
JID:FSS AID:8242 /FLA [m3SC+; v1.352] P.1 (1-21)

Available online at www.sciencedirect.com
ScienceDirect

Fuzzy Sets and Systems ••• (••••) •••–•••
www.elsevier.com/locate/fss

Fuzzy logic programs as hypergraphs. Termination results ✩

Juan Carlos Díaz-Moreno a, Jesús Medina a,∗, José R. Portillo b

a Department of Mathematics, University of Cádiz, Spain
b Departamento de Matemática Aplicada I and Instituto Universitario de Investigación de Matemáticas de la Universidad de Sevilla (IMUS),

Universidad de Sevilla, Spain

Received 8 February 2021; received in revised form 19 January 2022; accepted 1 February 2022

Abstract

Graph theory has been a useful tool for logic programming in many aspects. In this paper, we propose an equivalent repre-
sentation of multi-adjoint logic programs using hypergraphs, which are a generalization of classical graphs that allows the use of 
hypergraph theory in logic programming. Specifically, this representation has been considered in this paper to increase the level 
and flexibility of different termination results of the computation of the least model of fuzzy logic programs via the immediate 
consequence operator. Consequently, the least model of more general and versatile fuzzy logic programs can be obtained after 
finitely many iterations, although infinite programs or programs with loops and general aggregators will be considered.
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Logic programming; Fuzzy sets; Termination; Hypergraphs

1. Introduction

Logic programming [45] is an important framework to obtain information from a dataset, which has been modeled 
by a set of logic rules that are called either ‘logic program’ or simply ‘program.’ Therefore, logic programming is a 
core part of decision and recommendation systems, among others.

Many researchers have studied logic programming from a theoretical point of view and it has been applied to many 
frameworks [8,9,12,13,15,35,40,43,55]. Several fuzzy extensions have been introduced to handle imprecise, incom-
plete or imperfect data [21,36,44,23,48–50]. Multi-adjoint logic programming arose as a general logic-programming 
framework, which embeds residuated and monotonic logic programming, fuzzy logic programming, probabilistic 
logic programming, and so on. The main idea behind this general framework is to consider the most general mathe-
matical setting from which the most useful results can be proved. Consequently, the semantics is based on a complete 

✩ Partially supported by the 2014-2020 ERDF Operational Programme in collaboration with the State Research Agency (AEI) in project PID2019-
108991GB-I00, and with the Department of Economy, Knowledge, Business and University of the Regional Government of Andalusia in project 
FEDER-UCA18-108612, and by the European Cooperation in Science & Technology (COST) Action CA17124.

* Corresponding author.
E-mail address: jesus.medina@uca.es (J. Medina).
https://doi.org/10.1016/j.fss.2022.02.001
0165-0114/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.sciencedirect.com
https://doi.org/10.1016/j.fss.2022.02.001
http://www.elsevier.com/locate/fss
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jesus.medina@uca.es
https://doi.org/10.1016/j.fss.2022.02.001
http://creativecommons.org/licenses/by-nc-nd/4.0/


JID:FSS AID:8242 /FLA [m3SC+; v1.352] P.2 (1-21)

J.C. Díaz-Moreno, J. Medina and J.R. Portillo Fuzzy Sets and Systems ••• (••••) •••–•••
lattice in which (for example) the operators can be neither commutative nor associative, and different implications can 
be taken into account in the same logic program. These general structures allow the consideration of a more flexible 
and suitable set of rules to better simulate the behavior of a given knowledge system.

An important issue in multi-adjoint logic programming is to compute the consequences (least model) that are 
associated with the dataset modeled by the program (computed set of rules); that is, the values from which we can 
offer predictions and recommendations to the user. These values can be obtained in this and in many other frameworks 
by the immediate consequence operator TP for a program P [27,59]. Specifically, the least model is obtained by 
iterating the TP from the least interpretation (which associates the bottom of the lattice with every atom) until a 
fixed point is obtained. We must take into account that in many cases it is difficult to know whether the computation 
of the least fixed point of TP finishes for every query (e.g., when the considered program has infinite rules and/or 
has loops). Therefore, an important goal in these (fuzzy) logic programs is to know a priori when the computation 
of the least model will terminate in a finite number of iterations; that is, if TP terminates, which has been studied 
in many papers [18,22,25,44,23,52]. In [20], the authors introduced several interesting termination theorems that are 
based on the notion of dependency graph, together with useful applications to probabilistic programs, such as ordinary 
probabilistic logic programs, probabilistic deductive databases, and hybrid probabilistic logic programs.

This paper considers the theory of hypergraphs [10] to provide an efficient representation of a given logic program 
and to increase the level and flexibility of the termination theorems given in [20]. In particular, we use directed hy-
pergraphs [6,30], which appear in a lot of different contexts, such as propositional logic [5,24,25,31,32,53], artificial 
intelligence [51], technological processing of product assembly [47], relational databases [7,62], probabilistic pars-
ing [42], chemical reaction mechanisms [63], operations research [30], transportation planning [54], Petri nets [1], 
and so on. Alongside this work, we will focus on a special kind of directed hypergraphs, namely B-graphs, which 
have been used as a tool to analyze deductive databases (see [3,6,30,61]) and to solve Horn formulae [11,26,56,57]. 
B-graphs are also used to study Leontiev substitution matrices and flow problems [34], and to plan urban transporta-
tion [54].

Several relationships among graphs, hypergraphs and logic programs have been studied. Consequently, it has been 
possible to translate the information given in a program to a hypergraph, and vice versa. In fact, the proposed computa-
tion of a labeled B-graph from a program keeps all of the information provided by the program, while the dependency 
graph, even when labeled, loses some information. Obviously, this loss can be avoided by relabeling the edges of 
the dependency graph. However, in that case the obtained structure is equivalent to a hypergraph but represented in a 
way that is more complex and computationally less manageable than this one. Hence, hypergraphs provide a simpler 
and more tractable representation of logic programs (i.e., there is only one labeled hyperarc for each rule instead of 
multiple edges with the same label). This representation facilitates visualizing, and gives additional insight into, the 
structure of multi-adjoint logic programs. This allows us to demonstrate new results and open up promising new lines 
of investigation.

The first termination theorem is proved based on the obtained hypergraph and other intermediate results. A variant 
of this hypergraph has been analyzed to prove the second termination theorem, which significantly increases the 
number of operators that can be used in the program. Both of these theorems generalize the main results presented 
in [20] and provide a broader range of applications, from which we can know in advance if the computation of the 
least model terminates in a finite number of iterations. Note that it is not possible to directly apply the result in [20]
only considering dependency graphs, they must be adapted and extra results are required. However, the underlying 
mathematical proofs are similar to those proved in this paper. Hence, hypergraphs have been considered not only 
because they improve the representation of the program but they also provide a better understanding of the hypotheses 
and (aesthetically) simplification of different parts of the proofs.

The rest of this paper is structured as follows. Section 2 includes the preliminary notions to be used throughout 
the paper. Section 3 presents the results relating to graphs and hypergraphs, and the representation of programs by 
hypergraphs, which have been applied to the termination results given in Section 4. In the final section, this paper 
draws the conclusions and looks to the prospects for future work.

2. Preliminaries

The main notions in hypergraph theory and multi-adjoint logic programming considered in this paper are recalled 
next.
2



JID:FSS AID:8242 /FLA [m3SC+; v1.352] P.3 (1-21)

J.C. Díaz-Moreno, J. Medina and J.R. Portillo Fuzzy Sets and Systems ••• (••••) •••–•••
Fig. 1. Example of B-graph H = (V ,E).

2.1. Basic definitions of hypergraphs

This section recalls the notions related to hypergraphs that we will need throughout this paper. For the basic notions 
of (hyper)graph theory, see [10].

A graph is a pair of sets (V , E), where V is the set of vertices or nodes and E is a subset of unordered pairs of 
vertices, which are called edges. A hypergraph is a generalization of the notion of a graph in which an edge can join 
any number of vertices. The generalization is given through the notion of hyperedge. Specifically, a hypergraph is 
defined as a pair of sets (V , E), where V is a set of elements called nodes or vertices, and E is a set of non-empty 
subsets of V called hyperedges or edges (see [10] for more details). Note that a graph is a kind of hypergraph verifying 
that the cardinal of all hyperedges is two.

A directed graph or digraph is a graph whose edges are ordered pairs of vertices. The corresponding generalization
of a directed graph is called a directed hypergraph [6,30]. Formally, a directed hypergraph is a pair of sets (V , E), 
where the elements of E are called directed hyperedges or hyperarcs and each of them is an ordered pair, e = (X, Y), 
of disjoint subsets of vertices. We denote X as the tail of e and Y as its head. Hereinafter, the tail and the head of a 
hyperarc e will be denoted by T (e) and H(e), respectively. Hence, a directed hypergraph is a hypergraph with directed 
hyperedges. In the following, when no confusion arises, directed hypergraphs will simply be called hypergraphs.

Given a graph G = (V , E), a vertex labeling is a function of V to a set of labels. A vertex-labeled graph is a graph 
with one or more associated vertex labeling functions. Likewise, an edge labeling is a function from E to a set of 
labels and we say that a graph with an edge labeling is an edge-labeled graph. The definition of labeled graphs is 
extended to digraphs and (directed) hypergraphs, in a natural way.

A backward hyperarc, or simply B-arc, is a hyperarc e, where the head H(e) has exactly one vertex; that is, it is a 
singleton. In a similar way, forward hyperarc, or simply F-arc, is a hyperarc f where the tail T (e) exactly has one ver-
tex. When all of the hyperarcs of a hypergraph are B-arcs (resp. F-arcs), then the hypergraph is called B-graph (resp. 
F -graph) [30]. Note that a digraph is simultaneously a particular case of a B-graph and an F -graph. For example, the 
hypergraph H = (V , E) introduced in Fig. 1, where V = {a, c, f, h, n, u} and E = {({c}, {n}), ({f}, {h}), ({f, h}, {n}), 
({f, h}, {u}), ({f, u}, {a}), ({n, u}, {c}), ({u}, {f})} is a B-graph with six vertices and seven B-arcs. This paper will only 
consider this kind of directed hypergraph. Because hyperarcs provide a natural representation of Horn formulae and 
databases, B-graphs and F -graphs are useful for many applications [5,6,30–32,34,61]. Indeed, they have been pre-
sented many times with different names in the literature. For example, the B-graphs are called “labeled graphs” (not 
to be confused with the two labeled graphs that were defined previously) in [26,32,57] to represent the Horn formulae. 
Torres and Araoz [61] studied hypergraphs and B-graphs, called “rule hypergraphs”, to represent deduction properties 
in databases as paths in hypergraphs. Ausellio and Italiano [5] also used this kind of directed hypergraph, although 
they called them “FD-graphs”, for construct polynomial algorithms to solve satisfiability problems. In this work, we 
will use labeled B-arcs as a natural representation of rules in a multi-adjoint logic program.

