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Abstract: Despite the clear advantages of mini hydropower technology to provide energy access in
remote areas of developing countries, the lack of resources and technical training in these contexts
usually lead to suboptimal installations that do not exploit the full potential of the environment.
To address this drawback, the present work proposes a novel method to optimize the design of
mini-hydropower plants with a robust and efficient formulation. The approach does not involve
typical 2D simplifications of the terrain penstock layout. On the contrary, the problem is formulated
considering arbitrary three-dimensional terrain profiles and realistic penstock layouts taking into
account the bending effect. To this end, the plant layout is modeled on a continuous basis through
the cubic Hermite interpolation of a set of key points, and the optimization problem is addressed
using a genetic algorithm with tailored generation, mutation and crossover operators, especially
designed to improve both the exploration and intensification. The approach is successfully applied to
a real-case scenario with real topographic data, demonstrating its capability of providing optimal
solutions while dealing with arbitrary terrain topography. Finally, a comparison with a previous
discrete approach demonstrated that this algorithm can lead to a noticeable cost reduction for the
problem studied.

Keywords: micro-hyropower plant; layout optimization; Hermite splines; genetic algorithm

1. Introduction
1.1. Electrification in Developing Countries and Mini-Hydropower Plants

The use of Mini Hydro-Power Plants (MHPP) constitutes one of the most efficient
solutions for the problem of energy access in remote rural areas, especially in the context of
developing countries [1]. These small installations are capable of exploiting the potential
energy of a natural water flow to generate electricity with minimal environmental impact
and simple equipment. Nevertheless, the context of poverty of these emplacements con-
ditions the design strategies, which are usually based on the personal experience of local
technicians and the use of hand rules. For this reason, the development of efficient and
robust design strategies can play an important role in the application of these technologies
to combat energy poverty.

An MHPP basically consists of extracting a fraction of the water flow from a natural
course and conducting it downhill through a long pipe, called penstock, at the end of which
the water interacts with a generation unit and transforms its kinetic energy into electrical
energy (see Figure 1). It is relevant to note that the water is returned to its natural course,
and thus the environmental impact is almost zero. The potential and cost efficiency of
an MHPP is determined by the correct use of the terrain or, in other words, the optimal
emplacement of its elements and of the penstock layout to achieve the maximum height
difference with the shortest pipe length (as pipe friction lowers the efficiency). When the
price of the equipment is low, the costs of the deployment can become relevant with respect
to the overall cost, and thus the civil works involved become a variable of interest. This,
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together with the penstock bending and the arbitrary profiles of the terrain and the river,
increases the complexity of the problem and motivates the use of numerical and heuristic
optimization approaches.

Penstock

Village

Extraction

Powerhouse

Figure 1. Basic scheme of an MHPP.

1.2. Optimization of MHPP

The problem of optimizing MHPP is addressed in the literature from a wide variety
of perspectives. For example, some works propose solutions to reduce the environmental
impact of the plants [2,3], to quantify the potential of these installations [4], to improve the
MHPP viability [5], or to operate the plants under water scarcity conditions [6,7].

Although the seasonal character of water availability induces variations in the energy
production of MHPP, these plants remain one of the best solutions for isolated, rural
locations with no access to the power grid, and therefore a large effort has been made in
the literature to improve their design and viability. In line with this, some studies have
focused on the overview and characterization of the main elements and variables of these
installations [8], the design of the turbines (see [9] for a nice survey about this topic), and
the analysis of the most important economic indexes [10].

A very relevant line of work is that related to the optimal components selection
and/or operation of MHPP in situations in which the plant layout, that is, the location of
its main elements (namely water intake, penstock profile, and powerhouse), has been fixed.
For example, Ref. [11] presents a numerical tool to maximize power production or economic
profit by selecting the adequate penstock diameter and type of turbines. The work takes
into account the dependence of the turbine efficiency on variables such as water flow,
suction head, and rotational speed. Moreover, ref. [12] presents the most important features
of the turbine model from a control point of view, and, in [13], the use of model predictive
control to deal with prediction errors in the available water in the reservoir and is proposed.

