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NUMERICAL STACKELBERG--NASH CONTROL FOR THE HEAT
EQUATION\ast 

PIT\'AGORAS P. DE CARVALHO\dagger AND ENRIQUE FERN\'ANDEZ-CARA\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . This paper deals with a strategy to solve numerically control problems of the
Stackelberg--Nash kind for heat equations with Dirichlet boundary conditions. We assume that
we can act on the system through several controls, respecting an order and a hierarchy: a first con-
trol (the leader) is assumed to choose the policy; then, a Nash equilibrium pair, determined by the
choice of the leader and corresponding to a noncooperative multiple-objective optimization strat-
egy, is found (these are the followers). Our method relies on a formulation inspired by the work of
Fursikov and Imanuvilov. More precisely, we minimize over the class of admissible null controls a
functional that involves weighted integrals of the state and the control, with weights that blow up
at the final time. The use of the weights is crucial to ensure the existence of the controls and the
associated state in a reasonable space. We present several mixed formulations of the problems and,
then, associated mixed finite element approximations that are easy to handle. In a final step, we
exhibit some numerical experiments making use of the Freefem++ package.
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1. Introduction. The controllability of linear and nonlinear PDEs has been
the subject of a lot of work during the last few decades. Theoretical and numerical
aspects and their connection to applications have been considered by many authors
and a lot of advances can be mentioned. Let us mention the papers [15, 29, 25, 20,
13, 33] and [9, 24, 8, 7], respectively dealing with related theoretical and numerical
analysis.

In particular, it is often interesting to try to control the system acting from several
sides. It is expected that this makes it possible to govern the solution in a sharp way,
in the sense that not only one but several observed properties behave as desired.
A possible way to do this is through a hierarchic strategy: we fix several goals, we
establish an order of priority, and we choose accordingly the controls with the aim to
achieve all them.

This paper deals with the numerical solution of a null controllability problem for
the heat equation through a hierarchy of controls. More precisely, we have chosen the
so-called Stackelberg--Nash method, which can be briefly described as follows:

\bullet We have control of two kinds: leaders and followers.
\bullet We associate to each leader a Nash equilibrium pair (two followers) that
corresponds to a noncooperative multiple-objective optimal control problem.

\bullet Then, we choose the leader among the set of null controls by minimizing a
suitable functional.
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NUMERICAL STACKELBERG--NASH CONTROL A2679

Hence, for the resolution of the control problem our tasks are, first, to prove
that we can associate to any admissible leader a Nash pair and, then, to prove that
the whole system (controlled by the leader and the followers) satisfies the desired null
controllability property. For instance, if we interpret that the controls are heat sources
applied at different locations of a room and the state is the room temperature, it is
completely meaningful to try to guide the temperature at rest at the end of the day
and, additionally, keep the temperature ``not too far"" from prescribed values at some
prescribed domains. It is shown in [1, 2] that this is possible to achieve; in fact, it
is realizable even if the considered state equation is semilinear and under other more
complicated circumstances.

We can find many other situations where hierarchic control can be applied. Thus,
Stackelberg--Nash techniques can be useful for traffic control problems. A typical
problem is to minimize the queue in each road of an intersection, taking into ac-
count that there is a road that can enforce its strategy on the others; see [26]. Other
fields where these techniques can be of help are finance, production and market-
ing, economics of growth, etc.; see, for instance, [30, 31]. For other applications,
see [5].

At this point, it is important to mention that the numerical solution of con-
trollability problems for PDEs is not, in general, a simple task. A lot of authors
have contributed to this effort but it has become clear that straightforward reduc-
tion to finite dimensions can lead to ill-posedness and is not necessarily a good idea;
see [9, 7, 32] for some explanations.

We will follow here a strategy relying on the well-known Fursikov--Imanuvilov
formulation of the null controllability of linear evolution PDEs; see [20]. This has
also been the basis of the numerical controllability results in [17], [18], [19]. More
precisely, we minimize over the class of admissible null controls a functional that
involves weighted integrals of the state and the control, with some weights that blow
up at the final time. The use of the weights is crucial to ensure well-posedness and
existence of controls and associated states in reasonable spaces.

We present several mixed formulations of the problems and, then, associated
mixed finite element approximations that are easy to handle.

At the end of the paper, we exhibit some numerical experiments. The com-
putations have been carried out with the help of the Freefem++ package. For the
visualization of the results, we have used suitable MATLAB graphic tools.

The plan of the paper is the following. Section 2 describes the problem formulation
and its motivation. In section 3, we present the main ideas of our numerical approach.
In particular, we see that the task reduces to the solution of a boundary-value problem
that is fourth-order in space and second-order in time. In section 4, we present a mixed
formulation and an associated numerical approximation, where we avoid the use of C1

finite elements. The methods are illustrated with several numerical experiments in
section 5. Finally, section 6 contains some additional comments.

2. The problem and the motivation. Let \Omega \subset RN be a nonempty bounded
connected open set whose boundary is regular enough. Let T > 0 be given and let
us consider the cylindrical domain Q := \Omega \times (0, T ), with lateral boundary \Sigma := \partial \Omega \times 
(0, T ). In what follows, we will denote by C a generic positive constant. Sometimes,
we will indicate the data on which C depends by writing C(\Omega ), C(\Omega , T ), etc. The
usual norm and scalar product in L2(\Omega ) will be respectively denoted by \| \cdot \| and (\cdot , \cdot );
on the other hand, \langle \cdot , \cdot \rangle will stand for various duality products.
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A2680 PIT\'AGORAS P. DE CARVALHO AND ENRIQUE FERN\'ANDEZ-CARA

We will consider controlled systems of the form\left\{     
yt  - \Delta y = f1\scrO + v11\scrO 1

+ v21\scrO 2
in Q,

y = 0 on \Sigma ,

y(\cdot , 0) = y0 in \Omega .

(2.1)

In (2.1), \scrO , \scrO 1, and\scrO 2 are nonempty open subsets of \Omega ; \scrO \subset \Omega is the main control
domain and \scrO 1 and \scrO 2 are secondary control domains (all of them are supposed to
be small); 1\scrO , 1\scrO 1

, and 1\scrO 2
are the corresponding characteristic functions and the

associated controls are f , v1, and v2. We will use the notation \scrH i := L2(\scrO i \times (0, T )),
\scrH := \scrH 1 \times \scrH 2, and \scrU := L2(\scrO \times (0, T )).

Let \scrO d \subset \Omega be another nonempty open set, representing an observation domain
and assume that the \mu i > 0 and the functions yi,d = yi,d(x, t) and the weights \rho =
\rho (x, t) and \rho 0 = \rho 0(x, t) are given.

The Stackelberg--Nash strategy for the null controllability and biobjective optimal
control problem is as follows:

\bullet Let us consider the secondary cost functionals

Ji(f ; v1, v2) :=
1

2

\int \int 
\scrO d\times (0,T )

| y  - yi,d| 2 dx dt+
\mu i

2

\int \int 
\scrO i\times (0,T )

| vi| 2 dx dt, i = 1, 2,

(2.2)

where, for each (f, v2, v2) \in \scrU \times \scrH 1 \times \scrH 2, y is the unique solution to (2.1).
Then, for each ``leader"" f \in \scrU , we search for a Nash equilibrium (v1(f),
v2(f)) \in \scrH for J1 and J2. The secondary controls v1(f) and v2(f) will then
be called the ``followers"" associated to f .