The notion of a subgraph is extended to directed hypergraphs in [60].

Definition 1. Given a directed hypergraph H = (V , E), we say that H′ = (V ′, E′) is a subhypergraph of H if V ′ is a 
subset of V and E′ is a subset of E ∩ (2V ′ × 2V ′

).

The definition of hypergraph induced by the set of vertices V ′ is adapted from [58] to directed hypergraphs and it 
is the subhypergraph H′ = (V ′, E′), where E′ = E ∩ (2V ′ × 2V ′

).
The following definition has been adapted from [30,60].
3



JID:FSS AID:8242 /FLA [m3SC+; v1.352] P.4 (1-21)

J.C. Díaz-Moreno, J. Medina and J.R. Portillo Fuzzy Sets and Systems ••• (••••) •••–•••
Fig. 2. Directed graph subjacent to the directed hypergraph in Fig. 1.

Definition 2. Given a directed hypergraph H = (V , E), two vertices s, t ∈ V , and a natural number q , a path in H
from s to t of length q , denoted as Pst , is a sequence of nodes and hyperarcs: Pst = 〈v1, E1, v2, E2, . . . , vq, Eq, vq+1〉
where: v1 = s, vq+1 = t , s ∈ T (E1), t ∈ H(Eq), and vi ∈ H(Ei−1) ∩ T (Ei), for all i ∈ {2, ..., q}.

The trivial sequence 〈v〉, with v ∈ V , will be a path of length 0.

Nodes s and t are the origin (source) and the destination (sink) of Pst , respectively, and we say that t is connected
to s or that t is weakly reachable from s [29]. ‘Weakly’ is used because some applications of directed hypergraphs 
(e.g., assembly or databases) need a different and strong notion of reachability [7]. If t ∈ T (E1), then Pst is said to be 
a cycle [30]. In particular, this is true when t = s. Note that if there is a cycle from s to t , then there is also a cycle 
from t to t .

There are different definitions for paths in directed hyperarcs in the literature [2–4,6,10,30,60]. We have considered 
the definition introduced in [30] and [60], which is better suited to the aims of this paper and is less restricted than the 
definitions given in other papers.

Given that we are considering B-graphs, a path Pst = 〈s, E1, v2, E2, . . . , Eq, t〉 is univocally determined by its 
B-arcs and its origin because vi is the only vertex in the head of Ei−1. In this case, we can denote the path as 
Pst = 〈s, E1, E2, . . . , Eq, t〉. For example, in the B-graph shown in Fig. 1, 〈f, ({f}, {h}), ({f, h}, {u}), ({u}, {f}), f〉 and 
〈c, ({c}, {n}), ({n, u}, {c}), c〉 are cycles.

Every directed hypergraph is associated with a digraph.

Definition 3. Given a directed hypergraph H= (V , E), the primal digraph (or subjacent digraph) D(H) = (V , A) of 
the hypergraph H has the same nodes that the hypergraph and an arc exists in A from the node u to the node v if and 
only if it exists a hyperedge e ∈ E such that u ∈ T (e) and v ∈ H(e).

For example, Fig. 2 shows the subjacent digraph to the B-graph in Fig. 1. The cycles 〈f, ({f}, {h}), ({f, h}, {u}),
({u}, {f}), f〉 and 〈c, ({c}, {n}), ({n, u}, {c}), c〉 in the B-graph correspond to the cycles 〈f, h, u, f〉 and 〈c, n, c〉 in the 
primal graph.

Note that the correspondence is not injective because two directed hypergraphs can be associated with the same 
digraph.

2.2. Multi-adjoint logic programming

In this section, we recall the notion of a multi-adjoint logic program and the most interesting termination theorems 
that were introduced in [20]. We will first present the so-called adjoint pairs. These are the basic operators considered 
in this framework. They generalize left-continuous t-norms and their residuated implications.

Definition 4. Given a partially ordered set (P, ≤), the pair (&, ←) is an adjoint pair with respect to (P, ≤) if the 
mappings &, ←: P × P → P satisfy that:

1. & is order-preserving in both arguments.
2. ← is order-preserving in the first argument (the consequent) and order-reversing in the second argument (the 

antecedent).
3. The equivalence x ≤ z ← y if and only if x &y ≤ z holds, for all x, y, z ∈ P .
4



JID:FSS AID:8242 /FLA [m3SC+; v1.352] P.5 (1-21)

J.C. Díaz-Moreno, J. Medina and J.R. Portillo Fuzzy Sets and Systems ••• (••••) •••–•••
Note that the pairs composed of the product, Gödel and Lukasiewicz t-norms and its corresponding residuated 
implication, which will be denoted as (&P, ←P), (&G, ←G), (&Ł, ←Ł), and are defined, for each x, y, z ∈ [0, 1], as

x &P y = x · y z ←P y =
{

1 if y ≤ z
z

y
if y > z

x &G y = min{x, y} z ←G y =
{

1 if y ≤ z

z if y > z

x &Ł y = max{0, x + y − 1} z ←Ł y = min{1,1 − y + z}

are adjoint pairs. Clearly, these operators have infinite range (i.e., the image set is infinite). The following examples 
show particular cases of adjoint pairs, which correspond to operators with finite range.

Example 5. Let [0, 1]m be a regular partition of [0, 1] into m pieces; for example, [0, 1]4 = {0, 0.25, 0.5, 0, 75, 1}
divides the unit interval into four pieces. A discretization of a t-norm & : [0, 1] × [0, 1] → [0, 1] is the operator 
&∗ : [0, 1]m × [0, 1]n → [0, 1]k , where n, m, k ∈N , defined for each x ∈ [0, 1]m and y ∈ [0, 1]n as:

x &∗ y = �k · (x &y)�
k

where � _ � is the ceiling function.
The discretization of the corresponding residuated implication ←∗: [0, 1]k × [0, 1]n → [0, 1]m is defined as:

z ←∗ y = m · (z ← y)�
m

where  _ � is the floor function and ← is the residuated implication of the t-norm &. We have that (&∗, ←∗) is an 
adjoint pair in the unit interval [16,48], and &∗, ←∗ have finite range. �

The considered algebraic structure contains this general kind of operators and is called a multi-adjoint lattice.

Definition 6. A multi-adjoint lattice is a tuple (L, �, ←1, &1, . . . , ←n, &n) verifying the following properties:

1. (L, �) is bounded lattice (i.e., it has bottom (⊥) and top (�) elements);
2. (&i , ←i ) is an adjoint pair in (L, �), for all i ∈ {1, . . . , n};
3. � &iϑ = ϑ &i � = ϑ , for all ϑ ∈ L and i ∈ {1, . . . , n}.

Multi-adjoint lattices were fundamental in [20, Definition 26] to define the general algebraic structure taken into 
account in the aforementioned paper, which is called local sorted multi-adjoint �-algebra. To simplify the notation, 
in this paper only one sort will be considered.

Definition 7. A local multi-adjoint �-algebra L is a multi-adjoint lattice

(L,�,←1,&1, . . . ,←n,&n)

on which other operator is defined, such as conjunctors ∧1, . . . , ∧k , disjunctors ∨1, . . . , ∨l and general aggregators 
@1, . . . , @h. The set of those monotonic operators (aggregator operators, in particular) in the �-algebra will be 
denoted as A; that is,

A = {&1, . . . ,&n,∧1, . . . ,∧k,∨1, . . . ,∨l ,@1, . . . ,@h}
and each operator @ : Lm → L in A satisfies the boundary condition with the top element:

@(�, . . . ,�︸ ︷︷ ︸
s

, x,�, . . . ,�︸ ︷︷ ︸
m−s−1

) � x (1)

for all x ∈ L.
5



JID:FSS AID:8242 /FLA [m3SC+; v1.352] P.6 (1-21)

J.C. Díaz-Moreno, J. Medina and J.R. Portillo Fuzzy Sets and Systems ••• (••••) •••–•••
From now on, a local multi-adjoint �-algebra L, a set of propositional symbols � and a language denoted as F

will be fixed. From these notions, we can introduced the definition of multi-adjoint logic program (set of rules).

Definition 8. A multi-adjoint logic program is a set of rules of the form 〈A ←i B, ϑ〉 such that:

1. The rule A ←i B is a formula of F.
2. The confidence factor ϑ is an element (a truth-value) of L.
3. The head of the rule A is a propositional symbol of �.
4. The body formula B is a formula of F built from propositional symbols B1, . . . , Bn (n ≥ 0) by the use of conjunc-

tors &1, . . . , &r and ∧1, . . . , ∧k , disjunctors ∨1, . . . , ∨l , aggregators @1, . . . , @m and elements of L.
5. Facts are rules with body �.

For a body formula B, as in point 4 of this definition, we can express it by @[B1, . . . , Bn], where B1, . . . , Bn are 
all propositional symbols in B and @ the composition of the operators in B. For example, if B = (B1 &B2) ∧B3, then 
it can be written as @[B1, B2, B3]; that is, @[B1, B2, B3] = (B1 &B2) ∧ B3 = B. The following example introduces 
a particular multi-adjoint logic program.

Example 9. We will consider the local multi-adjoint �-algebra F composed of the unit interval as a complete lattice, 
the adjoint pairs corresponding to the product, Gödel and Lukasiewicz t-norms, (&P, ←P), (&G, ←G), (&Ł, ←Ł), 

and the weighted sums @(3,1) and @(1,2) defined as @(3,1)(x, y) = 3x + y

4
and @(1,2)(x, y) = x + 2y

3
, for every 

(x, y) ∈ [0, 1]2. On this �-algebra F, the following program P is defined, which simulates the behavior related to flu 
symptoms:

〈c ←P n &P u,0.8〉
〈n ←P c,0.8〉
〈n ←P @(1,2)(h, f),0.6〉
〈h ←P f,0.7〉

〈u ←G h &Ł f,0.7〉
〈f ←P u,0.9〉
〈a ←P @(3,1)(u, f),1.0〉
〈f ←P 1.0,0.8〉
〈n ←P 1.0,0.5〉

where c, n, h, f, u and a correspond to cough, nasal ache, headache, fever, flu and muscle ache. �
As we reported in the introduction, this paper is focused on the most important theorems introduced in [20]. Before 

recalling these results, we need several definitions.

Definition 10. An interpretation is a mapping I : � → L. The set of all interpretations is denoted as IL.

Notice that each of these interpretations, by the unique homomorphic extension theorem, can be uniquely extended 
to the set of formulae F. The function obtained in this way from an interpretation I is denoted by Î .

The ordering � on the truth-values lattice L can be extended to the set of interpretations IL.