In general, the number of variables and constraints and its nonlinear character involve
a degree of complexity that makes the use of traditional gradient-based optimization
strategies difficult. For this reason, the utilization of computational intelligence methods
has gained great attention to deal with the previous optimization problems. Some examples
of this include [14], where the authors present a stochastic evolutionary algorithm to find
the blade of a Turgo water turbine that maximizes the hydraulic efficiency. Similarly, in [15],
the bucket shape of Pelton turbines in various operation conditions is optimized using a
Lagrangian formulation and solving the problem with evolutionary algorithms. In addition,
ref. [16] proposes a complex simulation algorithm to analyze plant operation yearly and
compute energy production and economic indices. The authors’ findings show that the
optimal sizing in terms of some economic indicators is not the same as the one maximizing
the exploitation of the hydraulic potential. Moreover, ref. [17] investigates the potential of
using a proposed metaheuristic method to provide optimal operations for multireservoir
systems, with the aim of optimally improving hydro-power generation.
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This work addresses the problem of optimizing the layout of a MHPP. The problem
can be roughly stated as follows: given the profile of a river and its surrounding terrain,
find the location of the water intake, the turbine, and the penstock layout in such a way that
the mechanical stress in the pipe is below a certain level, σmax; the obtained power is above
a desired value, Pmin; and the cost of the installation is minimized. Typically, this problem
has been tackled, making some simplifications to use traditional analysis or optimization
tools. For example, in [18], the authors propose a theoretical analysis to find the optimal
penstock layout and diameter for low head plants. The optimization problem considers
a 2D formulation of the MHPP layout, which, in addition, is considered composed of a
unique straight segment. Despite the elegance of the obtained analytical results, these
simplifications limit the practical implementation, for example, in the (frequent) situation
in which the river profile is irregular. Removing this kind of simplification improves
the applicability of the developed methodologies at the cost of a dramatic increase in
the problem complexity. This results in optimization problems that cannot be solved
resorting to linear programming or convex optimization tools, and this is when machine
learning techniques and metauristic optimization come into play. For example, ref. [19]
presents a method to select an adequate turbine and to compute the optimal and penstock
diameter based on Honey Bee Mating algorithm, ref. [20] introduces the application of a
genetic algorithm to optimize the flow rate and number of generators in a multi-objective
problem where generated energy and investment cost are the objective functions, ref. [16]
develops a stochastic evolutionary algorithm to select the optimal turbine capacity and
lengths/diameters of the penstock segments, and [11] presents an evolutionary algorithms
to maximize power production or net economic profit by optimizing, the penstock diameter,
and the type and configuration of the turbines. In all previous works, the intake and turbine
locations are assumed to be given. On the contrary, some works include the penstock layout
and the intake and turbine locations in the optimization problems. Some examples of these
are presented in [21,22], where arbitrary 2D river profiles are considered and integer
programming and evolutionary methods are employed, respectively. The extension of
these approaches to (discretized) 3D profiles is presented in [23]. Another interesting
work presented in [24] makes use of three optimization modules and genetic algorithms
to simultaneously determine the optimal intake location, penstock length and diameter,
and turbine number, capacity, and discharge schedule.

As a significant improvement with respect to previous approaches, this work proposes
the optimization of the layout considering a continuous, 3D formulation of the problem,
capable of dealing with an arbitrary terrain and river profile, using a Genetic Algorithm (GA).

1.3. Contributions

This paper presents a new and improved method for computing optimal MHPP lay-
outs considering cost, power, and flow constraints. As in [23], the 3D terrain is discretized
based on the available topographic data, and civil work costs to deploy and install the
penstock are taken into account. However, in the new developed method, the penstock
is not assumed to be composed of straight lengths, which is an unrealistic constraint in
real installations where the pipe length bends considerably in the horizontal plane to
accommodate the penstock layout (see Figure 2).

The new method is formulated based on three main components. First of all, the main
equations characterizing the MHPP power, flows, costs, and constraints are derived. Sec-
ondly, the penstock profile is approximated and used suitable approximation cubic Her-
mite splines for the vertical dimension. This choice is made to preserve, on the one hand,
the monotonicity of the curve that describes the penstock (required to avoid air entrapment)
and, on the other hand, to provide an easy formulation for the bending radius of the pen-
stock length, as it can be determined in terms of the derivatives of the cubic polynomials.
This consideration makes it possible to account for an extra degree of freedom that can
be limited according to the material and diameter of the penstock. Finally, a specifically
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designed genetic algorithm is applied to characterize the optimal MHPP layout, studying
both single-objective and multiple-objective problems.

Figure 2. Bending in a real MHPP penstock length.

The constraint relaxation based on spline interpolation not only involves a better
approximation of the penstock layout, but also makes it possible, as it will be shown in the
paper, to obtain designs that are better in terms of cost and attainable power.