\bullet We will also introduce the main cost functional

J(f) :=
1

2

\int \int 
Q

\rho 2| y| 2 dx dt+ 1

2

\int \int 
\scrO \times (0,T )

\rho 20| f | 2 dx dt,(2.3)

where this time for each f \in \scrU , y is the unique solution to (2.1) with vi =
vi(f).
Then, we search for a minimizer f of J in the family of controls in \scrU such
that

y(x, T ) = 0 in \Omega .(2.4)

Recall that a Nash equilibrium for J1 and J2 associated to f is a couple (v1(f),
v2(f)) \in \scrH satisfying

J1(f ; v1(f), v2(f)) = min
\^v1\in \scrH 1

J1(f ; \^v1, v2(f)), J2(f ; v1(f), v2(f)) = min
\^v2\in \scrH 2

J2(f ; v1(f), \^v2).
(2.5)

Let f \in \scrU be given. Since the Ji are C1 and convex, (v1(f), v2(f)) is a Nash
equilibrium if and only if

\langle J \prime 
1(f ; v1(f), v2(f)), (\^v1, 0)\rangle = 0 \forall \^v1 \in \scrH 1, v1(f) \in \scrH 1,(2.6)

and

\langle J \prime 
2(f ; v1(f), v2(f)), (0, \^v2)\rangle = 0 \forall \^v2 \in \scrH 2, v2(f) \in \scrH 2,(2.7)
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NUMERICAL STACKELBERG--NASH CONTROL A2681

where J \prime 
i stands for the derivative of Ji with respect to (v1, v2). This can also be

written in the form\int \int 
\scrO d\times (0,T )

(y  - yd)w
i dx dt + \mu i

\int \int 
\scrO i\times (0,T )

vi(f)\^vi dx dt = 0(2.8)

\forall \^vi \in \scrH i, vi(f) \in \scrH i, i = 1, 2,

where wi is the derivative of y with respect to vi in the direction \^vi.
Now, we will provide explicit expressions of v1(f) and v2(f) in terms of appro-

priate adjoint variables.
Thus, let us consider the state y (the solution to (2.1) for vi = vi(f)). It is very

natural to introduce the adjoint states \phi i, with\left\{     
 - \phi i,t  - \Delta \phi i = (y  - yi,d)1\scrO d

in Q,

\phi i = 0 on \Sigma ,

\phi i(\cdot , T ) = 0 in \Omega .

(2.9)

Then, using integration by parts, it is immediate that (2.8) is equivalent to\int \int 
\scrO i\times (0,T )

(\phi i + \mu ivi(f)) \^vi dx dt = 0 \forall \^vi \in \scrH i, vi(f) \in \scrH i, i = 1, 2.

This directly implies that

vi(f) =  - 1

\mu i
\phi i| \scrO i\times (0,T ) , i = 1, 2.(2.10)

Let us gather all this information in the same system. We obtain the following:\left\{                 

yt  - \Delta y = f 1\scrO  - 
2\sum 

i=1

1

\mu i
\phi i1\scrO i

in Q,

 - \phi i,t  - \Delta \phi i = (y  - yi,d)1\scrO d
in Q,

y = 0, \phi i = 0 on \Sigma ,

y(\cdot , 0) = y0, \phi i(\cdot , T ) = 0 in \Omega .

(2.11)

Recall that our goal is to get the null controllability of (2.1), with (v1, v2) being a
Nash equilibrium associated to f . Therefore, our main task is to prove the existence
of a control f \in \scrU such that the solution to (2.11) satisfies (2.4) and then take the vi
as in (2.10).

Note that the vi(f) are affine in f . However, an important issue here is that they
are nonlocal functions of f . It is also adequate to enhance that, in our setting, the
control problems in charge of the followers and the leader are of a different nature: the
followers must solve a biobjective control problem that is completely characterized by
the system satisfied by the state and the adjoints (see [23]); on the other hand, the
leader must be such that the state is led to zero at final time.

From well-known results in control theory, we know that a null control exists and
depends continuously on the data y0 for (2.11) if and only if a suitable observabil-
ity inequality is satisfied by the solutions to an appropriate adjoint system. More
precisely, following the ideas in [2, 1], we introduce the adjoint
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 - \psi t  - \Delta \psi =

2\sum 
i=1

\gamma i1\scrO d
in Q,

\gamma i,t  - \Delta \gamma i =  - 1

\mu i
\psi 1\scrO i in Q,

\psi = 0, \gamma i = 0 on \Sigma ,

\psi (\cdot , T ) = \psi T , \gamma i(\cdot , 0) = 0 in \Omega ,

(2.12)

where \psi T \in L2(\Omega ) and we note that the null controllability of (2.11) is equivalent to
the existence of a constant C such that

\| \psi (\cdot , 0)\| 2 +
2\sum 

i=1

\int \int 
\scrO \times (0,T )

\^\rho  - 2| \gamma i| 2 dx dt \leq C

\int \int 
\scrO \times (0,T )

| \psi | 2 dx dt \forall \psi T \in L2(\Omega ),

where \^\rho is a suitable weight. This is explained in detail in [2] and [1], where the
existence of C is established for sufficiently large \mu 1 and \mu 2, provided y1,d and y2.d
decay sufficiently fast to zero as t\rightarrow T ; see Theorem 1 below.

This paper is mainly devoted to the computation of numerical null controls
for (2.11). As indicated above, the numerical solution of controllability problems is
not a simple task. We will follow here a strategy relying on the well-known Fursikov--
Imanuvilov formulation of the null controllability of linear evolution PDEs; see [20].
These ideas have been applied before in [17], among other works.

3. A strategy for the computation of null control. In this section, we
explain our strategy to compute a null control for (2.11). First, let us recall a con-
trollability result from [2].

Theorem 1. There exists \beta (\Omega ,\scrO 1,\scrO 2,\scrO d, T, y1,d, y2,d) > 0 such that, if \mu i \geq \beta 
for i = 1, 2, the linear system (2.11) is null-controllable at time T > 0. In other
words, under the previous conditions, there exists a positive function \rho d = \rho d(x, t),
blowing up as t\rightarrow T , with the following property: if\int \int 

\scrO d\times (0,T )

\rho 2d | yi,d| 2 dx dt < +\infty , i = 1, 2,(3.1)

for each y0 \in L2(\Omega ) there exist controls f \in L2(\scrO \times (0, T )) and associated Nash
equilibria (v1, v2) such that the corresponding solutions to (2.1) satisfy (2.4).

In the reminder of this paper, we will always assume that the assumptions in The-
orem 1 are satisfied.

Let us introduce a formulation of the null controllability problem for (2.11) that
is inspired by the results in [20]. We consider the extremal problem\left\{     Minimize K(y, \phi 1, \phi 2, f) =

1

2

\Biggl( \int \int 
Q

\rho 2| y| 2 dx dt+
\int \int 

\scrO \times (0,T )

\rho 20| f | 2 dx dt

\Biggr) 
Subject to (y, \phi 1, \phi 2, f) \in H(y0, T ),

(3.2)

where the linear manifold H(y0, T ) is given by

H(y0, T ) := \{ (y, \phi 1, \phi 2, f) : f \in \scrU , (y, \phi 1, \phi 2, f) satisfies (2.11) and (2.4)\} .

