is recalled herein for the sake
of completeness.

Theorem IV.1

A. Assume that σ > 0 and that for every ε > 0, the initial conditions of the AL lattice (1.1) and DNLS equation (4.3) satisfy
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∥ϕ(0) − ψ(0)∥l2 ≤ C0 ε3, (4.4)
∥ϕ(0)∥l2 ≤ Cγ,0 ε, (4.5)

Pμ(0) = ∑
n∈ZN

ln(1 + μ∣ψn(0)∣2) ≤ ln(1 + (Cμ,0 ε)2
), (4.6)

for some constants C0, Cγ,0, Cμ,0 > 0. Then, for arbitrary Tf > 0, there exists a constant C = C(γ, μ, Cμ,0, Cγ,0, Tf ) such that the
corresponding solutions for every t ∈ [0, Tf ] satisfy the estimate

∥y(t)∥l2 = ∥ϕ(t) − ψ(t)∥l2 ≤ C ε3. (4.7)

B. Under assumptions (4.4)–(4.6), for every ε > 0 and t ∈ [0, Tf ], the maximal distance ∥y(t)∥l∞ = supn∈ZN ∣yn(t)∣ = supn∈ZN ∣ψn(t) − ϕn(t)∣
satisfies the estimate

∥y(t)∥l∞ ≤ Cε3. (4.8)

In Fig. 2, we present the numerical results for the evolution of the AL-soliton initial condition (4.1) and (4.2) in the quintic DNLS
(4.3) with σ = 2 and γ = 1. We observe that the dynamics are almost identical to the evolution of the generalized G-AL lattice. Still,

FIG. 2. Top-left panel: spatiotemporal evolution of the initial condition (4.1) in the quintic DNLS lattice (4.3) with σ = 2 and γ = 1. Parameters of the initial condition α = π/10
and β = arcsinh(0.02), μ = 1. Top-right panel and bottom-left panel: time evolution of ∥y(t)∥l2 and ∥y(t)∥l∞ , respectively, corresponding to the soliton dynamics shown
in the top-left panel (details in the text of Sec. IV). Bottom-right panel: space time evolution of the soliton center XCM = (∑n n∣ϕn∣

2
)/(∑n ∣ϕn∣

2
) for the AL (1.1) (black

dashed-dotted line) and the quintic DNLS (4.3) (red continuous line).
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this excellent agreement with the analytical predictions of the associated Theorem IV.1 is explained by the very similar functional
expression for the the constant C in the estimates (4.7) and (4.8) as in Theorem III.1 for the G-AL lattice. This coincidence of the
constants explains the same rates of growth in the evolution of the norms of the distance function y(t).

2. The cubic DNLS: Evolution of higher amplitude AL-soliton
To test the limits of our analytical predictions on the persistence of small amplitude AL-solitons, we present in this paragraph, the

results of a numerical study concerning the evolution of the AL-initial condition for a higher initial amplitude, corresponding to the case
β = arcsinh(0.1). For this choice of the initial condition, the value of the l2-norm (4.2) of the initial condition is ε = 0.4.

The top panels of Fig. 3 show the spatiotemporal evolution of the AL-soliton initial condition described above in the cubic DNLS lattice
(4.3) σ = 1 with γ = 1. In the top-left panel, the evolution is shown for t ∈ [0, 2500], i.e., Tf = 2500 and for a lattice of K = 2400 units. The top-
right panel shows the evolution for t ∈ [0, 1000], i.e., Tf = 10 000, for a lattice of K = 7200 units. We still observe the evolution of a solitonic
structure, which, however, exhibits different dynamical features as the results of the top-right panel reveal: the AL-initial condition evolves as
a large period-spatially localized breather.

The bottom panels of Fig. 3 show the evolution of the same AL-soliton initial condition for the quintic DNLS (4.3) σ = 2 and the remain-
ing parameters are fixed as in the top panels. In this case, the evolution of the AL-initial condition exhibits a self-similar decay of its initial
amplitude, accompanied by an increase of its localization width. The dynamics tend to achieve a small amplitude solitonic asymptotic state of
large width; the norm of the solution cannot converge to zero as the system is conservative preserving the initial norm ∥ϕ(0)∥l2 .