2. Description of the Problem
2.1. Power Generation

The obtainable power P of a hydropower plant can be estimated in terms of the net
head, Ht, and the water flow rate, Q, as

P = ρgQhtη, (1)

where ρ is the density of the water, g is the acceleration of gravity, and η is the overall
efficiency of the generation equipment. The net head, Ht, represents the net height of the
water at the entrance of the turbine, which can be written as the gross height, Hg minus the
friction loss h f ric:

ht = Hg − h f ric, (2)

Considering an action turbine, in which the energy to be transformed in the turbine is
entirely kinetic (through the formation of a jet), it can be written that

ht =
1

2g
v2

jet (3)

The velocity of the jet, vjet, can be written in terms of the water flow rate Q and
the nozzle injector section area, Snoz, and after substituting the expression for ht can be
rewritten as

ht =
Q2

2gCDS2
noz

, (4)

where a discharge coefficient CD has been introduced to model the formation of a vena
contracta in the jet. Finally, a simple approximation for the height loss term from [25] as:

h f ric ≈ kp
Lp

D5
p

Q2 (5)
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with kp being a constant of the pipe material and Dp its internal diameter. Now, substituting
this last expression, together with Equation (4) in Equation (2), an expression for the water
flow rate that will feed the plant can be obtained:

Q =

 Hg

1
2gC2

DSnoz
+ kp

Lp

D5
p


1
2

(6)

Finally, introducing Equation (6) in Equation (4), and the resultant expression in
Equation (1), it yields:

P =
ηρ

2C2
DS2

noz

 Hg

1
2gC2

DS2
noz

+ kp
Lp

D5
p


3
2

(7)

It is relevant to note that this expression allows for estimating the power generated by
any hydropower plant on the basis of the gross head Hg, and penstock length and diameter,
Lp and Dp. These three variables, indeed, are determined by the spatial layout of the plant
over the terrain.

2.2. Terrain

To model the layout of an MHPP, the height map of the terrain is required to be prop-
erly characterized. To this end, a set of experimental topographic data points, Ti(xi, yi, zi),
are considered to be obtained through a topographic survey. On the basis of these points,
a continuous height function z = f (x, y) is built through a linear interpolation. The river
layout is determined on the x − y plane using the aerial imagery from the topographic
survey. This provides a second set of data points Ri(xi, yi, f (xi, yi)) for the river, which is
transformed into a continuous function using a cubic spline interpolation.

2.3. Spline-Based Penstock Layout

As shown in Figure 3, possible MHPP layouts are modeled as a parametrized contin-
uous curves, Γ, connecting two points of the river: the water extraction and the turbine
emplacement points. For an enhanced formulation, these curves Γ (candidate solutions) are
spline-based interpolations of a subset of spatial points belonging to Ti(xi, yi, zi), named
nodes (see Figure 4). This way, any given solution can be built through the interpolation
of n nodes in the form of (xi, yi, zi), as long as the first and last belong to the river. Thus,
the solution Γ is written in terms of the cited coefficients as

Γ(t) =
[
Sx(t), Sy(t), Sz(t)

]
, (8)

where Sx(t), Sy(t) and Sz(t) are the interpolation functions for x, y, and z coordinates of the
nodes, respectively. The parameter t is trivially defined to match the nodes index, and thus
Γ(i) = (xi, yi, zi).

It is relevant to note that, for any layout to be feasible, it is required for the slope of
the penstock not to change its sign [26]. For this reason, a Hermite cubic interpolation has
been employed for Sz(t), while natural cubic splines have been employed for Sx(t) and
Sy(t) functions. This strategy guarantees that, as long as the nodes are ordered in height,
the sign of the slope of the penstock will not change the layout. An illustrative example of
this is shown in Figure 5 for the sake of understanding.
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Figure 3. MHPP simplified model through 3D spatial curves.

Figure 4. Example of a node, acting as a base point for the spline interpolation. The height of the
candidate solutions at the nodes are denoted as zi, in its difference with the height of the terrain at
this point is ∆zi = zi − z(xi, yi) = zi − f (xi, yi).

Figure 5. Example of interpolation functions for a solution with five nodes, whose coordinates are
represented using squares. Note that Sx(t) and Sy(t) (in blue) are natural splines, while Sz(t) (in red)
is a monotone Hermite spline.
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Finally, to ease further calculations related to the length of the penstock, an arc-length
reparametrization s(t) such that

s(t) =
∫ t

0
||Γ(t)′||dt

t(s)=s(t)−1

−−−−−−→ Γ = Γ(t(s)) (9)

Note that, with this reparametrization, the curve Γ(s) is defined for s ∈
[
0, Lp

]
. Once

the curve Γ(s) has been built, the performance of the resulting MHPP (power and water
flow rate) can be determined using Equations (6) and (7). In addition, this approach permits
a simple estimation of the cost, as will be discussed in the next section.