In (3.2), it is assumed that \rho and \rho 0 are appropriate weight functions that blow
up exponentially as t\rightarrow T . In this paper, they will be chosen as follows:
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NUMERICAL STACKELBERG--NASH CONTROL A2683

\rho (x, t) := e\chi (x)/(T - t), \chi (x) := K1

\Bigl( 
eK2  - e\chi 0(x)

\Bigr) 
, \rho 0(x, t) := (T  - t)3/2\rho (x, t),

(3.3)

where K1 and K2 are sufficiently large positive constants (depending on T ) and \chi 0 =
\chi 0(x) is a regular bounded function that is positive in \Omega , vanishes on \partial \Omega , and satisfies

| \nabla \chi 0| > 0 in \Omega \setminus \scrO ;

for a justification of the existence of \chi 0, see [20].
An immediate consequence of Theorem 1 is that (3.2) possesses exactly one solu-

tion (y, \phi 1, \phi 2, f) \in H(y0, f). Furthermore, in view of Lagrange's principle, one must
have \int \int 

Q

\rho 2yy\prime dx dt +

\int \int 
\scrO \times (0,T )

\rho 20ff
\prime dx dt = 0(3.4)

for all (y\prime , \phi \prime 1, \phi 
\prime 
2, f

\prime ) with f \prime \in U and\left\{             
y\prime t  - \Delta y\prime = f \prime 1\scrO  - 1

\mu 1
\phi \prime 11\scrO 1

 - 1

\mu 2
\phi \prime 21\scrO 2

in Q,

 - \phi \prime i,t  - \Delta \phi \prime i = y\prime 1\scrO d
in Q,

y\prime = 0, \phi \prime i = 0 on \Sigma ,

y\prime (\cdot , 0) = 0, \phi \prime i(\cdot , T ) = 0 in \Omega .

(3.5)

In the next lines, we are going to perform formal computations, without taking
care of a rigorous justification. This way, we will arrive at an explicit formula for the
solution (y, \phi 1, \phi 2, f) to (3.2).

Thus, let the triplet (\psi , \gamma 1, \gamma 2) satisfy\left\{                     

 - \psi t  - \Delta \psi =

2\sum 
i=1

\gamma i1\scrO d
+ \rho 2y in Q,

\gamma i,t  - \Delta \gamma i =  - 1

\mu i
\psi 1\scrO i

+ \rho 2\phi i in Q,

\psi = 0, \gamma i = 0 on \Sigma ,

\gamma i(\cdot , 0) = 0 in \Omega 

(3.6)

and let us introduce the notation

M(y, \phi 1, \phi 2) :=

\Biggl( 
yt - \Delta y+

2\sum 
i=1

1

\mu i
\phi i1\scrO i

, - \phi 1,t - \Delta \phi 1 - y1\scrO 1,d
, - \phi 2,t - \Delta \phi 2 - y1\scrO 2,d

\Biggr) 

and

M\ast (\psi , \gamma 1, \gamma 2) :=

\Biggl( 
 - \psi t - \Delta \psi  - 

2\sum 
i=1

\gamma i1\scrO d
, \gamma 1,t - \Delta \gamma 1+

1

\mu 1
\psi 1\scrO 1 , \gamma 2,t - \Delta \gamma 2+

1

\mu 2
\psi 1\scrO 2

\Biggr) 
,

Then, at least formally, one has

M(\rho  - 2M\ast (\psi , \gamma 1, \gamma 2)) = (f1\scrO , 0, 0) in Q.(3.7)

D
ow

nl
oa

de
d 

11
/1

1/
22

 to
 5

2.
18

.6
3.

16
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2684 PIT\'AGORAS P. DE CARVALHO AND ENRIQUE FERN\'ANDEZ-CARA

Also, we see that\int \int 
Q

\rho 2y \cdot y\prime dx dt =
\int \int 

Q

\Biggl( 
 - \psi t  - \Delta \psi  - 

2\sum 
i=1

\gamma i1\scrO d

\Biggr) 
y\prime dx dt =

\int \int 
\scrO \times (0,T )

\psi \psi \prime dx dt

for all (y\prime , \phi \prime 1, \phi 
\prime 
2, f

\prime ) as before and, consequently, taking into account (3.4), we must
have \int \int 

\scrO \times (0,T )

\bigl( 
\psi + \rho 20f

\bigr) 
f \prime dx dt = 0 \forall f \prime \in \scrU .

Thus, we deduce that

(y, \phi 1, \phi 2) = \rho  - 2M\ast (\psi , \gamma 1, \gamma 2), f =  - \rho  - 2
0 \psi 

\bigm| \bigm| 
\scrO \times (0,T )

,(3.8)

where (\psi , \gamma 1, \gamma 2) solves (in some sense) the system\left\{         
M(\rho  - 2M\ast (\psi , \gamma 1, \gamma 2)) + \rho  - 2

0 \psi 1\scrO = 0 in Q,

(\psi , \gamma 1, \gamma 2) = (0, 0, 0), \rho  - 2M\ast \bigl( \psi , \gamma 1, \gamma 2\bigr) = (0, 0, 0) on \Sigma ,

\rho  - 2M\ast (\psi , \gamma 1, \gamma 2)1(\cdot , 0) = y0, \gamma 1(\cdot , 0) = \gamma 2(\cdot , 0) = 0 in \Omega ,

\rho  - 2M\ast (\psi , \gamma 1, \gamma 2)(\cdot , T ) = (0, 0, 0) in \Omega .

(3.9)

On the other hand, if (\psi , \gamma 1, \gamma 2) is a solution to (3.9) and (y, \phi 1, \phi 2) and f are
given by (3.8), then (3.4) holds and, as a consequence, (y, \phi 1, \phi 2, f) solves (3.2).

Let us now check that (3.9) is well-posed problem in an appropriate space and
therefore the solution to (3.2) is indeed given by (3.8). Let us introduce the space

P0 := \{ (\psi , \gamma 1, \gamma 2) \in C2(Q)3 : (\psi , \gamma 1, \gamma 2) = (0, 0, 0) on \Sigma , \gamma 1(\cdot , 0) = \gamma 2(\cdot , 0) = 0\} 
(3.10)

and the bilinear form

m((\psi , \gamma 1, \gamma 2), (\psi 
\prime , \gamma \prime 1, \gamma 

\prime 
2)) :=

\int \int 
Q

\rho  - 2M\ast (\psi , \gamma 1, \gamma 2) \cdot M\ast (\psi \prime , \gamma \prime 1, \gamma 
\prime 
2) dx dt

+

\int \int 
\scrO \times (0,T )

\rho  - 2
0 \psi \psi \prime dx dt.

Then, as a consequence of the Carleman estimates established in the following result,
m(\cdot , \cdot ) is a scalar product in P0.

Proposition 1. Let us set \rho 2 := (T  - t)1/2\rho and \rho 1 := (T  - t) - 1/2\rho . There
exists C0(\Omega ,\scrO , T ) > 0 such that the following holds for any (\psi , \gamma 1, \gamma 2) \in P0, with
h := \gamma 1 + \gamma 2: \int \int 

Q

\biggl[ 
\rho  - 2
2 (| \psi t| 2 + | \Delta \psi | 2) + \rho  - 2

1 | \nabla \psi | 2 + \rho  - 2
0 | \psi | 2 + \rho  - 2| h| 2

\biggr] 
dx dt

\leq C0m((\psi , \gamma 1, \gamma 2), (\psi , \gamma 1, \gamma 2)).