Proposition 11. Let � be the ordering defined on IL as, I1 � I2 iff I1(p) � I2(p), for I1, I2 ∈ IL and p ∈ �. The pair 
(IL, �) is a bounded lattice. The least interpretation � maps every propositional symbol to the least element ⊥ ∈ L.

The semantic of multi-adjoint logic programming is based on the following notions of satisfiability and model.

Definition 12. Given an interpretation I ∈ IL, a weighted rule 〈A ←i B, ϑ〉 is satisfied by I , if ϑ � Î (A ←i B). An 
interpretation I ∈ IL is a model of a multi-adjoint logic program P if all weighted rules in P are satisfied by I .

The immediate consequences operator, which was given by van Emden and Kowalski [27], is defined in this 
framework as follows.
6



JID:FSS AID:8242 /FLA [m3SC+; v1.352] P.7 (1-21)

J.C. Díaz-Moreno, J. Medina and J.R. Portillo Fuzzy Sets and Systems ••• (••••) •••–•••
Definition 13. Given a multi-adjoint logic program P , the immediate consequences operator TP maps interpretations 
to interpretations, and for an interpretation I and an arbitrary propositional symbol A is defined as

TP (I )(A) = sup{ϑ &i Î (B) | 〈A ←i B, ϑ〉 ∈ P }

The main feature of TP is that its least fixed-point, denoted by lfp(TP ), coincides with the least model of the 
program P [49] and is obtained iterating the TP operator from the least interpretation �. As we also highlighted in 
the introduction, it is important to know when this iteration finishes in a finite number of steps.

Definition 14. Let P be a multi-adjoint program, and A ∈ �. The set RI
P (A) of relevant values for A with respect to 

an interpretation I is the set of maximal values of the set {ϑ &i Î (B) | 〈A ←i B, ϑ〉 ∈ P }. The culprit set for A with 
respect to I is the set of rules 〈A ←i B, ϑ〉 of P such that ϑ &i Î (B) belongs to RI

P (A). Rules in a culprit set are 
called culprits. The culprit collection for T n

P (�)(A) is defined as the set of culprits used in the recursive computation 
of T n

P (�)(A).

The notion of termination used in [20], which we will also consider in this paper, is the definition of fixpoint-
reachability of Kifer and Subrahmanian [41].

Definition 15. Let P be a multi-adjoint logic program with respect to a multi-adjoint �-algebra L and a set of propo-
sitional symbols �. We say that TP terminates for every query if for every propositional symbol A, there is a finite n
such that T n

P (�)(A) is identical to lfp(TP )(A).

An interesting termination theorem given in [20] was based on the notions of dependency graph and finite depen-
dences.

Definition 16. The dependency graph of a multi-adjoint logic program P is a digraph where the vertices are the 
propositional symbols in �, and there is an arc from a propositional symbol A to a propositional symbol B for each 
rule with head A and the body containing an occurrence of B . The dependency graph for a propositional symbol A is 
the subgraph of the dependency graph containing all of the vertices connected to A and corresponding edges.

We say that a multi-adjoint logic program P has finite dependences if the number of edges in the dependency graph 
for A is finite for every propositional symbol A.

Notice that a program can have finite dependences, even though the program has an infinite set of rules. A particular 
case was shown in Example 23 of [20], in which a countable infinite program with finite dependences was presented. 
Based on this definition, the following theorem was introduced in [20], which is one of the most important termination 
results given in the aforementioned paper.

Theorem 17 ([20]). Let P be a multi-adjoint logic program with respect to a local multi-adjoint �-algebra L and the 
set of propositional symbols �, and having finite dependences. If for every iteration n and propositional symbol A the 
set of relevant values for A with respect to T n

P (�) is a singleton, then TP terminates for every query.

Because we assume finite dependences, when the unit interval or any linear lattice is considered, for every iteration 
n, T n

P (�)(A) is a maximum for all propositional symbol A and so, the previous theorem can be applied.

Corollary 18 ([20]). Given a local multi-adjoint �-algebra L, where the lattice is the unit interval [0, 1], and a 
multi-adjoint logic program P , having finite dependences, we have that TP terminates for every query.

In addition, if the theorem cannot be applied to show termination results (e.g., in the case of Hybrid Probabilistic 
Logic Programs (HPLPs) appearing in [23], because operators employed to capture disjunctive probabilistic strategies 
do not satisfy the boundary conditions), then we have the following result, which is based on the notion of range 
dependency graph.
7



JID:FSS AID:8242 /FLA [m3SC+; v1.352] P.8 (1-21)

J.C. Díaz-Moreno, J. Medina and J.R. Portillo Fuzzy Sets and Systems ••• (••••) •••–•••
Definition 19. The range dependency graph of a multi-adjoint logic program P has a vertex for each propositional 
symbol in �. There is an arc from a propositional symbol A to a propositional symbol B if A is the head of a rule 
with body containing an occurrence of B , which does not appear in a sub-term rooted by a function symbol having 
finite range.

This definition reduces the dependency graph of a multi-adjoint logic program P removing arcs associated with 
operators with finite range. Consequently, arcs involved in infinite loops can be removed, and so the loops can be 
broken. For example, &∗

Ł : [0, 1]10 × [0, 1]10 → [0, 1]10 has a finite range because at most only 11 values can be 
obtained when this operator is used. Hence, if we have the rule A ← &∗

Ł(&P (A, B), B) ⊗ &P (B, D), then the range 
dependency graph will not consider the subterm &∗

Ł(&P (A, B), B) and so the representation of the previous rule in 
the range dependency graph will be equivalent to the representation of the rule: A ← &P (B, D).

We will say that a multi-adjoint program P has range finite dependences, if for every propositional symbol A, the 
number of edges in the associated range dependency graph for A is finite. On this notion, we have the following result.

Theorem 20 ([20]). If P is a multi-adjoint logic program with an acyclic range dependency graph having range finite 
dependences, then TP terminates for every query.

Finally, the last result merges Theorems 17 and 20 to allow more flexible logic programs.

Theorem 21 ([20]). Let P be a multi-adjoint logic program with respect to a local multi-adjoint �-algebra with finite 
operators L and the set of propositional symbols �, and having range finite dependences.

If for every iteration n and propositional symbol A the set of relevant values for A with respect to T n
P (�) is a 

singleton, then TP terminates for every query.

Although these results are useful and general, as we will show next, they do not allow the use of aggregator 
operators (e.g., weighted sums or disjunctive operators) in general, which is very suitable in many applications.

Example 22. Given the program introduced in Example 9, the least model of the program through the immediate 
consequence operator TP will be computed next.

A simple implementation of the TP operator can be done (e.g., in Python):

c=n=h=f=u=a=0;

c1=n1=h1=f1=u1=a1=0;

count=0;

while [c,n,h,u,f,a] < > [c1,n1,h1,u1,f1,a1] or count==0:
c=c1;n=n1;h=h1;u=u1;f=f1;a=a1;

c1=n∗u∗0.8;
n1=max(c∗0.8,(h+2∗f)∗0.6/3,0.5);
h1=f∗0.7;
u1=min(max(0,(h+f−1)),0.7);
f1=max(0.8,0.9∗u)
a1=(3∗u+f)/4
print count,’ ’,f,’ ’,h,’ ’,u,’ ’,c,’ ’,n,’ ’,a
count += 1;

print count,’ ’,f,’ ’,h,’ ’,u,’ ’,c,’ ’,n,’ ’,a

The results of the iterations of this program are depicted in Table 1.
Therefore, the least model of the program is obtained after a finite number of iterations. However, the program does 

not satisfy the hypotheses of Theorems 17 and 21. Specifically, the weighted sums @(3,1) and @(1,2) do not verify the 
boundary condition with the top element. For example, we have @(3,1)(1, 0.5) = 0.875 � 0.5 and @(1,2)(0.4, 1) =
0.8 � 0.4. �
8



JID:FSS AID:8242 /FLA [m3SC+; v1.352] P.9 (1-21)

J.C. Díaz-Moreno, J. Medina and J.R. Portillo Fuzzy Sets and Systems ••• (••••) •••–•••
Table 1
Iteration of TP operator from the least interpretation �.

f h u c n a

� 0 0 0 0 0 0

TP (�) 0.8 0 0 0 0.5 0

T 2
P (�) 0.8 0.56 0 0 0.5 0.2

T 3
P (�) 0.8 0.56 0.36 0 0.5 0.2

T 4
P (�) 0.8 0.56 0.36 0.144 0.5 0.47

T 5
P (�) 0.8 0.56 0.36 0.144 0.5 0.47

Hence, Theorems 17 and 21 present interesting and useful termination results, but there are some cases in which the 
hypotheses are not satisfied, even though TP terminates for every query. Therefore, one important goal is to weaken 
the hypotheses or introduce new termination results that can be applied to a bigger range of logic programs. Therefore, 
hypergraphs instead of graphs will be taken into account to reformulate these theorems. The use of hypergraphs for 
representing logic programs is studied in the following section.

3. Representing programs by labeled directed hypergraphs

The dependency graph of a program has been a useful tool for the termination results recalled above [20]. However, 
important information in the program is missing in the dependency graph. This is one of the most important reasons 
why hypergraphs are useful in this framework. Specifically, in this section we will use labeled directed hyperarcs 
instead of edges to capture more information about the relationships among the variables in the body of a rule, which 
are lost when only edges are considered. Consequently, we will show that the consideration of hyperarcs, and so 
hypergraphs, will provide a richer representation of the program than the dependency graph.

3.1. Edge-labeled B-graphs for representing multi-adjoint logic programs

The notion of associated B-graph of a multi-adjoint logic program P is first introduced. We then present the natural 
steps for computing such a hypergraph on an example.

Definition 23. Given a multi-adjoint logic program P , the associated B-graph of P is the edge-labeled B-graph

HP = (�, {(({B1, . . . ,Bn}, {A}),@) | 〈A ←i @[B1, . . . ,Bn], ϑ〉 ∈ P })
where (({B1, . . . , Bn}, {A}), @) denotes the hyperarc ({B1, . . . , Bn}, {A}) with the label @.

The B-graph HP associated with a given program P , which is obtained from Definition 23, is constructed as 
follows:

1. The vertex set of the hypergraph is the propositional symbol set � of the program. For instance, in Example 9, 
we have V (HP ) = {a, c, f, h, n, u}.

2. Each program rule provides a hyperarc e, as follows: the propositional symbols of the body of the rule will be 
the tail T (e) of the hyperarc, and the propositional symbol of the head of the rule will be the only element of 
the head H(e). This hyperarc is labeled with the composition operator in the body of the rule. When no operator 
appears in the body of the rule, we will consider the identity mapping and we will avoid including the symbol in 
the representation of the hypergraph. For example, from the rule 〈u ←P h &L f, 0.7〉 in Example 9, we obtain the 
hyperarc ({f, h}, {u}) with label &L.