2.4. Pipe Curvature

As it was mentioned in Section 1.3, in this work, the penstock is not considered to be
composed of straight segments, as in previous approaches, but able to slightly bend along
its layout, as a result of the real deformation that can be observed in long pipes (as shown
in Figure 2). Nevertheless, these curvatures are required to be compatible with the material
properties (in particular, its stiffness and resistance), and thus a limitation is required to be
imposed for the curvature radius r.

Considering the pipe as a simple Euler beam under pure bending [27], a direct relation
can be written between the radius or curvature r and the maximum mechanical stress σ,
involving the Young modulus of the pipe material (typically mild steel [28]), E, and the
diameter, Dp:

σmax = E
Dp

2r
(10)

The Von-Mises yielding criterion [27] can be used to impose the safety of the pipe
as follows:

σ

Sy
≤ 1, (11)

where Sy is the tensile strength of the material. Substituting and reordering, it can be
written as:

r(s) ≥ E
2Sy

Dp (12)

It is relevant to note that the minimum curvature radius allowable depends on the
diameter of the pipe.

2.5. Cost of the MHPP

The minimization of the cost of the plant is considered as the objective of the opti-
mization problem addressed in this work, and thus an appropriate model is required to be
formulated. First, as the generation equipment is sized for a range around the objective
power generation level, the penstock layout is the main variable in the optimization prob-
lem, which includes not only the cost of the pipe itself, Cp, but also the costs of the labor
involved in its deployment, Ccw, associated with the required excavation and supports.

For the cost of the pipe, the following polynomial expression is proposed:

Cp = Lp

m

∑
i=0

aiDi
p, (13)

where ai and bi are experimentally adjusted coefficients to be fitted to the costs of the local
manufacturers. The costs of the civil works can now be evaluated as the sum of those
related to the supports, Csup, and those related to the excavations, Cexc:

Ccw = Csup + Cexc (14)
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To calculate these two costs, the height difference between the terrain and the penstock
is required to be evaluated. This variable will be denoted with ε(s), which is written in
terms of the arc-length variable s, shown in Figure 3:

ε(s) = Sz(s)− f (Sx(s), Sy(s)) (15)

This gap (shaded in Figure 4) can reach positive and negative values along the path
of the penstock, having different implications: positive gaps (the penstock lies over the
terrain surface) results in the need for supports, while negative ones (the penstock lies
under the terrain surface) result in the need for excavations. Now, both Csup and Cexc
can be calculated. The first is calculated through the integration along the path of the
cost of a single support (that depends on its height) times the linear density of supports
µsup. The cost of a single support has been defined by a constant ksup times its squared
height. This expression has been proposed to fit the average costs following the local
technicians indications. On the other hand, the excavation cost is calculated as a unitary
volumetric cost, kexc, multiplied by the total volume to be excavated, which is determined
by integrating along the path a certain digging cross-section, defined by a cut angle βexc.
These approximations result in the following expressions:

Csup(s) =

{
µsup

∫
Γ(s) ksupε2

supds where ε ≥ 0
0 otherwise

(16)

Cexc(s) =

{
kexc

∫
Γ(s)
(
tan(βexc)ε2

exc − Dpεexc
)
ds where ε < 0

0 otherwise
(17)

The scheme of these two models is shown in Figure 6 for a clearer understanding.
Note that the extra distance ε0 to be nailed to the ground has been considered proportional
to ε, and thus can be grouped in constant kexc.

Figure 6. Scheme of the model proposed for the excavations (left) and supports (right).

2.6. Problem Formulation

Finally, the problem is formulated as the minimization of the cost, C, such that the
solution represents a feasible MHPP layout, with a generated power P above a certain
required level, Pmin. This is:

min (13)

s.t. (7) > Pmin

(10) < Sy

2.7. Complexity of the Problem

The target optimization problem is a non-convex one, where classical gradient-based
solvers would fail to find optimal solutions. Genetic algorithms like the one used in
this work are suitable for non-convex scenarios with restrictions. The complexity of the
problem is high, since the number of design variables (nodes in the penstock layout) may be
variable, and the variables are continuous. Consequently, the search space is both infinite
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and nonconvex, making it impossible to use brute force or exhaustive algorithms due to
the computational time required. Therefore, a metaheuristic algorithm such as a Genetic
Algorithm is a suitable approach to obtain optimal solutions in a reasonable computational
time. Furthermore, Genetic Algorithms are appropriate for dealing with the restrictions of
the target problem and for solutions of variable lengths like the ones used in this work.