(3.11)

The proof of this result can be found in [2]. Let P be the completion of P0

with respect to this scalar product. Then P is a Hilbert space and the functions
(\psi , \gamma 1, \gamma 2) \in P satisfy\int \int 

Q

\rho  - 2| M\ast (\psi , \gamma 1, \gamma 2)| 2 dx dt+
\int \int 

\scrO \times (0,T )

\rho  - 2
0 | \psi | 2 dx dt < +\infty .(3.12)
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From Proposition 1 and a standard density argument, we also have (3.11) for all
(\psi , \gamma 1, \gamma 2) \in P . In particular, we see that for any (\psi , \gamma 1, \gamma 2) \in P one has \psi \in 
C0([0, T  - \delta ];H1

0 (\Omega )) for all \delta > 0 and, moreover,

\| \psi (\cdot , 0)\| 2H1
0
\leq Cm((\psi , \gamma 1, \gamma 2), (\psi , \gamma 1, \gamma 2)) \forall (\psi , \gamma 1, \gamma 2) \in P.(3.13)

Let us introduce the linear form \ell : P \mapsto \rightarrow R, with

\langle \ell , (\psi , \gamma 1, \gamma 2)\rangle :=
\int 
\Omega 

y0(x)\psi (x, 0) dx - 
2\sum 

i=1

\int \int 
\scrO d\times (0,T )

yi,d \gamma i\psi dx dt.

In view of (3.13), \ell is well defined and continuous. Furthermore, from the previous
considerations, the following result holds.

Theorem 2. Let (y, \phi 1, \phi 2, f) be the unique solution to (3.2). Then one has (3.8),
where (\psi , \gamma 1, \gamma 2) is the unique solution to the following variational equality in the
Hilbert space P : \biggl\{ 

m((\psi , \gamma 1, \gamma 2), (\psi 
\prime , \gamma \prime 1, \gamma 

\prime 
2)) = \langle \ell , (\psi \prime , \gamma \prime 1, \gamma 

\prime 
2)\rangle 

\forall (\psi \prime , \gamma 1
\prime , \gamma 2

\prime ) \in P, (\psi , \gamma 1, \gamma 2) \in P.
(3.14)

Obviously, (3.14) must be viewed as the weak formulation of the boundary-value
problem (3.9), that is fourth-order in x and second-order in t.

It is then clear that what we have to do in practice is to solve numerically (3.14).
This furnishes (an approximation of) the triplet (\psi , \gamma 1, \gamma 2). Then, we use (3.8) and
deduce that the controls are given by

f =  - \rho  - 2
0 \psi 

\bigm| \bigm| 
\scrO \times (0,T )

, vi =  - 1

\mu i
\phi i
\bigm| \bigm| 
\scrO i\times (0,T )

, i = 1, 2,

where \phi 1 and \phi 2 are respectively the second and third components of \rho  - 2M\ast (\psi , \gamma 1, \gamma 2).

Remark 1. In realistic problems, the control variables are subject to constraints
and, obviously, the previous result does not cover directly this situation. However,
at least when the constraints are local in space and time and affect the followers,
something can be done. Thus, let I1 and I2 be two nonempty closed intervals with
0 \in I1 \cap I2, let us take

\scrH i,d = \{ v \in \scrH i : v(x, t) \in Ii a.e. \} , i = 1, 2,(3.15)

and let us suppose that the minimization of J1 and J2 in (2.5) is subject to the
restrictions \^v1 \in \scrH 1,d and \^v2 \in \scrH 2,d. Then, (v1, v2) is a related Nash equilibrium if
and only if

\langle J \prime 
1(f ; v1, v2), (\^v

1  - v1, 0)\rangle \geq 0, \forall \^v1 \in \scrH 1,d, v1 \in \scrH 1,d

and

\langle J \prime 
2(f ; v1, v2), (0, \^v

2  - v2)\rangle \geq 0, \forall \^v2 \in \scrH 2,d, v2 \in \scrH 2,d

and, arguing as in section 2, we see that this is in turn equivalent to having

vi(f) = Pi

\biggl( 
 - 1

\mu i
\phi i| \scrO i\times (0,T )

\biggr) 
, i = 1, 2,
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where Pi : \scrH i \mapsto \rightarrow \scrH i,d is the orthogonal projector and \phi i is the solution to (2.9) for
i = 1, 2. Consequently, in this case, the hierarchic problem reduces to get the null
controllability (in y) of the coupled semilinear system\left\{                 

yt  - \Delta y = f 1\scrO  - 
2\sum 

i=1

Pi

\biggl( 
 - 1

\mu i
\phi i| \scrO i\times (0,T )

\biggr) 
in Q,

 - \phi i,t  - \Delta \phi i = (y  - yi,d)1\scrO d
in Q,

y = 0, \phi i = 0 on \Sigma ,

y(\cdot , 0) = y0, \phi i(\cdot , T ) = 0 in \Omega .

(3.16)

It can be proved that, under the assumptions in Theorem 1, there exist controls f \in \scrU 
and associated Nash equilibria (v1, v2) \in \scrH 1,d \times \scrH 2,d such that the corresponding
states satisfy (2.4); see [1, 2] for the details.

Let Ph denote a finite dimensional subspace of P . Then, a completely natural
approximation of (3.14) is the following:\biggl\{ 

m((\psi h, \gamma 1,h, \gamma 2,h), (\psi 
\prime 
h, \gamma 

\prime 
1,h, \gamma 

\prime 
2,h)) = \langle \ell , (\psi \prime 

h, \gamma 
\prime 
1,h, \gamma 

\prime 
2,h)\rangle 

\forall (\psi \prime 
h, \gamma 

\prime 
1,h, \gamma 

\prime 
2,h) \in Ph, (\psi h, \gamma 1,h, \gamma 2,h) \in Ph.

(3.17)

Thus, it could seem that, in order to solve numerically the variational equality
(3.14), it suffices to construct explicitly finite dimensional spaces Ph \subset P . Note, how-
ever, that this is possible but needs a lot of work and leads to expensive computations,
especially in spatial dimensions N \geq 2.

The reason is that, in order to get (\psi h, \gamma 1h, \gamma 2h) \in P , we need \psi h,t + \Delta \psi h \in 
L2
loc(Q). In practice, this means that \psi h must possess first-order time derivatives

and up to second-order spatial derivatives in L2
loc(Q). Therefore, an approximation

based on a standard triangulation of Q requires functions that must be C0 in (x, t)
and C1 in x and this can be complicated and too expensive. Spaces of this kind are
constructed, for instance, in [17, 27] for N = 1. For N \geq 2, one has to consider
other spaces, based on reduced HTC, Bell, or Bogner--Fox--Schmidt finite elements;
see [11, 21].

Despite its complexity, the direct approximation of (3.17) has an advantage: it
is possible to adapt the standard finite element theory to this framework and deduce
strong convergence results for the numerical controls and states.

4. Mixed formulations and numerical approximations of control prob-
lems of the Stackelberg--Nash kind.

4.1. A first mixed formulation. Let us introduce the Hilbert spaces L2(\rho s;
Q) := \{ g : \rho sg \in L2(Q)\} (where s \in R) and the new variable Z = (z, z1, z2) :=
M\ast (\psi , \gamma 1, \gamma 2). Then, Z  - M\ast (\psi , \gamma 1, \gamma 2) = 0 (an equality in L2(\rho  - 1;Q)3).