We remark that the observation of the above dynamical features is in agreement with the character of the analytical results based on
the continuous dependence of solutions on the initial data: the observed features in Fig. 3 occur after the finite time interval where the
corresponding solutions remain close in profile and amplitude. As displayed in Fig. 4, for t ∈ [0, 50] in the cubic case and for t ∈ [0, 20] in the
quintic case, the deformations emerging from the initial AL-one soliton in amplitude and profiles are incremental.

FIG. 3. Top-left panel: spatiotemporal evolution of the initial condition (4.1) in the cubic DNLS lattice (4.3) with σ = 1 and γ = 1, for t ∈ [0, T f ] = [0, 2500], in a lattice of
K = 2400 units. Parameters of the initial condition α = π/10 and β = arcsinh(1), μ = 1. Top-right panel: the same evolution for t ∈ [0, T f ] = [0, 10 000] and for a chain of
K = 7200 units. Bottom panels: the spatiotemporal evolution of the of the initial condition (4.1) with α = π/10 and β = arcsinh(1), μ = 1 in the case of the quintic DNLS
lattice (4.3), and σ = 2. Rest of the parameters are as in the bottom panels.
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FIG. 4. Same as Fig. 3 but focusing on the time-interval t ∈ [0, T f ] = [0, 50] for K = 2400 units.

The above effects can also be found in the time evolution of the norms of the corresponding distance functions y(t) shown in Fig. 5. Note
the time oscillations of the relevant metrics in the case of the cubic DNLS σ = 1 (blue solid line curves) and a decaying oscillatory behavior
in the case of the quintic DNLS σ = 2 (red dashed curves). Remarkably, the analytical estimates are still fulfilled and the illustrated evolution
does not contradict the analytical predictions even for large time intervals. Studying the case Tf = 10 000, which is of order O(104

) and for the

FIG. 5. Top-left panel: evolution of ∥y(t)∥l2 associated with the spatiotemporal evolution in the cubic DNLS (4.3) σ = 1—blue continuous curve—and the quintic DNLS (4.3)
σ = 2—red dashed curve—when t ∈ [0, 2500] and K = 2400 lattice units. Top-right panel: evolution of ∥y(t)∥l2 associated with the spatiotemporal evolution in the cubic
DNLS (4.3) σ = 1—blue continuous curve—and the quintic DNLS (4.3) σ = 2—red dashed curve—when t ∈ [0, 10 000] and K = 7200 lattice units. Bottom panels: the same
as above but for ∥y(t)∥l∞ .
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initial norm ∥ϕ(0)∥l2 = ϵ ∼ O(10−1
), the analytical prediction for the upper-bound of the metrics is again satisfied: In particular, the results

depicted in Fig. 5 support the fact that the metric ∥y(t)∥l2 gets altered from order O(10−1
) to O(1) and is of order O(10−1

) in the case of
∥y(t)∥l∞ .

As shown in Fig. 6 depicting the evolution of the center of the solitons, the velocity of the AL-soliton is again preserved in large time
intervals for the case of β = arcsinh(0.1). For example, in the quintic DNLS of K = 7200 units, the divergence starts at t ∼ 8000; the persistence
of the trace justifies that in the case of the quintic DNLS, the asymptotic state resulting from the initial condition should be a small amplitude,
self-similarly deformed soliton, as explained above.

Concerning the evolution of momenta, we remark that Corollary III.1 remains valid for the DNLS models.