3. Genetic Algorithm

Genetic algorithms (GA) are metaheuristic optimization algorithms that are widely
employed to solve complex engineering problems [29,30]. GAs are population-based
approaches. This means that they seek the optimum values (maximum and/or minimum)
of a given problem from a population of random solutions. These random solutions
evolve over generations improving at each step by genetic operators: selection, crossover,
and mutation. Genetic operators are inspired by the Darwinian theory [31] in which
those individuals who better adapt to their ecosystem are the ones that will have more
probability to survive over time. In an optimization problem, the individuals are given by
potential solutions, and the adaptation to the ecosystem is obtained by the quality of the
potential solution in the fitness function. As a rule, the higher the quality of the solution,
the better the adaptation. Thus, the population of the potential solutions evolves towards
the optimum value until the stop criterion is reached, which is normally fixed as a number
of generations.

3.1. Individual Encoding

The individual chromosome represents a potential solution of the target problem.
The chromosome is composed of genes, each one representing a design variable of the
problem. In this case, the variables consist of (see Figure 7):

• The coordinates s1 and sn corresponding to the end nodes;
• The coordinates (xi, yi) of the interior nodes of the penstock, being i the number of

each node;
• The height of the nodes relative to the surface of the terrain ∆Zi. Notice that it

is a relative value with respect to f (xi, yi), which determines the actual height of
the terrain;

• The diameter of the penstock Dp.

Figure 7. Chromosome encoding.

3.2. Individual Generation

Given the complexity of the problem and the constraints, the generation of individuals
on the basis of a purely random generation of nodes through the space might cause a
high rate of either unfeasible or low-quality individuals. For this reason, a customized
generation routine has been developed to guarantee the feasibility of the individuals and
improve their initial fitness. The generation scheme developed is based on the generation of
selection an arbitrary number of points (x, y) chosen from the river x, y layout. The highest
and lower of these nodes are considered the location of the dam and the powerhouse,
respectively, while the rest are considered the interior nodes. The positions of the interior
nodes are displaced from the original emplacement through a Gaussian probability function
in both x and y directions. The Gaussian distribution is the same for both axes, centered at
zero and with a scale hyperparameter σ to be tuned. Finally, the inner nodes are assigned
a zi coordinate as the terrain height at that point plus a distance ∆z randomly generated
from this same Gaussian function. In Figure 8, an example of a generated individual with
five nodes is shown.
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Figure 8. Example of three arbitrary individuals (black line) created for the given terrain (river is
represented in blue). Note how each individual can be created with a different number of nodes.

3.3. Mutation Operator

The mutation operator used in this work is inspired by that from [23], as it demon-
strated its efficiency in a related (discrete) problem. This operator is based on performing
three different actions that are susceptible to being applied to individuals. These are:

• With a certain probability, pmut,0, one of the internal nodes can be removed from the
individual (see node 4 in Figure 9);

• With a certain probability, pmut,1, a new node is attached to the individual. This
new node is generated through a procedure similar to that in the generation scheme,
beginning with the selection of an arbitrary point of the river between the dam and
the powerhouse and its later Gaussian displacement (see node 6 in Figure 9).

• With a certain probability, pmut,d, a gene changes its emplacement by means of a
Gaussian displacement. This displacement is performed in the three dimensions of
space if the node is interior (as nodes 2 and 3 in Figure 9), or constrained to the river
profile if it is not (as nodes 1 and 5 in Figure 9).

In addition, the value of the diameter (stored in the last gene) is modified following
the same Gaussian displacement cited before.

Figure 9. Example of the different actions of the mutation operator on an arbitrary individual:
(a) displacement of an interior node, (b) displacement of an end node, (c) elimination of an existing
node, and (d) creation of a new node. The black continuous and dashed line represents, respectively,
the individual before and after the mutation. The blue line represents the river, and the black circles
represent the nodes.

3.4. Crossover Operator

For the crossover operator, a tailored operator, based on an exchange of nodes between
the two parents, is proposed as follows:

1. The offspring is initialized by defining their two end nodes as the lowest and highest
nodes contained by the parents;
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2. The interior nodes of both parents are grouped together, and then each of these are
being randomly assigned to one offspring;

3. The diameters of the offspring are determined using a simulated binary crossover be-
tween the diameters of the parents. This is being D1 and D2, respectively, the diameter
of the two parents, the diameter of the offspring, D∗1 and D∗2 are calculated as:

D∗1 = (1− φ)D1 + φD2 (18)

D∗2 = φD1 + (1− φ)D2 (19)

where φ is generated through a random variable α ∼ U (0, 1) as:

φ = (1 + 2α)x− α (20)

from where it can be seen that φ is generated between −α and 1 + α. With this
approach, the blend crossover of both diameters is not limited to result in values
within the range of the diameters of the parents.