Note that this identity can also be written in the form\int \int 
Q

(z  - M\ast (\psi , \gamma 1, \gamma 2)1)\psi 
\prime dx dt = 0 \forall \psi \prime \in L2(\rho ;Q),

\int \int 
Q

(zi  - M\ast (\psi , \gamma 1, \gamma 2)i+1)\psi 
\prime dx dt = 0 \forall \psi \prime \in L2(\rho ;Q), i = 1, 2.

Accordingly, we introduce the following mixed reformulation of (3.14):
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\left\{                               

\int \int 
Q

\Bigl( 
\rho  - 2(z z\prime + z1 z

\prime 
1 + z2 z

\prime 
2) + \rho  - 2

0 \psi \psi \prime 1\scrO 

\Bigr) 
dx dt

+

\int \int 
Q

\Bigl( 
Z \prime  - M\ast (\psi \prime , \gamma 1

\prime , \gamma 2
\prime )
\Bigr) 
\cdot \Lambda dx dt

=

\int 
\Omega 

y0(x)\psi 
\prime (x, 0) dx - 

2\sum 
i=1

\int \int 
\scrO d\times (0,T )

yi,d\gamma i
\prime dx dt,\int \int 

Q

\Bigl( 
Z  - M\ast (\psi , \gamma 1, \gamma 2)

\Bigr) 
\cdot \Lambda \prime dx dt = 0

\forall 
\bigl( 
Z \prime , (\psi \prime , \gamma 1

\prime , \gamma 2
\prime ),\Lambda \prime \bigr) \in X,

\bigl( 
Z, (\psi , \gamma 1, \gamma 2),\Lambda 

\bigr) 
\in X,

(4.1)

where we have used the notation X := L2(\rho  - 1;Q)3 \times P \times L2(\rho ;Q)3.
Let us introduce the bilinear forms \alpha (\cdot , \cdot ) and \beta (\cdot , \cdot ), with

\alpha 
\bigl( 
(Z, (\psi , \gamma 1, \gamma 2)), (Z

\prime , (\psi \prime , \gamma \prime 1, \gamma 
\prime 
2))
\bigr) 
:=

\int \int 
Q

\Bigl( 
\rho  - 2(z z\prime +z1 z

\prime 
1+z2 z

\prime 
2)+\rho 

 - 2
0 \psi \psi \prime 1\scrO 

\Bigr) 
dx dt

and

\beta 
\bigl( 
(Z, (\psi , \gamma 1, \gamma 2)),\Lambda 

\bigr) 
:=

\int \int 
Q

[Z  - M\ast (\psi , \gamma 1, \gamma 2)] \cdot \Lambda dx dt

and the linear form L : X \mapsto \rightarrow R, with

\langle L,
\bigl( 
Z, (\psi , \gamma 1, \gamma 2)

\bigr) 
\rangle :=

\int 
\Omega 

y0(x)\psi (x, 0) dx - 
2\sum 

i=1

\int \int 
\scrO d\times (0,T )

yi,d\gamma i dx dt.

Then, \alpha (\cdot , \cdot ), \beta (\cdot , \cdot ), and L are well defined and continuous and (4.1) reads

\left\{     
\alpha 
\bigl( 
(Z, (\psi , \gamma 1, \gamma 2)), (Z

\prime , (\psi \prime , \gamma \prime 1, \gamma 
\prime 
2))
\bigr) 
+ \beta 

\bigl( 
(Z \prime , (\psi \prime , \gamma \prime 1, \gamma 

\prime 
2)),\Lambda 

\bigr) 
= \langle L,

\bigl( 
Z, (\psi \prime , \gamma \prime 1, \gamma 

\prime 
2)
\bigr) 
\rangle ,

\beta 
\bigl( 
(Z, (\psi , \gamma 1, \gamma 2)),\Lambda 

\prime \bigr) = 0

\forall 
\bigl( 
Z \prime , (\psi \prime , \gamma 1

\prime , \gamma 2
\prime ),\Lambda \prime \bigr) \in X,

\bigl( 
Z, (\psi , \gamma 1, \gamma 2),\Lambda 

\bigr) 
\in X,

(4.2)

This is a mixed formulation of the variational problem (3.2). In fact, the following
result holds.

Proposition 2. There exists exactly one solution to (4.2). Furthermore, (3.14)
and (4.2) are equivalent problems in the following sense:

1. If (Z, (\psi , \gamma 1, \gamma 2),\Lambda ) solves (4.2), then (\psi , \gamma 1, \gamma 2) solves (3.14).
2. Conversely, if (\psi , \gamma 1, \gamma 2) solves (3.14), there exists a ``multiplier"" \Lambda \in L2(\rho ;
Q)3 such that the triplet (Z, (\psi , \gamma 1, \gamma 2),\Lambda ) with Z =M\ast (\psi , \gamma 1, \gamma 2) solves (4.2).

Proof. Let us introduce the space

W := \{ 
\bigl( 
Z, (\psi , \gamma 1, \gamma 2)

\bigr) 
\in L2(\rho  - 1;Q)3 \times P : \beta 

\bigl( 
Z, (\psi , \gamma 1, \gamma 2),\Lambda 

\bigr) 
= 0 \forall \Lambda \in L2(\rho ;Q)3\} .

We will check that
\bullet \alpha (\cdot , \cdot ) is coercive in W .
\bullet \beta (\cdot , \cdot ) satisfies the usual ``inf-sup"" condition with respect to (Z, (\psi , \gamma 1, \gamma 2)) \in 
L2(\rho  - 1;Q)3 \times P and \Lambda \in L2(\rho ;Q)3.

This will be sufficient to guarantee the existence and uniqueness of a solution to
(4.2); see, for instance, [6, 27] and [28].

The proofs of the previous assertions are straightforward. Indeed, we first notice
that, for any (Z, (\psi , \gamma 1, \gamma 2)) \in W , Z =M\ast (\psi , \gamma 1, \gamma 2) and thus
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\alpha 
\bigl( 
(Z, (\psi , \gamma 1, \gamma 2)), ((Z, (\psi , \gamma 1, \gamma 2))

\bigr) 
=

\int \int 
Q

\bigl( 
\rho  - 2(| z| 2 + | z1| 2 + | z2| 2) + \rho  - 2

0 | \psi | 21\scrO 
\bigr) 
dx dt

=
1

2

\int \int 
Q

\rho  - 2| Z| 2 dx dt+ 1

2

\int \int 
Q

\rho  - 2| M\ast (\psi , \gamma 1, \gamma 2)| 2 dx dt

+

\int \int 
\scrO \times (0,T )

\rho  - 2
0 | \psi | 2 dx dt

\geq 1

2
\| 
\bigl( 
Z, (\psi , \gamma 1, \gamma 2)

\bigr) 
\| 2L2(\rho  - 1;Q)3\times P +

1

2

\int \int 
\scrO \times (0,T )

\rho  - 2
0 | \psi | 2 dx dt

\geq 1

2
\| 
\bigl( 
Z, (\psi , \gamma 1, \gamma 2)

\bigr) 
\| 2L2(\rho  - 1;Q)3\times P .