Due to the considered mechanism, the obtained hypergraph is always an edge-labeled B-graph. Moreover, it is 
possible to obtain the original program from the hypergraph. Hence, both representations are equivalent. However, 
this fact does not hold for dependency graphs. Fig. 3 shows the B-graph HP associated with the program P given in 
Example 9. Notice that HP is an edge-labeled hypergraph of the one associated with the example given in page 3. 
9



JID:FSS AID:8242 /FLA [m3SC+; v1.352] P.10 (1-21)

J.C. Díaz-Moreno, J. Medina and J.R. Portillo Fuzzy Sets and Systems ••• (••••) •••–•••
Fig. 3. Edge-labeled B-graph associated with the program given in Example 9.

Moreover, in this particular labeled hypergraph, the hyperarc from f to h has been labeled by the identity mapping 
(which is not depicted) and the other hyperarcs have the operators in the body of the rules as labels, specifically the 
symbols @3,1, @1,2, &Ł and &P.

As a consequence of the representation of programs by hypergraphs, the manifold results and algorithms develop-
ment in directed hypergraphs can be applied to study fuzzy logic programs. For example, it will be used to improve 
different termination theorems. These theorems do not consider the whole graph associated with a program but only 
the local notion of dependency graph of a particular propositional symbol. Indeed, infinite programs can be consid-
ered with infinite propositional symbols, such as shown by Example 23 in [20]. The next section will introduce an 
extension of the dependency graph of a propositional symbol to hypergraphs.

3.2. Antecedent sets and associated hypergraphs

The first notion that we need to present collects all of the vertices ‘affecting’ a given vertex, which has been adapted 
from [33].

Definition 24. Given a vertex v of a directed hypergraph H = (V , E), the antecedent set of v (denoted as AntSetH(v)) 
is the set of all vertices u ∈ V verifying that there exists a path from u to v.

For example, in the hypergraph in Fig. 1, we have

AntSetH(a) = {a, f,h,u}
AntSetH(c) = {c, f,h,n,u}
AntSetH(f) = {f,h,u}
AntSetH(h) = {f,h,u}
AntSetH(n) = {c, f,h,n,u}
AntSetH(u) = {f,h,u}

The left-hand side of Fig. 4 displays the hypergraph induced by the vertices in the antecedent set of vertex n, 
AntSetH(n), of the hypergraph in Fig. 1. The right-hand side of this figure displays the hypergraph induced by the 
vertices in AntSetH(a). The vertices and hyperarcs not included in both induced subhypergraphs are painted in dotted 
lines. Clearly, the AntSetHP

(A) is the set of vertices in the dependency graph for the propositional symbol A in a 
program P .

Given a multi-adjoint logic program P and a propositional symbol A ∈ �, we will denote by PA the subprogram 
of P containing the rules with head in AntSetHP

(A); that is,

PA = {〈E ←i B, ϑ〉 ∈ P | E ∈ AntSetHP
(A)}

This subset allows the local computation of the least fixed-point of a specific propositional symbol.

Proposition 25. Let P be a multi-adjoint logic program and A ∈ � a propositional symbol. The value of the least fixed 
point of TP on A is equal to the obtained value considering only the rules in PA; that is, lfp(TP )(A) = lfp(TPA

)(A).

Proof. The proof holds because PA includes all of the rules in P that are required to compute lfp(TP )(A).
10



JID:FSS AID:8242 /FLA [m3SC+; v1.352] P.11 (1-21)

J.C. Díaz-Moreno, J. Medina and J.R. Portillo Fuzzy Sets and Systems ••• (••••) •••–•••
Fig. 4. Subhypergraphs induced by AntSetH(n) (left-hand) and AntSetH(a) (right-hand) from the hypergraph depicted in Fig. 1.

The fundamental hypothesis of “finite dependences” has a direct translation in terms of PA. Specifically, from this 
program the associated B-graph HPA

can be defined, obtaining the following equivalence.

Proposition 26. A multi-adjoint logic program P has finite dependences if and only if for every propositional symbol 
A, the hypergraph HPA

is finite.

Proof. The proof follows from the fact that E ∈ AntSetHP
(A) if and only if E is a vertex of the dependency graph for 

A. Because the number of propositional symbols in the body of each rule is finite, if HPA
is finite, then the number of 

vertices and edges in the dependency graph for A is also finite, and so P has finite dependences. The other implication 
holds analogously. �

Clearly HPA
is a subhypergraph of HP . Indeed, it is the hypergraph induced by AntSetHP

(A). From Propo-
sition 26, we also have that the computation of HPA

is only needed to check whether P has finite dependences. 
Therefore, the dependency graph of a program is not required to be computed but only HPA

. In the following, based 
on this equivalence, we will preserve the terminology “finite dependences” to help the reading and use of the termi-
nation theorems given in [20].

Once the definition of dependency graph has been translated to a hypergraph, we will study the obtained associated 
B-graph to reach new properties for weakening the hypotheses in the theorems recalled in Section 2.2.

3.3. Strongly path-connected components

The notion of strongly path-connected component in hypergraphs allows us to obtain a partition of the set of 
vertices, which will be considered for defining two fundamental definitions in this paper. We first need to recall a 
similar notion in digraph.

Given a digraph D = (W, A), we say that a vertex u reaches another vertex v, if there is a directed path from u to v. 
If they are mutually reachable, then we have that u and v are strongly connected. As connectivity in undirected graphs, 
strong connectivity in digraphs induces an equivalence relation on the set of vertices. Therefore, strong connectivity 
provides a partition in the set of vertices into equivalence classes. In particular, these classes are maximal subsets 
of vertices that are strongly connected to each other and each vertex is in exactly one subset. They are translated to 
hypergraph theory using the notion of weakly reachable vertices given in page 4, as follows.

Definition 27. A pair of vertices u and v of a directed hypergraph are said to be strongly path-connected if u is weakly 
reachable from v and v is weakly reachable from u. The binary relation R, which is defined as

R = {(u, v) ∈ V × V | u and v are strongly path-connected in H},
is an equivalence relation. The equivalence classes associated with R are called strongly path-connected components, 
spc-components in short.

It is easy to see that the vertices in each cycle Pst , where s = t , in a hypergraph belong to the same strongly path-
connected component. Strongly path connected components can only have one vertex. Notice that the hypergraph in 
11



JID:FSS AID:8242 /FLA [m3SC+; v1.352] P.12 (1-21)

J.C. Díaz-Moreno, J. Medina and J.R. Portillo Fuzzy Sets and Systems ••• (••••) •••–•••
Fig. 5. Strongly path-connected components of the hypergraph in Fig. 1.

Fig. 6. Aggregator operators @(3,1) and @(1,2) label d-hyperarcs, shown with dashed lines. Operators &P and &L and non-labeled rules are 
associated with s-hyperarcs.

Fig. 1 has three spc-components, which are depicted in Fig. 5. One of them is the singleton {a}, and the other two are 
{f, h, u} and {c, n}.

We can also observe that if an arbitrary vertex v belongs to the antecedent set of another vertex w—that is, v ∈
AntSetH(w)—, then all vertices in the same spc-component of v also belong to AntSetH(w). Moreover, if v and w
belong to the same spc-component, then AntSetH(v) = AntSetH(w). From these comments, we obtain the following 
result.

Proposition 28. Given a directed hypergraph H = (V , E) and a vertex v ∈ V , we have that AntSetH(v) is a spc-
component of H or the union of spc-components of H.

Proof. The proof straightforwardly follows from the previous statements. �
From the notion of spc-component, we can also split the hyperarcs of a B-graph into two types:

d-hyperarcs: every vertex of its tail belongs to a different spc-component from the one containing the vertex of its 
head; that is, no vertex of its tail belongs to the spc-component of its head. These hyperarcs are not involved 
in any cycle Pst , where s = t .

s-hyperarcs: some vertex of its tail belongs to the same spc-component as the vertex of its head. These hyperarcs are 
involved in one or more cycles of the form Pst , where s = t . (corresponding to cycles of the primal graph).

For example, ({f, h}, {n}) and ({f, u}, {a}) are d-hyperarcs of the B-graph in Fig. 5, and ({f}, {h}) ({f, h}, {u}), 
({n, u}, {c}), and ({u}, {f}) are s-hyperarcs. Fig. 6 depicts the edge-labeled B-graph that is associated with the multi-
adjoint logic program P in Example 9, in which the spc-components are highlighted: the d-hyperarcs are shown with 
dashed lines, and the s-hyperarcs are represented in continuous lines. Moreover, the labels of each hyperarc have been 
highlighted. Specifically, we have that the d-hyperarcs are labeled by the symbols of the aggregator operators @3,1

and @1,2. We must take into account that these operators do not satisfy the boundary condition of Equation (1).
As was remarked in Example 22, although the hypotheses in Theorem 17 are not satisfied, the iteration in the 

computation of the least fixed point of the immediate consequence operator terminates. The next section will show 
that this fact holds because the aggregator operators @3,1 and @1,2 are associated with d-hyperarcs, and so they are 
not involved in any “cycle” that can produce an incremental loop in the values of some propositional symbol.
12



JID:FSS AID:8242 /FLA [m3SC+; v1.352] P.13 (1-21)

J.C. Díaz-Moreno, J. Medina and J.R. Portillo Fuzzy Sets and Systems ••• (••••) •••–•••
4. Termination results

This section will introduce the main results of this paper, using directed hypergraphs to enhance the termination 
theorems given in [20]. Consequently, we will increase the number of logic programs in which the termination theo-
rems can be applied.

The following result modifies Theorem 17 considering any interpretation in the first step of the iteration of the TP
operator instead of the bottom interpretation �.

Theorem 29. Given a local multi-adjoint �-algebra L, a multi-adjoint logic program P with finite dependences and 
an interpretation I . If for every iteration n and propositional symbol A, the set of relevant values for A with respect 
to T n

P (I ) is a singleton, then there is a finite n such that T n
P (I ) is a fixed point of TP .

Proof. We will first prove that for every A ∈ �, such that T n
P (I )(A) ≺ T n+1

P (I )(A) holds, we have that the culprit 
collection for T n+1

P (I )(A) has cardinality at least n + 1. We will proceed by induction in the cardinality of the culprit 
collection for T n

P (I )(A).
For n = 0, given A ∈ �, such that T 0

P (I )(A) ≺ T 1
P (I )(A), if the culprit collection for T 1

P (I )(A) is empty, then the 
computation of the TP (I )(A) is the supremum of the empty set, which is equal to the bottom element of the complete 
lattice (L, �). Therefore, because ⊥ � I (A) = T 0

P (I )(A), we obtain a contradiction with ⊥ � I (A) ≺ ⊥ and we can 
ensure that the culprit collection for T 1

P (I )(A) contains at least one element.
Now, we assume that the property holds for n and we need to prove it for n + 1. Hence, we have that given B ∈ �

with T n−1
P (I )(B) ≺ T n

P (I )(B), then the culprit collection for T n
P (I )(B) has at least n different rules.