In Figure 10, an example of the node exchange between two individuals during a
crossover operation is represented for a better understanding.

Figure 10. Example of the exchange of nodes between two individuals during a crossover operation.
Note how the highest and lowest nodes (A1 and B3) are directly inherited by the offspring, while the
internal nodes (A2, A3, and B2) are randomly distributed among them. End nodes A4 and B1 are
thus not used.

3.5. Fitness Function

Death penalty is employed to deal with unfeasible individuals. Thus, as the objective
is the minimization of the cost C of the plant, the fitness function, F, is then defined as:{

i f solution valid F = (13),
else F = ∞.

(21)

Note that the only two reasons for which an individual may not be feasible are (i)
an excessive curvature of the pipe at any point of its layout or (ii) an insufficient power
generation level.

4. Simulation Examples and Results

This section summarizes the results of the application of the method proposed to a
real case.

4.1. Scenario Parameters

To evaluate the performance of the proposed approach, a real application case is
proposed. The case study is based on the rural community of San Miguelito, in the town of
Quimistán (Honduras), that lacks access to the electrical grid because of the geographical
limitations. This community was chosen by the Honduran Foundation for Agronomic
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Research (FHIA) as a candidate for the installation of a micro-hydropower plant. In a first
evaluation by the technicians, a minimum generation of 8 kW was established as the power
required to supply the approximately 40 families that live in the community. An aerial
drone topographic survey was performed to provide the dataset, composed of a grid of
2900 terrain data points and a set of aerial images, based on which an additional set of
59 points of the river profile were determined. Regarding the problem constants, those
from [23] have been considered in this work, for the sake of comparison. These parameters
are summarized in Table 1.

Table 1. Summary of the scenario parameters considered for the example.

Parameter Value

Pmin (KW) 7
Dnoz (m) 0.022
E (GPa) 200

Sy (MPa) 250
Ksup (c.u.) 9

Kexc (c.u./m3) 8
Xsup (1/m) 0.2

βexc (◦) 10
a0 (c.u./m) 13.14
a1 (c.u./m2) 99.76
a2 (c.u./m3) 616.10

For a further analysis of the performance of the method, two additional study cases
have been proposed by modifying the example presented in this section:

1. Modified problem 1 is based on reducing the power output constraint. This models
the design of a plant for a much smaller village, with a consequently lower power
supply requirement. In particular, the required power output, Pmin, has been set
to 4-kW.

2. Modified problem 2 is based on (i) increasing the required power output of the plant
and (ii) modifying the costs associated with the pipe and its deployment. The first
of these modifications represents the application of the method to supply a more
populated village. In particular, the required power output, Pmin, has been set to
14-kW. The second of these modifications is based on considering a low quality terrain
that strongly makes the transport of the pipe difficult, translating into an increase
of its cost per unit length, but eases the excavations labor involved. This has been
modeled by using a 1.5 multiplier for Cp, on one hand, and reducing the required
cut angle of the excavations, βexc, to 10◦ and the unitary volumetric cost, Kexc, to
2 c.u./m3, on the other.

4.2. Algorithm Parameters

A µ + λ Genetic Algorithm has been employed to address the optimization problem
developed (The complete code can be found in https://github.com/atapiaco/run_of_
river_plant_3D_optimization), using the coordinates of the nodes of the layout Γ as genes.
To find an adequate value of the hyperparameter on the generation scale σ, a search has
been performed. A total of 10 thousand individuals have been generated and evaluated for
values of σ ranging from 0 to 10, with the results shown in Figure 11. The best fitness was
obtained with σ = 4.2, and thus this value has been employed for the simulation.

Given the similarity of the mutation scheme to that proposed in the discrete version of
the problem [23], the optimal probabilities that were determined have been considered in
this work. These are

pmut,mov = 0.01, pmut,01 = 0.05, pmut,10 = 0.20, βmut = 0.5

https://github.com/atapiaco/run_of_river_plant_3D_optimization
https://github.com/atapiaco/run_of_river_plant_3D_optimization
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Figure 11. Influence of the scale parameter σ on the average fitness of the generated populations.
Each dot represents the average fitness of a population of 10,000 individuals.

Finally, the algorithm has been executed for different values of the mutation and
crossover probabilities, with 10 trials for combination. A summary of the main parameters
of the GA is shown in Table 2.

Table 2. Parameters of the Genetic Algorithm.