This proves that \alpha (\cdot , \cdot ) is coercive in W .
On the other hand, for any \Lambda \in L2(\rho ;Q)3, there exists (Z, (\psi , \gamma 1, \gamma 2)) \in L2(\rho  - 1;

Q)3 \times P such that

\beta 
\bigl( 
Z, (\psi , \gamma 1, \gamma 2),\Lambda 

\bigr) 
= \| \Lambda \| 2L2(\rho ;Q)3 and \| 

\bigl( 
Z, (\psi , \gamma 1, \gamma 2)

\bigr) 
\| L2(\rho  - 1;Q)3\times P \leq C\| \Lambda \| L2(\rho ;Q)3 .

Indeed, we can take, for instance, (Z, (\psi , \gamma 1, \gamma 2)) = ( - \rho 2\Lambda , 0).
Hence, \beta (\cdot , \cdot ) certainly satisfies the ``inf-sup"" condition and the proof is done.

An advantage of (4.2) with respect to the previous formulation (3.14) is that the
solution furnishes directly the state-control couple that solves (3.2). Indeed, it suffices
to take

y = \rho  - 2M\ast (\psi , \gamma 1, \gamma 2)1, \phi i = \rho  - 2M\ast (\psi , \gamma 1, \gamma 2)i+1, and f =  - \rho  - 2
0 \psi 

\bigm| \bigm| 
\scrO \times (0,T )

.

(4.3)

However, we again find spatial second-order derivatives in the integrals in (4.2)
and, consequently, a finite element approximation of (4.2) still needs C1 in space
subspaces.

4.2. A second mixed formulation. Let us set again h := \gamma 1 + \gamma 2 and let us
introduce the spaces

\~P :=

\biggl\{ 
(\psi , \gamma 1, \gamma 2) :

\int \int 
Q

\rho  - 2
\bigl[ 
(T  - t)| \psi t| 2 + (T  - t) - 1| \nabla \psi | 2

+(T  - t) - 3| \psi | 2 + | h| 2
\bigr] 
dx dt < +\infty , \psi = \gamma 1 = \gamma 2 = 0 on \Sigma 

\biggr\} 
\~Y :=

\biggl\{ 
\lambda :

\int \int 
Q

\bigl( 
(T  - t) - 1\rho 2| \lambda | 2 + (T  - t) - 1\rho 2| \nabla \lambda 2

\bigr) 
dx dt < +\infty , \lambda = 0 on \Sigma 

\biggr\} 
and \~X := L2(\rho  - 1;Q)3 \times \~P \times \~Y 3 and the bilinear form \~\beta (\cdot , \cdot ), with

\~\beta 
\Bigl( \bigl( 
Z, (\psi , \gamma 1, \gamma 2)

\bigr) 
,\Lambda 
\Bigr) 
:=

\int \int 
Q

\biggl[ \biggl( 
z + \psi t +

2\sum 
i=1

\gamma i1\scrO id

\biggr) 
\cdot \lambda  - \nabla \psi \cdot \nabla \lambda 

\biggr] 
dx dt

+

\int \int 
Q

\biggl[ \biggl( 
z1  - \gamma 1t  - 1

\mu 1
\psi 1\scrO 1

\biggr) 
\cdot \lambda 1  - \nabla \gamma 1 \cdot \nabla \lambda 1

\biggr] 
dx dt

+

\int \int 
Q

\biggl[ \biggl( 
z2  - \gamma 2t  - 1

\mu 2
\psi 1\scrO 2

\biggr) 
\cdot \lambda 2  - \nabla \gamma 2 \cdot \nabla \lambda 2

\biggr] 
dx dt.
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Then \~\beta (\cdot , \cdot ) is well defined and continuous on (L2(\rho  - 1;Q)3 \times \~P ) \times \~Y 3 and the

linear form L is also continuous on L2(\rho  - 1;Q)3 \times \~P . Let us consider the following
mixed formulation (that is not exactly the same as before):

\left\{     
\alpha 
\bigl( 
(Z, (\psi , \gamma 1, \gamma 2)), (Z

\prime , (\psi \prime , \gamma \prime 
1, \gamma 

\prime 
2))
\bigr) 
+ \~\beta 

\bigl( 
(Z\prime , (\psi \prime , \gamma \prime 

1, \gamma 
\prime 
2)),\Lambda 

\bigr) 
= \langle L, (Z\prime , (\psi \prime , \gamma 1

\prime , \gamma 2
\prime ))\rangle ,

\~\beta 
\bigl( 
(Z, (\psi , \gamma 1, \gamma 2)),\Lambda 

\prime \bigr) = 0

\forall 
\bigl( 
(Z\prime , (\psi \prime , \gamma 1

\prime , \gamma 2
\prime )),\Lambda \prime \bigr) \in \~X,

\bigl( 
(Z, (\psi , \gamma 1, \gamma 2)),\Lambda 

\bigr) 
\in \~X.

(4.4)

Notice that the definitions of P , \~Y , and \~X are again appropriate to keep all the
terms in (4.4) meaningful.

It is easy to see that any possible solution to (4.4) also solves (4.2). Indeed, if
((Z, (\psi , \gamma 1, \gamma 2)),\Lambda ) solves (4.4), then Z =M\ast (\psi , \gamma 1, \gamma 2) in the sense of D \prime (Q)3, whence
(\psi , \gamma 1, \gamma 2) \in P ; thus, the integration by parts with respect to the spatial variables in
\~\beta ((Z, (\psi , \gamma 1, \gamma 2)),\Lambda 

\prime ) is fully justified and (Z, (\psi , \gamma 1, \gamma 2),\Lambda ) certainly solves (4.2).
Consequently, there exists at most one solution to (4.4). However, unfortunately,

a rigorous proof of the existence of a solution to (4.4) is, to our knowledge, unknown.
In practice, what we would need to prove is that \~\beta satisfies the ``inf-sup"" condition
for (Z, (\psi , \gamma 1, \gamma 2)) \in L2(\rho  - 1;Q)3 \times \~P and \Lambda \in \~Y . But whether or not this is true is
an open question.

It is very convenient in practice to rewrite (4.4) by introducing new variables.
Thus, let us set

\^Z = (\^z, \^z1, \^z2) := \rho  - 1Z, \^M = ( \^\psi , \^\gamma 1, \^\gamma 2) := \rho  - 1
0 (\psi , \gamma 1, \gamma 2), \^\Lambda = (\^\lambda , \^\lambda 1, \^\lambda 2) := \rho \Lambda .