Given A ∈ � with T n
P (I )(A) ≺ T n+1

P (I )(A), we will prove that the culprit collection for T n+1
P (I )(A) has at least 

n + 1 different rules. Because, by hypothesis, T n+1
P (I )(A) is a singleton, there is at least one rule in the program, 

〈A ←i B, ϑ〉, such that

T n+1
P (I )(A) = ϑ &i T̂

n
P (I )(B)

Consequently, we have that

ϑ &i
̂

T n−1
P (I )(B)

(∗)�T n
P (I )(A) ≺ T n+1

P (I )(A)= ϑ &i T̂
n
P (I )(B)

where (∗) holds because T n
P (I )(A) is the supremum of all contributions of the rules in the program and 

ϑ &i
̂

T n−1
P (I )(B) is the one associated with the rule 〈A ←i B, ϑ〉.

Because the operators TP and &i are monotonic, we have that at least one propositional symbol Cj ∈ � occurring 
in the body B = @[C1, . . . , Cs] exists, such that T n−1

P (I )(Cj ) ≺ T n
P (I )(Cj ).

Therefore, by the induction hypothesis, at least n different rules are in the culprit collection of T n
P (I )(Cj ), and 

correspond to hyperarcs of the associated subhypergraph of PA, HPA
because C occurs in the body of a rule with 

head A. We will prove by reduction at absurdum that 〈A ←i B, ϑ〉 is not in that culprit collection.
Hence, we suppose that 〈A ←i B, ϑ〉 is in the culprit collection of T n

P (I )(Cj ). Therefore, this rule is applied, 
and so Cj must be in the antecedent set of A. Consequently, we have that the term T m

P (I )(A) must appear in the 
computation of T n

P (I )(Cj ); that is, T n
P (I )(Cj ) = f [T m

P (I )(A)], where f is a mapping composed of all operators and 
values recursively appearing in the iterations of TP on I and Cj , which also satisfies the boundary condition with the 
top (Equation (1)).

Thus, we have that

T n+1
P (I )(A) = ϑ &i@[T n

P (I )(C1), . . . , T
n
P (I )(Cj ), . . . , T

n
P (I )(Cs)]

= ϑ &i @[T n
P (I )(C1), . . . , f [T m

P (I )(A)], . . . , T n
P (I )(Cs)]

� T m
P (I )(A)

where the last inequality is given because all of the operators satisfy Equation (1). Consequently, by the monotonicity 
of TP , the assumed strict inequality and the inequality above, we obtain that
13



JID:FSS AID:8242 /FLA [m3SC+; v1.352] P.14 (1-21)

J.C. Díaz-Moreno, J. Medina and J.R. Portillo Fuzzy Sets and Systems ••• (••••) •••–•••
T m
P (I )(A) � T n

P (I )(A) ≺ T n+1
P (I )(A) � T m

P (I )(A)

which leads us to a contradiction.
Therefore, we have that the culprit collection for T n+1

P (I )(A) has at least n + 1 rules. Consequently, the number 
of considered rules in each iteration of the TP increases. We can ensure that the iteration of the TP terminates for A
because P has finite dependences, which proves the result. �

The following result introduces an useful termination theorem, which generalizes Theorem 17 and greatly increases 
the spectrum of applications.

Theorem 30. Given a multi-adjoint �-algebra L and a multi-adjoint logic program P with finite dependences, where 
the s-hyperarcs of the associated B-graph correspond to rules with an aggregator in the body satisfying Equation (1). 
If for every iteration n and propositional symbol A the set of relevant values for A with respect to T n

P (�) is a singleton, 
then TP terminates for every query.

Proof. We will proceed by strong induction in the number n of strongly path-connected components of the B-graph 
associated with PA; that is, of HPA

.
We first assume that n = 1; that is, HPA

has only one spc-component. Hence, in this case, no d-hyperarc exists, 
and so all operators satisfy Equation (1) and we can apply Theorem 17, obtaining that TP terminates for A.

Let us assume that the hypothesis when the number of components is k ∈ N , with 1 ≤ k ≤ n, is true and we need 
to prove the case n + 1. Therefore, we consider a propositional symbol A such that HPA

has n + 1 spc-components.
We can write each rule with head A in P , as follows:

r = 〈A ←i @[B1, . . . ,Bn,C1, . . . ,Cm], ϑ〉
where B1, . . . , Bn are the propositional symbols in the body of the rule, which are in the same spc-component than A
and C1, . . . , Cm are in other components.

Therefore, we can ensure that the number of spc-components of HPCj
for each propositional symbol Cj (which 

is a subhypergraph of HPA
), with j ∈ {1, . . . , m}, has at most n components because B1, . . . , Bn and A are not in 

the antecedent set of Cj . Otherwise, Cj will be in the same spc-component of A, as we will show next. Because 
for every i ∈ {1, . . . , n} we have that Bi and A are in the same spc-component, then there exist two paths PBiA and 
PABi

, from Bi to A, and vice versa, respectively. Now, if i ∈ {1, . . . , n} exists such that Bi is in the antecedent set of 
Cj , then there exists one path PBiCj

and so by connecting PABi
with PBiCj

, we obtain a path from A to Cj , PACj
. 

Meanwhile, this rule provides another path from Cj to A, PCj A, which implies that A and Cj are in the same spc-
component, by definition. This fact contradicts the definition of Cj because this propositional symbol is in a different 
spc-component from A. Finally, if we assume that A is in the antecedent set of Cj , then clearly A and Cj are in the 
same spc-component.

Consequently, we can apply the induction hypothesis and we have that TP terminates for every Cj , with j ∈
{1, . . . , m}. Let Mr be the maximum iteration of all TP (�)(Cj ) in which the least fixed point is obtained; that is, 
T

Mr

P (�)(Cj ) = lfp(TP )(Cj ), for all j ∈ {1, . . . , m}. Hence, we can write the rule:

〈A ←i @′[B1, . . . ,Bn], ϑ〉
where @′ is the aggregator operator defined on [0, 1]n as

@′[x1, . . . , xn] = @[x1, . . . , xn, lfp(TP )(C1), . . . , lfp(TP )(Cm)]
for all x1, . . . , xn ∈ [0, 1], and the value associated with each propositional symbol Bi in the body, at iteration Mr , is 
T

Mr

P (�)(Bi), for all i ∈ {1, . . . , n}.
This procedure can be applied to every rule r with head A or propositional symbol B in the same spc-component 

of A in HPA
. Let M be the maximum natural number of iterations Mr associated with such rules. Consequently, 

a new set of rules is obtained, denoted as P 1
A, which also has finite dependences and verifies that the propositional 

symbols appearing in the body of the rules are in the same spc-component of A. This last fact implies that there is no 
d-hyperarc in HP1

A
and so all operators satisfy Equation (1). Therefore, we can apply Theorem 29 to this program and 

the interpretation IA : � → L defined for all D ∈ � as:
14



JID:FSS AID:8242 /FLA [m3SC+; v1.352] P.15 (1-21)

J.C. Díaz-Moreno, J. Medina and J.R. Portillo Fuzzy Sets and Systems ••• (••••) •••–•••
Fig. 7. Edge-labeled B-graph associated with the program given in Example 32.

IA(D) =
{

T M
P (�)(D) if D and A are in the same component

lfp(TP )(D) otherwise

obtaining that TP1
A

terminates for A.

Because the computation of TP1
A
(IA)(B) is equivalent to T M+1

P (�)(B), for every propositional symbol B in the 

subprogram P 1
A we obtain that lfp(TP1

A
)(A) = lfp(TP )(A) and so TP terminates for A. �

The assumption that the set of relevant values for A with respect to T n
P (I ) be a singleton is trivially fulfilled in the 

unit interval.

Corollary 31. Given a multi-adjoint �-algebra L, on the unit interval [0, 1], and a multi-adjoint logic program P
with finite dependences, where the s-hyperarcs of the associated B-graph correspond to rules, with an aggregator in 
the body satisfying Equation (1). We have that TP terminates for every query.

These results can be applied to Example 22 because the operators not satisfying Equation (1); that is, aggregator 
operators @(3,1) and @(1,2), are associated with d-hyperarcs, as Fig. 6 shows. Consequently, we can ensure from 
these results that TP terminates for every query. Clearly, these results are more useful in larger programs in which the 
relationships between the variables are not very clear and the possible loops are not visually recognized.

The previous results will be complemented with the consideration of finite range operators, which remarkably 
increases the number of applications because any operator with finite range can be considered in the bodies of the 
rules, preserving the termination character of the immediate consequences operator. The next example presents a 
program with a new finite operator.

Example 32. We will consider the local multi-adjoint �-algebra F as in Example 9 together with the discretization of 
the Łukasiewicz disjunction ∨∗

Ł : [0, 1] × [0, 1] → [0, 1]100 defined as

∨∗
Ł(x, y) = min{x + y,1} · 100�

100
where  _ � is the floor function. On this �-algebra F, the following program P is defined:

〈c ←P n &P u,0.8〉
〈n ←P c,0.8〉
〈n ←P @(1,2)(h, f),0.6〉
〈h ←P f &G ∨∗

Ł (n, c),0.7〉
〈u ←G h &L f,0.7〉

〈f ←P u,0.9〉
〈a ←P @(3,1)(u, f),1.0〉
〈f ←P 1.0,0.8〉
〈n ←P 1.0,0.5〉

where c, n, h, f, u and a are as in Example 9.
We can see in Fig. 7 that operators @ and @(1,2) are associated with s-hyperarcs, where @ represents the composi-

tion of &G and ∨∗
Ł. The previous results cannot be applied to this logic program because these operators do not satisfy 

Equation (1). However, the iteration of the immediate consequence operator from the least interpretation terminates, 
as Table 2 shows. Thus, a new termination theorem that allows the use of finite range operators in the logic programs 
must be studied. �
15



JID:FSS AID:8242 /FLA [m3SC+; v1.352] P.16 (1-21)

J.C. Díaz-Moreno, J. Medina and J.R. Portillo Fuzzy Sets and Systems ••• (••••) •••–•••
Table 2
Computation of the lfp(TP ) of program P in Example 32.

f h u c n a

� 0 0 0 0 0 0

T 1
P (�) 0.8 0 0 0 0.5 0

T 2
P (�) 0.8 0.35 0 0 0.5 0.2

T 3
P (�) 0.8 0.35 0.15 0 0.5 0.2

T 4
P (�) 0.8 0.35 0.15 0.06 0.5 0.3125

T 5
P (�) 0.8 0.385 0.15 0.06 0.5 0.3125

T 6
P (�) 0.8 0.385 0.185 0.06 0.5 0.3125

T 7
P (�) 0.8 0.385 0.185 0.074 0.5 0.33875

T 8
P (�) 0.8 0.399 0.185 0.074 0.5 0.33875

T 9
P (�) 0.8 0.399 0.199 0.074 0.5 0.33875

T 10
P (�) 0.8 0.399 0.199 0.0796 0.5 0.34925

T 11
P (�) 0.8 0.399 0.199 0.0796 0.5 0.34925

Before introducing the aforementioned theorem, different definitions from [20] will be adapted into our framework 
and a technical lemma will be proved.