Parameter Value

λ 2000
µ 2000

Generations 100
Selection Tournament size = 3

Generation Custom generation scheme
σ = 4.20

Crossover Custom crossover scheme
φ = 0.50

Mutation Custom mutation scheme
pmut,mov = 0.01
pmut,01 = 0.05
pmut,10 = 0.20

pcx = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
µcx = [0.20.40.50.60.8]

Number of trials 10
Diameter range (m) 0.01–0.33

4.3. Results

The results obtained for the different combinations of mutation and crossover probabil-
ities obtained for the proposed reference case are summarized in Table 3. It can be observed
that the best individual has been obtained using 0.7 and 0.3 for the crossover (pcx) and
mutation (pmut) probabilities, respectively. The execution of the algorithm exhibited good
convergence after approx. 500 generations for almost all trials, with slight improvements
during the next hundred generations. In Figure 12, the best fitness of each generation has
been represented by one of the trials of the cited probability values.
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Figure 12. Evolution of the best fitness obtained through generations for the best case evaluated
(pmut = 0.30, pcx = 0.70).

Table 3. Summary of the last population and best individuals obtained. Lower cost has been
highlighted in bold.

Hyper-parameters

pmut 0.70 0.60 0.50 0.40 0.30
pcx 0.30 0.40 0.50 0.60 0.70

Final population fitness

Mean 22,066.77 23,031.35 23,397.92 22,551.43 22,133.37
Std. dev. 991.25 876.34 345.59 583.70 828.1163

Min 21,193.04 21,836.64 23,216.90 21,787.5 20,966.11
Max 41,083.82 48,206.39 41,396.83 33,011.61 25,811.00

Best individual

Gross h. (m) 80.74 84.04 86.98 82.40 79.98
Power (W) 7017.69 7000.24 7009.17 7000.49 7003.06

Pens. length
(m) 534.56 562.24 597.30 552.59 532.42

Min, bending
radius (m) 80.00 67.36 60.00 58.07 58.99

Bending
radius

allowed (m)
54.23 53.08 52.50 53.67 54.55

Pipe diam.
(m) 0.14 0.13 0.13 0.13 0.14

Cost (c.u.) 21,193.04 1836.64 23,216.90 21,787.50 20,966.11

This individual represents a plant layout with a total cost of 20,966.11 (c.u.), signifi-
cantly better than the one obtained by other configurations. The solution provides enough
power for the electrical demand required (power generation is slightly superior to the
7 kW required) and satisfies the curvature constraint. It can also be seen how the minimal
bending radius depends on the diameter of the pipe, according to Equation (12). Observing
the layout that corresponds to this solution (see Figure 13), it can be seen how the penstock,
with a 14 cm diameter, cuts through rough terrain and avoids local curvatures of the river.
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Figure 13. Layout of the optimal solution obtained for the reference problem.

Once the optimal hyper-parameters have been determined, these have been used
to solve the modified versions of the reference case. The best solutions obtained are
represented in Figure 14, and the main variables associated with these are summarized in
Table 4, together with the reference ones.

Figure 14. Layout of the optimal solutions obtained for the modified problems 1 (left) and 2 (right).

Table 4. Summary of the optimal solutions obtained for the reference case and the two modifications.

Ref. Problem Modification 1 Modification 2

Gross height (m) 79.98 48.98 109.49
Power (W) 7003.46 4000.19 14,000.67

Pens. length (m) 532.42 298.75 735.37
Min. bending radius (m) 58.99 127.72 100.00

Bending radius allowed (m) 54.55 54.55 68.79
Pipe diam. (m) 0.14 0.14 0.17

Cost (c.u.) 20,966.11 11,769.02 42,191.30

A few interesting comments can be made after observing these results. With respect to
the first modification of the problem, it can be seen that, as the required penstock length is
smaller, the layout can be drawn with a much smaller curvature (the minimum bending
radius is more than twice the minimum allowed). It can also be noted that, in comparison
with the reference case, the cost reduction is significantly higher than the power reduction.
This is understandable, given that the shorter the length of the penstock, the easier to
find a place to take advantage of the benefits of a region of the terrain (high river slope,
low terrain bumps, etc.). With respect to the second modified problem, the most evident
fact is the need of a larger penstock, which also has increased its diameter from 14 to
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17 cm. As was expected, increasing the cost of the penstock and reducing the cost of the
excavations causes the algorithm to take advantage of cutting through rough terrain at
the curved part of the river, as the required excavations are now preferable with respect
to a longer penstock laying over the ground. These two modified cases demonstrate the
goodness of the approach and its capability to provide different solutions in accordance
with the particularities of both the environment and the economic factors.