This will serve to improve the conditioning of the approximations given below.
The mixed problem (4.4) can be rewritten in the form\left\{     

\^\alpha (( \^Z, \^M), ( \^Z \prime , \^M \prime )) + \^\beta (( \^Z \prime , \^M \prime ), \^\Lambda ) = \langle \^L, ( \^Z \prime , \^M \prime )\rangle ,
\^\beta 
\bigl( 
( \^Z, \^M), \^\Lambda \prime \bigr) = 0

\forall ( \^Z \prime , \^M \prime , \^\Lambda \prime ) \in \^X, ( \^Z, \^M, \^\Lambda ) \in \^X,

(4.5)

where \^X := \{ ( \^Z, \^M, \^\Lambda ) : (\rho 0 \^Z, \rho 0 \^M,\rho  - 1\^\Lambda ) \in \~X\} , the bilinear forms \^\alpha (\cdot , \cdot ) and \^\beta (\cdot , \cdot )
are given by

\^\alpha (( \^Z, \^M), ( \^Z \prime , \^M \prime )) :=

\int \int 
Q

\Bigl( 
\^z \^z\prime + \^z1 \^z

\prime 
1 + \^z2 \^z

\prime 
2 +

\^\psi \^\psi \prime 1\scrO 

\Bigr) 
dx dt

and\left\{                                                 

\^\beta 
\bigl( 
( \^Z, \^M), \^\Lambda 

\bigr) 
:=

\int \int 
Q

(T  - t)3/2
\Biggl( 

\^\psi t
\^\lambda  - \nabla \^\psi \cdot \nabla \^\lambda +

2\sum 
i=1

\^\gamma i\^\lambda 1\scrO id  - 
2\sum 

i=1

\^\gamma i,t\^\lambda i

 - 
2\sum 

i=1

\nabla \^\gamma i\nabla \^\lambda i  - 
2\sum 

i=1

1

\mu i

\^\psi \^\lambda i1\scrO i

\Biggr) 
dx dt

+

\int \int 
Q

\biggl[ 
\^z + (T  - t)1/2

\biggl( 
\nabla \chi \cdot \nabla \^\psi +

\biggl( 
\chi 

(T  - t)
 - 3

2
+ (T  - t) - 1| \nabla \chi | 2

\biggr) 
\cdot \^\psi 
\biggr) \biggr] 

\^\lambda dx dt

+

\int \int 
Q

2\sum 
i=1

\biggl[ 
\^zi + (T  - t)1/2

\biggl( 
\nabla \chi \cdot \nabla \^\gamma i +

\biggl( 
3

2
 - \chi 

(T  - t)
+ (T  - t) - 1| \nabla \chi | 2

\biggr) 
\cdot \^\gamma i
\biggr) \biggr] 

\^\lambda i dx dt

 - 
\int \int 

Q

\Bigl[ 
(T  - t)1/2\nabla \chi \cdot \nabla \^\lambda 

\Bigr] 
\^\psi dx dt - 

\int \int 
Q

2\sum 
i=1

\Bigl[ 
(T  - t)1/2\nabla \chi \cdot \nabla \^\lambda i

\Bigr] 
\^\gamma i dx dt,
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and the linear form \^L is given by

\langle \^L, ( \^Z, \^M)\rangle :=
\int 
\Omega 

\rho 0(x, 0)y0(x) \^\psi (x, 0) dx - 
2\sum 

i=1

\int \int 
\scrO d\times (0,T )

\rho 0(x, 0) \cdot yi,d\^\gamma i dx dt.

4.3. A numerical approximation based on Lagrangian finite elements.
For simplicity, it will be assumed in what follows that N \leq 3 and \Omega , \scrO , \scrO 1, and \scrO 2 are
intervals, polygonal domains, or polyhedrical domains. Let \scrT \kappa be a classical (N  - 1)-
simplex triangulation of \Omega such that \scrO =

\bigcup 
R\in \scrT \kappa ,R\subset \scrO R and \scrO i =

\bigcup 
R\in \scrT \kappa ,R\subset \scrO i

R
(with i = 1, 2) and let \scrP \tau denote a partition of the time interval [0, T ].

Here, \kappa and \tau denote the respective mesh size parameters. We will use the
notation h := (\kappa , \tau ) and we will denote by \scrQ h the family of all sets of the form

K = R\times [t1, t2] with R \in \scrT \kappa , [t1, t2] \in \scrP \tau 

and by \scrR h (resp., \scrR i,h) the subfamily of the sets K = R \times [t1, t2] \in \scrQ h such that
R \subset \scrO (resp., R \subset \scrO i).

We have then

Q =
\bigcup 

K\in \scrQ h

K, \scrO \times [0, T ] =
\bigcup 

K\in \scrR h

K, and \scrO i \times [0, T ] =
\bigcup 

K\in \scrR i,h

K.

For any couple of integers m,n \geq 1, let us introduce the finite dimensional spaces

\^Eh(m,n) := \{ \^Zh \in C0(Q)3 : \^Zh| K \in (Pm,x \otimes Pn,t)(K)3 \forall K \in \scrQ h\} ,
\^Ph(m,n) := \{ \^Zh \in \^Eh(m,n) : Zh = 0 on \Sigma \} 

and
\^Yh(m,n) := \{ \^Zh \in \^Eh(m,n) : Zh(x, T ) = 0 in \Omega \} ,

where P\ell ,\xi denotes the space of polynomial functions of order \ell in the variable \xi 
and Pm,x \otimes Pn,t stands for the usual tensorial product.

Then, for any given m,n,m\prime , n\prime ,m\prime \prime , n\prime \prime \geq 1, we set

\^Xh = \^Xh(m,n,m
\prime , n\prime ,m\prime \prime , n\prime \prime ) := \^Eh(m,n)\times \^Ph(m

\prime , n\prime )\times \^Yh(m
\prime \prime , n\prime \prime )

and, accordingly, the following approximation of (4.5) makes sense:\left\{     
\^\alpha 
\bigl( 
( \^Zh, \^Mh), ( \^Z

\prime 
h, \^M \prime 

h)
\bigr) 
+ \^\beta 

\bigl( 
( \^Z \prime 

h, \^M \prime 
h), \^\Lambda h

\bigr) 
= \langle \^L, ( \^Z \prime 

h,
\^M \prime 
h)\rangle ,

\^\beta 
\bigl( 
( \^Zh, \^Mh), \^\Lambda 

\prime 
h

\bigr) 
= 0

\forall ( \^Z \prime 
h, \^M \prime 

h, \^\Lambda 
\prime 
h) \in \^Xh, ( \^Zh, \^Mh, \^\Lambda h) \in \^Xh.

(4.6)

Obviously, (4.6) can be rewritten as a linear system of the form\biggl[ 
\^Ah

\^BT
h

 - \^Bh 0

\biggr] \biggl[ 
p
q

\biggr] 
=

\biggl[ 
\^Lh

0

\biggr] 
,(4.7)

where the matrix \^Ah is symmetric and positive semidefinite but not positive definite
for all h. In the following section, we present the numerical results obtained by solving
a ``regularized"" version of (4.7).

More precisely, taking into account well-known techniques, instead of (4.7), the
following system will be solved:\biggl[ 

\^Ah
\^BT
h

 - \^Bh \epsilon Id.

\biggr] \biggl[ 
p
q

\biggr] 
=

\biggl[ 
\^Lh

0

\biggr] 
(4.8)

with \epsilon = 10 - 8.
This will illustrate the present approach.
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5. Some numerical experiments. The computations that follow have been
performed with the Freefem++ package; see [22]. We present now some numerical
results. From the components \^Zh and \^Mh of the solution to (4.6), we obtain approx-
imations of the leader control

fh =  - \rho  - 1
0

\^\psi h 1\scrO 

and the follower controls

vi,h =  - 1

\mu i
\rho  - 1\^zih

\bigm| \bigm| \bigm| 
\scrO i\times (0,T )

.