From now on, we will consider a multi-adjoint logic program P with finite dependences, which are defined on a 
�-algebra L containing finite range operators, or simply finite operators. Hence, the bodies of the rules 〈A ←i Bj , ϑ〉
in the program can be written as follows

Bj = @j [gj
1 (Dj

1), . . . , g
j
sj (D

j
sj ),C

i
1, . . . ,C

j
mj

]
where for each l ∈ {1, . . . , sj }, the formula Dj

l is a subterm of the body Bj , the argument of the outermost occurrence 

of a finite operator, which is denoted as gj
l . The elements Cj

l are the propositional symbols that are not influenced by 
finite operators, and @j is the aggregator operator given by the composition of all the operators in the body not in the 
scope of any finite operator. For each propositional symbol A, the set of all finite operators considered in PA will be 
denoted as G(PA). For example, from the rule above, we have that gj

1, . . . , gj
sj ∈ G(PA).

Because the finite operators can only increase a finite number of times, controlling this number in the iteration 
of TP will be fundamental for proving one of the most important termination theorems presented in this paper. The 
following definition has been adapted from the one introduced in [20].

Definition 33. The counting sets for P and A for all n ∈N , denoted as SA
n , are defined as follows:

SA
n = {k < n | there is g

j
l ∈ G(PA) s.t. gj

l (
̂

T k−1
P (�)(Dj

l )) < g
j
l (T̂ k

P (�)(Dj
l ))}

The hypergraph to be considered in the termination theorem will be a softer notion of the associated B-graph 
introduced in Definition 23, which accommodates Definition 19 to the hypergraph framework.

Definition 34. Given a multi-adjoint logic program P , the associated range B-graph of P is the labeled hyper-
graph Hr

P , where the vertices are the propositional symbols used in P and the labeled hyperarcs are the pairs 

(({Ci
1, . . . , C

j
mj

}, {A}), @j ) that are associated with each rule of the program

〈A ←i @j [gj

1 (Dj

1), . . . , g
j
sj (D

j
sj ),C

i
1, . . . ,C

j
mj

], ϑ〉
Notice that the associated range B-graph of a program, Hr

P , is a subhypergraph of HP . The associated range 
B-graph of the program in Example 32 is presented next.

Example 35. The program in Example 32 only considers a finite range operator, which is used in the rule

〈h ←P f &G ∨∗
Ł (n, c),0.7〉
16



JID:FSS AID:8242 /FLA [m3SC+; v1.352] P.17 (1-21)

J.C. Díaz-Moreno, J. Medina and J.R. Portillo Fuzzy Sets and Systems ••• (••••) •••–•••
Fig. 8. Associated range B-graph of program P in Example 32.

Hence, the associated range B-graph does not take into consideration the subterm ∨∗
Ł(n, c) because it is influenced by 

the finite range operator ∨∗
Ł and the labeled hyperarc associated with this rule is (({f}, {h}), &G). The other hyperarcs 

are obtained as in page 9. Fig. 8 depicts the associated range B-graph of P .

The previous definitions will be taken into account to prove the following technical lemma. Notice that this result 
generalizes Lemma 39 in [20] and clarifies the proof in the last step because the application of the inductive hypothesis 
in the aforementioned result required some extra explanation.

Lemma 36. Let P be a program on the �-algebra L, where the s-hyperarcs of the associated range B-graph corre-
spond to rules with an aggregator in the body satisfy Equation (1), and such that the set of relevant values for A with 
respect to T n

P (�) is a singleton for every propositional symbol A and iteration n. If T n
P (�)(A) < T n+1

P (�)(A), then 
either |SA

n | < |SA
n+1| or the culprit collection for T n+1

P (�)(A) is greater than that for T n
P (�)(A).

Proof. The proof will be given by induction on n. For the base case (i.e., when n = 0), we have that for every 
propositional symbol A, if ⊥ =� (A) < TP (�)(A), then it is necessary that a new rule be considered.

Now, we prove the inductive case. Hence, we suppose that the result is true for any propositional symbol and n = k, 
and we need to prove the result for k + 1.

If T k
P (�)(A) < T k+1

P (�)(A), then by the singleton hypothesis, there is a rule in P

ri = 〈A ←i Bj , ϑ〉
such that T k+1

P (�)(A) = ϑ & T̂ k
P (�)(Bj ), where Bj = @j [gj

1 (Dj

1), . . . , gj
sj (D

j
sj ),C

j

1 , . . . , Cj
mj

]). Concerning the it-
eration n because T k

P (�)(A) is the supremum of all contributions given by the rules with head A, by the supremum 
property, we have that

ϑ &i
̂

T k−1
P (�)(Bj ) ≤ T k

P (�)(A)

Therefore, by hypothesis, we obtain the following strict inequality

ϑ &i
̂

T k−1
P (�)(@j [gi

1(Di
1), . . . , g

i
si
(Di

si
),Ci

1, . . . ,C
i
mi

]) <

< ϑ &i T̂
k
P (�)(@j [gi

1(Di
1), . . . , g

i
si
(Di

si
),Ci

1, . . . ,C
i
mi

])
Because all of the operators in this expression are monotonic, the strict inequality arises when at least one of the 
following two cases holds.

1. If j ∈ {1, . . . , si} exists such that

gi
j (

̂
T k−1
P (�)(Di

j )) < gi
j (T̂

k
P (�)(Di

j ))

In this case, we straightforwardly obtain that |SA
k | < |SA

k+1|.
2. Otherwise, j ∈ {1, . . . , mi} must exist such that

T k−1(�)(Ci
j ) < T k (�)(Ci

j )
P P

17



JID:FSS AID:8242 /FLA [m3SC+; v1.352] P.18 (1-21)

J.C. Díaz-Moreno, J. Medina and J.R. Portillo Fuzzy Sets and Systems ••• (••••) •••–•••
In this case, we can ensure that no finite operator is considered in the rules in PCi
j
. Therefore, by the induction 

hypothesis we have that the culprit collection for T k
P (�)(Ci

j ) is greater than that for T k−1
P (�)(Ci

j ). Because this 

fact happens for all j ∈ {1, . . . , mi}, if the rule ri is not used in the culprit collection of some T k
P (�)(Ci

j ), then we 

can assert that the culprit collection for T k+1
P (�)(A) will be greater than that for T k

P (�)(A). Thus, in this case, 
we obtain the result.
Hence, it only remains to consider the case when the rule ri is in the culprit collection of some T k

P (�)(Ci
j ), which 

will lead us to a contradiction.
Therefore, we suppose that 〈A ←i Bj , ϑ〉 is in the culprit collection of T k

P (�)(Ci
j ). Hence, Ci

j ∈ AntSet(A). 

Indeed, we can ensure that A and Ci
j are in the same spc-component of the associated range B-graph Hr

P . Con-

sequently, we have that the term T m
P (�)(A) must appear in the computation of T k

P (�)(Cj ); that is, T k
P (�)(Ci

j ) =
f [T k

P (�)(A)], where f is the composition by all operators and values recursively appearing in the iterations of 
TP on � and Ci

j , and it satisfies f [x] � x, for all x ∈ L, because A and Ci
j are in the same spc-component and, 

by hypothesis, the operators of s-hyperparcs of the associated range B-graph satisfy Equation (1). Moreover, the 
aggregator @j also satisfies this equation because it is the label of a s-hyperarc of the associated range B-graph.
Therefore, the expression

@j [T̂ k
P (�)(gi

1(Di
1)), . . . , T̂

k
P (�)(gi

si
(Di

si
)), T k

P (�)(Ci
1), . . . , T

k
P (�)(Ci

j ), . . . , T
k
P (�)(Ci

mi
)]

is equal to

@j [T̂ k
P (�)(gi

1(Di
1)), . . . , T̂

k
P (�)(gi

si
(Di

si
)), T k

P (�)(Ci
1), . . . , f [T m

P (�)(A)], . . . , T k
P (�)(Ci

mi
)]

which implies that T k+1
P (�)(A) � T m

P (�)(A) because &i and @j satisfy Equation (1). As a consequence of this 
inequality, the assumed strict inequality and the monotonicity of TP , we have the chain of inequalities

T m
P (�)(A) � T k

P (�)(A) ≺ T k+1
P (�)(A) � T m

P (�)(A)

which is a contradiction and finishes the proof. �
Finally, the last termination theorem can be proven.

Theorem 37. Given a multi-adjoint �-algebra L and a multi-adjoint logic program P with finite dependences. If the s-
hyperarcs of the associated range B-graph correspond to rules with an aggregator in the body satisfying Equation (1), 
and for every iteration n and propositional symbol A, the set of relevant values for A with respect to T n

P (�) is a 
singleton, then TP terminates for every query.

Proof. For every propositional symbol A, we have that the cardinals |SA
n | cannot infinitely increase, due to the finitude 

of the operators gj
l in G(PA). Moreover, the culprit collections for A in each iteration are finite because the program 

has finite dependences. Thus, by Lemma 36, the iteration of TP must reach the least fixed point in a finite number of 
steps; that is, TP terminates for every query. �

An immediate consequence of the last result is its consideration on the unit interval, which also highlights its 
usefulness.

Corollary 38. If the �-algebra is defined on [0, 1], and the s-hyperarcs of the associated range B-graph correspond 
to rules with an aggregator in the body satisfy Equation (1), then TP terminates for every query.