4.4. Comparison with Previous Approaches

As indicated in Section 1.2, the proposed method constitutes a substantial novelty
relative to previous approaches in the literature, fundamentally due to (i) the 3D nature of
the approach, which considers the real topography of the terrain avoiding simplification
errors that are present in 2D-based traditional methods (such as those in [22,32], and (ii) its
continuous formulation, which improves the search space and avoids the strong condition-
ing between the resolution of the terrain mesh and the efficiency of the method that arises
from discrete methods (such as [23]. Regarding approaches based on 2D simplification, it is
clear that their practical implementation is limited to those cases in which the curvature of
the river is negligible. In those cases where this is not met, not only might the performance
of the plant differ, but the difference in length of the optimal layout projected (2D) and
the real one (3D) can cause incompatibility problems during the installation. These issues
have been numerically demonstrated by the authors in [32], where the authors propose a
3D approach, in which the plant layout is defined as a connection of straight pipe lengths,
connected to each other using elbows. For the sake of a fair comparison, the approach
proposed in this work cited has been used to solve the reference example in Section 4.1.
The method considered is defined on a discrete basis, the raw topographic data points
considered as candidate positions for these elbows to be deployed on the terrain. It is rele-
vant to note that, in addition to the different framework of the discrete approach, the cost
function is slightly different, as it includes an additional term to account for the cost of the
elbows and their installation. For this approach, Equation (13) is transformed into:

Cp = Lp

m

∑
i=0

aiDi
p + nc

n

∑
i=0

biDi
p (22)

where nc represents the total number of penstock pipe elbows, and the constants bi are
adjusted to match the real costs from local manufacturers. For this problem, the values
from [32] have been used; these are:

b0 = 50, b3 = 1200, bi = 0 ∀i 6= {0, 3}

The optimal solution obtained with this method is represented in Figure 15, and nu-
merically summarized in Table 5. When these results are observed, it can be seen that
the continuous approach proposed in this work provides a better solution. Nevertheless,
some interesting additional comments can be made. First, it is relevant to note that the
cost reduction is not very high (about 3% reduction), as both layouts are qualitatively
similar. It is also interesting to note that the penstock obtained with the discrete approach
is 11 m shorter with the same diameter, but it is the cost of the elbows that increases the
cost. Finally, the fact that the continuous approach provided a power generation closer to
the minimum constraint (7 kW) demonstrates how the discrete is strongly conditioned by
the refinement of the topographic survey, that is, the number of terrain points. The fewer
the data points, the lower the probability of finding a solution that satisfies the constraints
more tightly.

To conclude the comparison between these two approaches, it is mandatory to note that
these actually refer to two different alternatives for the physical installation of the penstock,
and thus the superiority of the continuous approach is not to be taken for granted, as some
particular cases (such very steep, irregular terrains) might be better suited to layouts with a
penstock composed of straight segments connected through elbows, avoiding the curvature
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limitations of the continuous approach. For these reasons, both methods are recommended
to be considered for the optimization of these plants.

Table 5. Comparison between the current (continuous) and the previous (discrete) approach.

Continuous Approach Discrete Approach [32]

Gross height (m) 79.98 78.56
Power (W) 7003.06 7173.34

Pens. length (m) 532.42 523.78
Pipe diam. (m) 0.14 0.14

Cost (c.u.) 209,66.11 215,90.50

Figure 15. Optimal solution obtained using the discrete approach from [32].

5. Conclusions and Further Work

This work proposes the optimization of an MHPP using a continuous formulation of
the problem from a three-dimensional approach. The problem is formulated as the mini-
mization of the cost of the plant with a minimum power generation constraint. The problem
considers not only the cost of the equipment, but also the cost of the civil works involved
in its deployment, in such a way that the strong dependence of the path of the penstock
through the terrain and the labor involved in terrain excavation and installation of supports
is considered. A GA has been developed to solve the optimization problem, for which
initial population generation, mutation, and crossover tailored operators have been de-
signed, given the complexity of the constraints involved. The algorithm has been applied
to an illustrative case study based on a real-case scenario in a small remote community
in Honduras, and two additional modifications of this problem, to further evaluate its
performance. The real topography of the terrain and the river profile have been determined
through an aerial topographic survey, and an optimal layout for the MHPP has been pre-
cisely determined. The solution obtained permits the generation of 7 kW, with a total cost
of 20,966 c.u. The analysis of the solution obtained demonstrates how the algorithm builds
a layout that cuts through rough terrain, thus demonstrating the benefits of using this
approach. Finally, this approach has been numerically compared with a previous approach
published in the literature, which showed that the continuous approach proposed can lead
to a 2.8% cost reduction of the installation.
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