The associated controlled state yh and adjoint states \phi i,h can be computed by
solving (2.1) and then (2.11) with standard techniques, for instance, using the Crank--
Nicholson method. In this section, we will present several experiments concerning
the numerical solution of (4.5). We have used P1-Lagrange finite elements in (x, t)
for all the variables \^Eh, \^Ph, and \^Yh. We have taken N = 1, \Omega = (0, L), T = 0.6,
\scrO 1 = (0, 0.2), \scrO 2 = (0.8, 1), \scrO d = (0, L), and y1,d = y2,d = 0. We have also
fixed \mu 1 = \mu 2 = 80 and the main control domain \scrO has been either \scrO = (0.2, 0.8)
or \scrO = (0.25, 0.75).

We have used mesh adaptation techniques based on the values of yh; in each case,
the final mesh in the computations has been displayed. In fact, the mesh refinement
process has been performed with the help of the adaptmesh Freefem utility. The
criterion used to generate a new mesh relies on the numerical Hessian of the state.
Without a mesh refinement process of this kind, we have not been able to get better
results: roughy speaking, either they are coarse and then the numerical solution is
still less regular than in our experiments or they are too fine and lead to unaffordable
linear systems.

The resolution of (4.8) has been achieved by applying the UMFPACK method;
see [14].

Remark 2. In this paper, we have computed an approximate solution to (4.6),
i.e., (4.7), by solving the ``regularized"" mixed problem (4.8). The regularization has
been very simple here (just a small parameter \epsilon is needed). Of course, one can try
more ellaborate things, adapting the ideas in [6]. On the other hand, the Uzawa
and Arrow--Hurwicz algorithms have been tested to solve the mixed problems (4.6).
We have checked that they behave acceptably and provide the same results. Note in
particular that, in this framework, the Arrow--Hurwicz algorithm is advantageous in
the sense that, contrarily to Uzawa's method, the associated iterates do not involve
the solution of linear systems with coefficient matrix \^Ah; see, for instance, [16].

In view of the regularizing effect of the heat equation, the lack of compatibility of
the initial and boundary data has no consequence. Indeed, it is seen below that the
boundary conditions are satisfied as soon as t > 0.

5.1. Test 1. Here, we take y0(x) \equiv 100 sin(\pi x) and \scrO = (0.2, 0.8). We have
started from the initial mesh in Figure 1. After several iterates, we have the adapted
mesh in Figure 2 and the controls and state indicated in Figures 3--5. The num-
ber of vertices and elements corresponding to the individual triangulations are given
in Table 1.

For completeness, the evolution in time of the L2 norm of the leader control and
the state is depicted in Figure 6.
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Fig. 1. Test 1. The initial mesh. Number of elements: 1586. Number of vertices: 846.

Fig. 2. Test 1. The final mesh. Number of vertices: 17581. Number of elements: 9000.

5.2. Test 2. In this test, the initial state is given by y0(x) \equiv 100x0.2(1  - x)0.2

and \scrO = (0.25, 0.75). We present the final adpated mesh, the computed controls, the
computed state, and the time evolution of the L2 norms in Figures 7--11.

5.3. Test 3. Finally, in order to illustrate a case corresponding to an initial
state with a more complex structure, we have fixed y0(x) \equiv 100 sin(3\pi x) and \scrO =
(0.25, 0.75). Now, the final mesh, the computed controls, the associated state, and
the corresponding L2 norms can be found in Figures 12--16.

6. Additional comments and conclusions. We have seen in this paper that
it is possible to solve numerically null controllability problems of the Stackelberg--
Nash kind for linear heat PDEs. We have used some ideas with origin in the so-
called Fursikov--Imanuvilov formulation that rely on the solution of high-order partial
differential problems in the space and time variables.

This section presents several comments and extensions that will be considered in
the future.
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Fig. 3. Test 1. The computed leader control f .

(a) The computed follower v1 (b) The computed follower v2

Fig. 4. Test 1. The followers.

Fig. 5. Test 1. The computed state.
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Table 1
Test 1. The mesh data in the experiments.

Mesh iterate Number of triangles Number of vertices
0 1586 846
1 2131 1104
2 7735 3942
3 17581 9000

(a) The L2 norm of the leader (b) The L2 norm of the state

Fig. 6. Test 1. Evolution in time of the L2 norms.

Fig. 7. Test 2. The final mesh. Number of vertices: 17608. Number of elements: 9000.

First, note that the numerical approximations of the resulting systems can be
carried out in at least two ways:

\bullet by working with finite element spaces that are C1 in space,
\bullet by introducing multipliers and associated mixed formulations and working
with (usual) C0 finite element spaces.
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Fig. 8. Test 2. The computed leader control f .

(a) The computed follower v1 (b) The computed follower v2

Fig. 9. Test 2. The followers.

In this paper, we have chosen the second approach. In a forthcoming paper, we
will be concerned with the first one.

Of course, the same ideas and techniques can be applied to the computation of
Stackelberg--Nash controls in many other similar situations: semilinear heat equations
with (for instance) globally Lipschitz-continuous nonlinearities, noncylindrical control
domains, similar boundary control problems, hierarchical null controllability for linear
and semilinear wave equations, etc. Note that some theoretical results have been
obtained in [3, 4].

Observe that if the state equation is nonlinear, the convexity is lost in the
functionals Ji and J and the analysis of Stackelberg--Nash controllability is much
more complex. In particular, the existence of Nash equilibria is not ensured and
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Fig. 10. Test 2. The computed state.

(a) The L2 norm of the leader (b) The L2 norm of the state

Fig. 11. Test 2. Evolution in time of the L2 norms.

Fig. 12. Test 3. The final mesh. Number of vertices: 17573. Number of elements: 9000.
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Fig. 13. Test 3. The computed leader control f .

(a) The computed follower v1 (b) The computed follower v2

Fig. 14. Test 3. The followers.

Fig. 15. Test 3. The computed state.
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(a) The L2 norm of f(\cdot , t) (b) The L2 norm of y(\cdot , t)

Fig. 16. Test 3. Evolution in time of the L2 norms.

sometimes one has to work with weaker or generalized concepts. Of course, this
introduces nontrivial difficulties at the numerical level.

It would also be interesting to extend and/or adapt these ideas to other multi-
objective control problems, such as the computation of Stackelberg--Pareto equilibria.
More precisely, we can try to establish a strategy of the following kind:

\bullet For each fixed f \in \scrU , find the corresponding Pareto front for (2.1), J1 and J2.
In other words, find the family of couples (v1, v2) \in \scrH with the following
property: there exist no (v\prime 1, v

\prime 
2) \in \scrH such that Ji(v

\prime 
1, v

\prime 
2) \leq Ji(v1, v2) for

i = 1, 2, at least one of these inequalities being strict.
\bullet Then, find f \in \scrU and an associated Pareto equilibrium (v1(f), v2(f)) such
that (2.4) holds.

It can be proved that, for each leader f , there exists a whole family of Pareto
equilibria

\{ (v\alpha 1 (f), v\alpha 2 (f)) : \alpha \in (0, 1)\} .

The parameter \alpha indicates how relevant one of the functionals is regarding the other
one. For any fixed \alpha , it is relatively simple to prove the existence of f such that
the state corresponding to f and (v\alpha 1 (f), v

\alpha 
2 (f)) vanishes at time t = T . Moreover,

the computation of f and the associated Pareto equilibrium can be achieved with the
techniques in this paper.

However, it is much more difficult (and actually open) to find leader controls f
such that the same holds simultaneously for a family of associated equilibria.

Some theoretical and numerical results on this approach will also appear in a
forthcoming work.
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