This last theorem makes the hypotheses of previous termination results more flexible, thus increasing the appli-
cability scope. For example, it can be applied to the program in Example 32, obtaining that TP terminates for every 
query, unlike Theorem 30.
18



JID:FSS AID:8242 /FLA [m3SC+; v1.352] P.19 (1-21)

J.C. Díaz-Moreno, J. Medina and J.R. Portillo Fuzzy Sets and Systems ••• (••••) •••–•••
5. Conclusions and future work

We have shown that labeled directed hypergraphs capture more information from a program than graphs, indeed 
the original program can be recovered from this hypergraph. Hence, this new representation allows the use of hyper-
graph theory in logic programming. Therefore, hypergraphs provide a valuable representation of multi-adjoint logic 
programs, which both facilitates visualizing and also contains all of the information associated with the structure of 
these symbolically rich programs. For example, it has offered the possibility of generalizing the most important ter-
mination theorems given in [20] because it is not possible to directly apply the result in the aforementioned paper. 
For instance, it would be necessary to prove in any case Theorem 29. Moreover, Theorems 28 and 37 in [20] require 
programs with respect to local multi-adjoint �-algebras. Hence, the rules of the original program must be adapted to 
new ‘subprograms’ that satisfy the properties and it must be proven that the new programs are semantically equivalent 
to the original, among other requirements. With consideration of hypergraphs, only the original program is required 
and the new results with more general hypotheses can be proven, which adapts the results in [20]. Specifically, the first 
termination theorem introduced in this paper allows the use of general aggregators in the programs when they are in 
s-hyperarcs of the associated B-graph. The second termination theorem supports the use of other family of operators 
with finite range. Consequently, the flexibility to model a database to know a priori the termination character of the 
obtained program is considerably improved, and so the number of applications in which the termination theorems can 
be used also is much broader. For example, they can be considered in many operational semantics given in fuzzy logic 
programming [19,37–39], due to the narrow relationship with the TP operator. Hence, it is possible to know whether 
these computational procedures will finish for every query in advance. Moreover, the termination for every query 
can be studied independently by applying the termination theorems only to the subprogram PA and the associated 
subhypergraph HPA

. In the future, this application will be studied in more depth for the most interesting operational 
semantics.

Furthermore, the obtained results will be studied in other applications and more results will be analyzed. The 
consideration of directed hypergraphs has provided an extra level of representation of logic programs. We will use this 
relationship in other frameworks, such as for introducing new computational procedures for obtaining the least fixed 
point of a (multi-adjoint) logic program and to detect possible bottlenecks in the program. Other important goals will 
be to adapt the obtained termination results for handling negations in non-monotonic logic programming [13,14,46]
and to be applied in first-order logic programming [17,19,28,36,39,50], which will allow us to increase the range of 
possible applications even further.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

References

[1] P. Alimonti, E. Feuerstein, U. Nanni, Linear time algorithms for liveness and boundedness in conflict-free Petri nets, in: Proceedings of the 
1st Latin American Symposium on Theoretical Informatics, LATIN ’92, Springer-Verlag, Berlin, Heidelberg, 1992, pp. 1–14.

[2] X. Allamigeon, On the complexity of strongly connected components in directed hypergraphs, Algorithmica 69 (2) (Jun 2014) 335–369.
[3] G. Ausiello, A. D’Atri, D. Saccà, Minimal Representations of Directed Hypergraphs and Their Application to Database Design, Springer 

Vienna, Vienna, 1984, pp. 125–157.
[4] G. Ausiello, R. Giaccio, G.F. Italiano, U. Nanni, Optimal traversal of directed hypergraphs, Technical report International Computer Science 

Institute, UC Berkeley, 1992.
[5] G. Ausiello, G.F. Italiano, On-line algorithms for polynomially solvable satisfiability problems, J. Log. Program. 10 (1) (1991) 69–90.
[6] G. Ausiello, L. Laura, Directed hypergraphs: introduction and fundamental algorithms—a survey, Theor. Comput. Sci. 658 (PB) (2017) 

293–306.
[7] G. Ausiello, M.G. Scutellà, Directed hypergraphs as a modelling paradigm, Riv. AMASES 21 (1–2) (1998) 97–123.
[8] D. Azzolini, F. Riguzzi, E. Lamma, Studying transaction fees in the bitcoin blockchain with probabilistic logic programming, Information 

10 (11) (2019).
[9] A. Bădică, C. Bădică, M. Ivanović, D. Logofătu, Exploring the space of block structured scheduling processes using constraint logic program-

ming, in: I. Kotenko, C. Badica, V. Desnitsky, D. El Baz, M. Ivanovic (Eds.), Intelligent Distributed Computing XIII, Springer International 
Publishing, Cham, 2020, pp. 149–159.

[10] C. Berge, Graphs and Hypergraphs, Elsevier Science Ltd, 1985.
19

http://refhub.elsevier.com/S0165-0114(22)00041-0/bib71B3F1390C55CDB8B35749B77D9AA470s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib71B3F1390C55CDB8B35749B77D9AA470s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib12866690814B5B1D5CD9D7E5CE29D15Cs1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib28B4FE4E05F3523A8830F4F249B1E80Es1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib28B4FE4E05F3523A8830F4F249B1E80Es1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib9BAAA48D00AF1F2B66C5981744984455s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib9BAAA48D00AF1F2B66C5981744984455s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib3949675657ABF495984F6503B54CF0AFs1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib99511063635FE8877CF4249B13B96252s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib99511063635FE8877CF4249B13B96252s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib5258F001F2C237AAE85169186A8396E7s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibE17CC27221CC69F484E1B4D3756A52ABs1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibE17CC27221CC69F484E1B4D3756A52ABs1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib23769ED61EEF4098ADB74BB932FEF600s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib23769ED61EEF4098ADB74BB932FEF600s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib23769ED61EEF4098ADB74BB932FEF600s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibCD0406D6F3AACF71367187B1635CE52Es1


JID:FSS AID:8242 /FLA [m3SC+; v1.352] P.20 (1-21)

J.C. Díaz-Moreno, J. Medina and J.R. Portillo Fuzzy Sets and Systems ••• (••••) •••–•••
[11] V. Chandru, C.R. Coullard, P.L. Hammer, M. Montañez, X. Sun, On renamable Horn and generalized Horn functions, Ann. Math. Artif. Intell. 
1 (1990) 33–48.

[12] M.E. Cornejo, D. Lobo, J. Medina, Characterizing fuzzy y-models in multi-adjoint normal logic programming, in: J. Medina, M. Ojeda-
Aciego, J.L. Verdegay, I. Perfilieva, B. Bouchon-Meunier, R.R. Yager (Eds.), Information Processing and Management of Uncertainty in 
Knowledge-Based Systems. Applications, Springer International Publishing, Cham, 2018, pp. 541–552.

[13] M.E. Cornejo, D. Lobo, J. Medina, Syntax and semantics of multi-adjoint normal logic programming, Fuzzy Sets Syst. 345 (2018) 41–62.
[14] M.E. Cornejo, D. Lobo, J. Medina, Relating multi-adjoint normal logic programs to core fuzzy answer set programs from a semantical 

approach, Mathematics 8 (6) (2020) 881.
[15] M.E. Cornejo, D. Lobo, J. Medina, Extended multi-adjoint logic programming, Fuzzy Sets Syst. 388 (2020) 124–145.
[16] M.E. Cornejo, J. Medina, E. Ramírez-Poussa, A comparative study of adjoint triples, Fuzzy Sets Syst. 211 (2013) 1–14.
[17] M.E. Cornejo, J. Medina Moreno, C. Rubio-Manzano, Towards a full fuzzy unification in the Bousi prolog system, in: 2018 IEEE International 

Conference on Fuzzy Systems (FUZZ-IEEE), 2018, pp. 1–7.
[18] C. Damásio, J. Medina, M. Ojeda-Aciego, Sorted Multi-Adjoint Logic Programs: Termination Results and Applications, Lecture Notes in 

Artificial Intelligence, vol. 3229, 2004, pp. 252–265.
[19] C. Damásio, J. Medina, M. Ojeda-Aciego, A tabulation procedure for first-order residuated logic programs: soundness, completeness and 

optimisations, in: Proc. FUZZ-IEEE 2006, in: IEEE Congress on Computational Intelligence (section Fuzzy Systems), 2006, pp. 9576–9583.
[20] C. Damásio, J. Medina, M. Ojeda-Aciego, Termination of logic programs with imperfect information: applications and query procedure, J. 

Appl. Log. 5 (2007) 435–458.
[21] C.V. Damásio, L.M. Pereira, Monotonic and residuated logic programs, in: Symbolic and Quantitative Approaches to Reasoning with Uncer-

tainty, ECSQARU’01, in: Lecture Notes in Artificial Intelligence, vol. 2143, 2001, pp. 748–759.
[22] C.V. Damásio, L.M. Pereira, Termination results for sorted multi-adjoint logic programming, in: Information Processing and Management of 

Uncertainty for Knowledge-Based Systems, IPMU?04, 2004, pp. 1879–1886.
[23] M. Dekhtyar, A. Dekhtyar, V. Subrahmanian, Hybrid probabilistic programs: algorithms and complexity, in: Proc. of 1999 Conference on 

Uncertainty in AI, 1999.
[24] A. del Val, On 2-SAT and renamable Horn, in: Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth 

Conference on Innovative Applications of Artificial Intelligence, AAAI Press/The MIT Press, 2000, pp. 279–284.
[25] J.C. Díaz-Moreno, J. Medina, J.R. Portillo, Towards the use of hypergraphs in multi-adjoint logic programming, Stud. Comput. Intell. 796 

(2019) 53–59.
[26] W.F. Dowling, J.H. Gallier, Linear-time algorithms for testing the satisfiability of propositional Horn formulae, J. Log. Program. 1 (3) (1984) 

267–284.
[27] M.v. Emden, R. Kowalski, The semantics of predicate logic as a programming language, J. ACM 23 (4) (1976) 733–742.
[28] F. Formato, G. Gerla, M. Sessa, Similarity-based unification, Fundam. Inform. 41 (4) (2000) 393–414.
[29] A. Frank, T. Király, Z. Király, On the orientation of graphs and hypergraphs, in: Submodularity, Discrete Appl. Math. 131 (2) (2003) 385–400.
[30] G. Gallo, G. Longo, S. Pallottino, S. Nguyen, Directed hypergraphs and applications, Discrete Appl. Math. 42 (2–3) (apr 1993) 177–201.
[31] G. Gallo, D. Pretolani, A new algorithm for the propositional satisfiability problem, Discrete Appl. Math. 60 (1) (1995) 159–179.
[32] G. Gallo, G. Urbani, Algorithms for testing the satisfiability of propositional formulae, J. Log. Program. 7 (1) (1989) 45–61.
[33] F. Harary, Graph Theory, Addison-Wesley Series in Mathematics, Addison Wesley, 1969.
[34] R.G. Jeroslow, R.K. Martin, R.L. Rardin, J. Wang, Gainfree Leontief substitution flow problems, Math. Program. 57 (1992) 375–414.
[35] P. Julián-Iranzo, J. Medina, M. Ojeda-Aciego, On reductants in the framework of multi-adjoint logic programming, Fuzzy Sets Syst. 317 

(2017) 27–43.
[36] P. Julián, G. Moreno, J. Penabad, On fuzzy unfolding: a multi-adjoint approach, Fuzzy Sets Syst. 154 (1) (2005) 16–33.
[37] P. Julián-Iranzo, J. Medina, P.J. Morcillo, G. Moreno, M. Ojeda-Aciego, An Unfolding-Based Preprocess for Reinforcing Thresholds in Fuzzy 

Tabulation, Lecture Notes in Computer Science, vol. 7902, 2013, pp. 647–655.
[38] P. Julián-Iranzo, J. Medina, G. Moreno, M. Ojeda-Aciego, Thresholded tabulation in a fuzzy logic setting, Electron. Notes Theor. Comput. 