C. Closeness of the momentum
Figure 7 represents the numerical results of a numerical study on the time evolution of the error of the momenta

∣ΔM(t)∣ = ∣MAL(t) −MNI(t)∣,

discussed in Corollary III.1; MIN stands for the momentum of the solutions of the non-integrable lattices. The top-left panel of Fig. 7 plots
∣ΔM(t)∣ for the dynamics of the 1-soliton initial condition (4.1) displayed in Fig. 1 for the G-AL lattice (1.6). The top-right panel of Fig. 7 plots
∣ΔM(t)∣ for the dynamics of the 1-soliton initial condition discussed in Fig. 2 for the quintic DNLS (4.3) with σ = 2. The bottom panels of Fig. 7
plot ∣ΔM(t)∣ for the 1-soliton dynamics discussed in Fig. 3 for the initial condition of larger amplitude. Again, we observe excellent agreement
of the numerical results with the analytical predictions for the closeness of the momenta predicted by Corollary III.1, since ∣ΔM(t)∣ ∼ O(10−4

)

or of order O(10−3
).

D. AL-peregrine soliton in DNLS and generalized AL-systems
We conclude the presentation of the numerical results with what we think is one of the most striking applications of our approach: the

persistence of small amplitude rational solutions possessing the functional form of the discrete Peregrine soliton (1.4) of the integrable AL
lattice, in the non-integrable G-AL and DNLS systems. We present the results for the quintic G-AL (1.6) with σ = 2, the cubic DNLS (4.3)
with σ = 1, and the saturable DNLS with the nonlinearity (1.8); for the saturable DNLS, the proof of the variant of Theorem IV.1 is also given
in Ref. 10, Sec. V, pg. 357. We remark that the analytical results on the closeness of solutions can be straightforwardly adapted to cover the
case of the periodic boundary conditions. The latter are suitable to simulate the behavior of solutions on top of a finite background such as in
the case the AL-PS (1.4).

For the numerical simulations, since the systems are autonomous and are invariant under the transformation t → −t, we use as the initial
condition the AL-analytical Peregrine soliton (1.4) at some t = t0 < 0,

FIG. 6. Space time evolution of the soliton center XCM = (∑n n∣ϕn∣
2
)/(∑n ∣ϕn∣

2
) for the AL (1.1) (black dashed-dotted curve), the cubic DNLS (4.3) σ = 1 (blue continuous

curve), and the quintic DNLS (4.3) σ = 2 (red continuous curve), corresponding to the spatiotemporal evolution of the AL-soliton initial condition of Fig. 5 (β = arcsinh0.1).
Left panel: for the lattices of K = 2500 units and t ∈ [0, 2500]. Right panel: for the lattices of K = 7200 units and t ∈ [0, 10 000].
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FIG. 7. Top-left panel: the time evolution of the difference ∣ΔM∣ between the momenta of the soliton initial condition (4.1) for the AL system and the G-AL system with the
quintic non-linearity σ = 2 (see Fig. 1). Top-right panel: the same evolution but comparing the AL system against the DNLS lattice with σ = 2 (see Fig. 2). Bottom-left panel:
the same evolution corresponding to the study for the cubic DNLS σ = 1 [upper (blue) curve] and the quintic DNLS σ = 2 [lower (red) curve]) of Fig. 3. Bottom-right panel: the
same evolution as in the bottom-left panel but for t ∈ [0, 1000].

Un(t0) = ϕn(t0) = ψr
n(t0)

= q[1 −
4(1 + q2

)(1 + 4iq2t0)

1 + 4n2q2 + 16q4t2
0(1 + q2)

]e2iq2t0 , n ∈ Z, t0 < 0. (4.9)

We recall that the analytical Peregrine (1.4) achieves its maximum amplitude at t = 0. To be in conformity with a smallness condition for the
initial amplitude, we select q = 0.1 and set the initial condition at t0 = −50.

Figure 8 shows the spatiotemporal evolution of the density ∣Un(t)∣2 for the initial condition (4.9) in the quintic G-AL (left panel) and the
cubic DNLS (right panel), while the case of the saturable DNLS is depicted in the bottom panel. The results demonstrate the persistence of the
Peregrine waveforms of small amplitude in all of the non-integrable lattices. In particular, we note that the evolving waveforms maintain the
characteristic spatiotemporal localization of the discrete Peregrine soliton.