Sci. 248 (2009) 115–130.
[39] P. Julián-Iranzo, G. Moreno, J. Penabad, Thresholded semantic framework for a fully integrated fuzzy logic language, J. Log. Algebraic 

Methods Program. 93 (2017) 42–67.
[40] H. Karimi, A. Kamandi, A learning-based ontology alignment approach using inductive logic programming, Expert Syst. Appl. 125 (2019) 

412–424.
[41] M. Kifer, V.S. Subrahmanian, Theory of generalized annotated logic programming and its applications, J. Log. Program. 12 (1992) 335–367.
[42] D. Klein, C.D. Manning, Parsing and hypergraphs, in: Proceedings of the Seventh International Workshop on Parsing Technologies, Beijing, 

China, Oct. 2001, pp. 123–134.
[43] T. Kuhr, V. Vychodil, Fuzzy logic programming reduced to reasoning with attribute implications, Fuzzy Sets Syst. 262 (2015) 1–20, Theme: 

Logic and Computer Science.
[44] L.V.S. Lakshmanan, F. Sadri, On a theory of probabilistic deductive databases, Theory Pract. Log. Program. 1 (1) (2001) 5–42.
[45] J. Lloyd, Foundations of Logic Programming, Springer Verlag, 1987.
[46] N. Madrid, M. Ojeda-Aciego, On the existence and unicity of stable models in normal residuated logic programs, Int. J. Comput. Math. 89 (3) 

(2012) 310–324.
[47] S.L. Marcin Suszyński, Jan Žurek, Modelling of assembly sequences using hypergraph and directed graph, Tehn. Vjesnik 21 (2014) 

1229–1233.
[48] J. Medina, M. Ojeda-Aciego, A. Valverde, P. Vojtáš, Towards Biresiduated Multi-Adjoint Logic Programming, Lecture Notes in Artificial 

Intelligence, vol. 3040, 2004, pp. 608–617.
20

http://refhub.elsevier.com/S0165-0114(22)00041-0/bibA3F74127903BCD9EA38A88143FF5F5C7s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibA3F74127903BCD9EA38A88143FF5F5C7s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibC152BA64C917D80BF9BD3240B88969B4s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibC152BA64C917D80BF9BD3240B88969B4s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibC152BA64C917D80BF9BD3240B88969B4s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibDC4D42E20EAB7A9A1219DCA8912BFB1Ds1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibB3D86C32CB075DDA47365EC1277B1001s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibB3D86C32CB075DDA47365EC1277B1001s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib561A9286ECE34C0FAEDBF63CA34A6EE9s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib6612F620E9ECF915602739425AB64C7Bs1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib1559578D4F8ED9C16817A049284097E7s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib1559578D4F8ED9C16817A049284097E7s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib9C6F309658817C2708D559DBFE042D57s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib9C6F309658817C2708D559DBFE042D57s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib36CB4CD7D2BED23E251A9CFD8A0D3B19s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib36CB4CD7D2BED23E251A9CFD8A0D3B19s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib2C3805A96346B9295C95C34455B50671s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib2C3805A96346B9295C95C34455B50671s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibBE2B0203E2C1488D7B1F41217E3412A0s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibBE2B0203E2C1488D7B1F41217E3412A0s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib046CF227F22186E438883B711C1ACD61s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib046CF227F22186E438883B711C1ACD61s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib52B920AC5411C4B922BF29DCEA6F8080s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib52B920AC5411C4B922BF29DCEA6F8080s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib4B216EAFFFFBB71BFDCC8965A3D43386s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib4B216EAFFFFBB71BFDCC8965A3D43386s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibBD15741F6EB9BACEA7D47EED4A138347s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibBD15741F6EB9BACEA7D47EED4A138347s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib9A2981D3AF9352E741C6D6FC5FBC4D85s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib9A2981D3AF9352E741C6D6FC5FBC4D85s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibB6556EE7B0038D3F4F15820F9341395Bs1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibED1EE98A6C3D77772DE2FC9C14803620s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib4B6B72632635C5200AC6AF6EC69B8912s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib70BBE4041C81FC2C780C66C9C5337AA0s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib000B631922A04E84F2C31FB6D63BBA49s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib7065254A141897CB74061CD05D0E397Fs1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib9C4D89D69A9AAD4F74626CCCDAB9280Cs1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib9FB8AA67937C194271E88C82EBFC35BAs1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib25E72B09422EA81D681FFAAD8ABBD6C0s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib25E72B09422EA81D681FFAAD8ABBD6C0s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib01E66CDE1F744C2B471BAD2BC59DD5B0s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib0E89D21F117CDD11702DC87B49D57DFBs1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib0E89D21F117CDD11702DC87B49D57DFBs1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibC78B6434D34C8A589C47EB9E70404503s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibC78B6434D34C8A589C47EB9E70404503s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib4330E6FAF6DB368B3DC570A52F15AFEAs1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib4330E6FAF6DB368B3DC570A52F15AFEAs1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibCB1A4F6BED2956D715C1395462ACA052s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibCB1A4F6BED2956D715C1395462ACA052s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibBBE42EAA7764C91D334CB43068F0CB9Ds1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib5EBBC4F913984CB5A31F17C88C49D04Bs1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib5EBBC4F913984CB5A31F17C88C49D04Bs1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib446EF9D6EEF2B4C3A384603690AF2C0Ds1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib446EF9D6EEF2B4C3A384603690AF2C0Ds1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib706EDC2F8BA87399A27ED723D0540C29s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibA964B8FD0E9509F67DC793E14541F6F2s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib0AC330BECDBC43089A1C22D666E10AF5s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib0AC330BECDBC43089A1C22D666E10AF5s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibE579FD33282F306874B9CF84FAB0F6C4s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibE579FD33282F306874B9CF84FAB0F6C4s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibA8B6112AD0BA89C080AA622EA2576918s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibA8B6112AD0BA89C080AA622EA2576918s1


JID:FSS AID:8242 /FLA [m3SC+; v1.352] P.21 (1-21)

J.C. Díaz-Moreno, J. Medina and J.R. Portillo Fuzzy Sets and Systems ••• (••••) •••–•••
[49] J. Medina, M. Ojeda-Aciego, P. Vojtáš, Multi-adjoint logic programming with continuous semantics, in: Logic Programming and Non-
Monotonic Reasoning, LPNMR’01, in: Lecture Notes in Artificial Intelligence, vol. 2173, 2001, pp. 351–364.

[50] J. Medina, M. Ojeda-Aciego, P. Vojtáš, Similarity-based unification: a multi-adjoint approach, Fuzzy Sets Syst. 146 (2004) 43–62.
[51] N.J. Nilsson, Principles of Artificial Intelligence, Morgan Kaufmann, San Francisco (CA), 1980.
[52] L. Paulík, Best Possible Answer is Computable for SLD-Resolution, Lecture Notes in Logic, vol. 6, 1996, pp. 257–266.
[53] D. Pretolani, Satisfiability and Hypergraphs, PhD thesis, Università di Pisa, 1993.
[54] D. Pretolani, A directed hypergraph model for random time dependent shortest paths, Eur. J. Oper. Res. 123 (1998) 315–324.
[55] F. Sáenz-Pérez, Applying constraint logic programming to SQL semantic analysis, Theory Pract. Log. Program. 19 (5–6) (2019) 808–825.
[56] J. Schlipf, F. Annexstein, J. Franco, R. Swaminathan, On finding solutions for extended Horn formulas, Inf. Process. Lett. 54 (3) (1995) 

133–137.
[57] M.G. Scutella, A note on Dowling and Gallier’s top-down algorithm for propositional Horn satisfiability, J. Log. Program. 8 (3) (1990) 

265–273.
[58] Y. Tadesse, Using edge-induced and vertex-induced subhypergraph polynomials, Math. Scand. 117 (2) (2015) 161–169.
[59] A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pac. J. Math. 5 (2) (1955) 285–309.
[60] M. Thakur, R. Tripathi, Linear connectivity problems in directed hypergraphs, Theor. Comput. Sci. 410 (27) (2009) 2592–2618.
[61] A. Torres, J. Araoz, Combinatorial models for searching in knowledge bases, Acta Cient. Venez. 39 (1988) 387–394.
[62] J.D. Ullman, Principles of Database Systems, 2nd edition, W. H. Freeman & Co., USA, 1983.
[63] A.V. Zeigarnik, O.N. Temkin, D. Bonchev, Chemical Reaction Networks: A Graph-Theoretical Approach, CRC Press, 1996.
21

http://refhub.elsevier.com/S0165-0114(22)00041-0/bibADFE9BAFBE442734D97810BA9D7BC937s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibADFE9BAFBE442734D97810BA9D7BC937s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib8B9878F1F4D0B3F3A0E126E2BAA7F516s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib273857F56BB860128BC25954DAA66617s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibC1AF5347C9C0E1B34B0DCE42A4F1C8F1s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibC24A4E05456B36649441574BEDBC8369s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib78F5CC43FBAA76FE1507067DF65ACF7Cs1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibD626C97F70E8CD65CDA123C04111BDF2s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib4EAAC356E322E5461B36FF4578ED91A5s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib4EAAC356E322E5461B36FF4578ED91A5s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibCDF8BE1FA37EF2A972C236983E62C9AEs1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bibCDF8BE1FA37EF2A972C236983E62C9AEs1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib75F994ADD29BD9574011D390C686614As1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib56D37E829B946A7B34E5B38DA445B0FBs1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib9564A06F4847C8E55064FB22E1E6F7BFs1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib65D05707D56BC3099F3B9C59745EE014s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib40527C8D252C1EF39BD3F5ABD3A72BA0s1
http://refhub.elsevier.com/S0165-0114(22)00041-0/bib46752ABF0F5DC3E0F6BDEE767C9701CCs1

	Fuzzy logic programs as hypergraphs. Termination results
	1 Introduction
	2 Preliminaries
	2.1 Basic definitions of hypergraphs
	2.2 Multi-adjoint logic programming

	3 Representing programs by labeled directed hypergraphs
	3.1 Edge-labeled B-graphs for representing multi-adjoint logic programs
	3.2 Antecedent sets and associated hypergraphs
	3.3 Strongly path-connected components

	4 Termination results
	5 Conclusions and future work
	Declaration of competing interest
	References