Figure 9 portrays the evolution of the norms of the relevant distance functions y(t), confirming once more the closeness analytical
results. In the case of the quintic G-AL, the evolution of the norms is plotted with the green dashed-dotted curve, in the case of the cubic
DNLS, it is plotted with the blue solid curve, and in the case of the saturable DNLS, it is plotted with the red dashed curve. We observe
that in the case of the quintic G-AL, the norms increase incrementally. This should be an effect due to the fact that both systems have a
non-local nonlinearity, leading to the fact that the solutions remain closer in comparison with the cases of local nonlinearities. In the case
of the cubic DNLS, the maximum for both is of order O(10−2

). In the case of the saturable DNLS, the maximum of the l2-norm is of order
O(10−1

) and of order O(10−2
) for the l∞-norm, fulfilling in an excellent manner the analytical predictions. The relatively larger magnitude

variations of the metrics observed for the saturable DNLS can be explained by the specific functional form of the nonlinearity, which saturates
higher amplitudes. Nevertheless, while at first-glance, these features could be considered as counter-intuitive for this type of nonlinearity, the
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FIG. 8. Left panel: evolution of the rational Peregrine initial condition (4.9) with q = 0.1 in the quintic G-AL lattice (1.6) σ = 2, with δ = 1, for K = 200 units and t ∈ [−50, 50].
Right panel: the same evolution in the cubic DNLS (4.3) σ = 1 when γ = 1. Rest of the parameters are as in the left panel. Bottom panel: the same evolution in the DNLS
with the saturable nonlinearity when γ = 1. Rest of the parameters are as in the left panel.

analytical results, further corroborated by the numerical studies, confirm that Peregrine-type waveforms close to the analytical ones of the
integrable AL persist even in the saturable model.

We conclude by mentioning that the Peregrine-like waveforms portrayed in Fig. 8 are prone to modulational instability (MI). However,
the MI effects are enhanced after their formation and not shown herein.

FIG. 9. Time evolution of ∥y(t)∥l2 (left panel) and ∥y(t)∥l∞ (right panel), corresponding to the Peregrine soliton dynamics shown in Fig. 8 for the saturable DNLS (red
dashed curve), the quintic G-AL (1.6) (green dashed-dotted curve), and the cubic DNLS (blue continuous curve).
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V. CONCLUSIONS
In this work, we have continued our analytical and numerical investigations of the closeness of solutions between the integrable

Ablowitz–Ladik lattice and non-integrable lattices for which the discrete nonlinear Schrödinger equation serves as the basic underlying
model. With our analytical studies, we have established the closeness of solutions, in the sense of a continuous dependence on their ini-
tial data, between the Ablowitz–Ladik system and its important generalization with an extended power-law nonlinearity. The numerical
investigations have further explored the issue of closeness of solutions for the generalized Ablowitz–Ladik system and the discrete nonlinear
Schrödinger equation with a power-law nonlinearity and with saturable nonlinearity. For all these examples of non-integrable systems, the
numerical studies justified, in full accordance with analytical predictions, that small amplitude solitonic structures possessing the form of the
analytical solutions of the Ablowitz–Ladik system can be excited in nonintegrable lattices and survive for significantly long time intervals.
One of the most striking examples is the persistence of spatiotemporal waveforms close to the analytical discrete Peregrine soliton, in all of
the above-mentioned non-integrable lattices.

Future considerations may consider other DNLS systems important for physical applications (such as those relevant for the dynamics of
granular crystals27), lattices incorporating gain and loss effects,28 and crucially, extensions of our closeness approach to second-order in time
lattice dynamical systems (as an example, we mention the closeness between the integrable Toda lattice29 and Fermi–Pasta–Ulam–Tsingou
lattices30,31 or discrete Klein–Gordon systems32). Such investigations are in progress, and the results will be reported elsewhere.
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