Positive Representations of L^1 of a Vector Measure

Ricardo del Campo and Enrique A. Sánchez-Pérez

Abstract. We characterize the vector measures n on a Banach lattice such that the map $\|\int |\cdot| dn \|$ provides a quasi-norm which is equivalent to the canonical norm $\|\cdot\|_n$ of the space $L_1(n)$ of integrable functions as an specific type of transformations of positive vector measures that we call cone-open transformations. We also prove that a vector measure m on a Banach space X constructed as a cone-open transformation of a positive vector measure can be considered in some sense as a positive vector measure by defining a new order on X.

Mathematics Subject Classification (2000). 46G10; 46E30.

Keywords. Vector measures, integration, positive operators.

1. Introduction and notation

Let $m: \Sigma \to X$ be a (countably additive) vector measure, where X is a Banach lattice. It is said that m is *positive* if $m(A) \in C_X^+$ for every $A \in \Sigma$, where C_X^+ is the positive cone of X. It is well-known that in this case the norm of the space $L^1(m)$ of integrable functions with respect to m can be computed by the formula

$$||f||_m = \left\| \int |f| dm \right\|, \quad f \in L^1(m), \tag{1}$$

(see Lemma 1.2 for a short proof of this result). The aim of this paper is to characterize the class of vector measures for which this formula gives an equivalent norm – or at least a quasi-norm – for $L^1(m)$. A problem related to this one has been recently studied in [5, Section 4], where a technique to construct optimal representations of $L^1(m)$ of a positive vector measure m has been introduced. The motivation of the problem is given by the fact that any order continuous Banach function space with a weak unit can be written as $L^1(m)$ of a vector measure m([3, Theorem 8]). Therefore it seems natural to analyze when there is a representation of $L^1(m)$ using a vector measure n (i.e. $L^1(m) = L^1(n)$) such that the norm can be computed in an easy way using formula (1). In order to develop our analysis, we define and study a particular class of transformations of vector measures defined by means of linear operators preserving certain order relations that we call cone-open transformations. Actually, we prove in Section 2 that the class of vector measures m satisfying that formula (1) gives a quasi-norm for $L^1(m)$ coincides with the class of cone-open transformations of positive vector measures.

It is easy to find examples of vector measures for which the expression given in (1) is not a norm for $L^1(m)$. For instance, if $\nu : \Sigma \to \mathbb{R}$ is a signed measure (with non-trivial positive and negative parts) then there is always a non-zero function $f \in L^1(\nu)$ such that $\int |f| d\nu = 0$, and then the map $f \mapsto \int |f| d\nu$ does not give a norm for $L^1(\nu)$.

Although there are a lot of examples of non-positive vector measures m such that formula (1) gives a norm for $L^1(m)$ (see for instance Example 2.1), we study if in the case that this property holds it is possible to define a suitable order on X such that m can be considered in some sense as a *positive* vector measure. We also answer in the positive this question, although further requirements for the coneopen transformations involved are needed; in particular, we need to introduce the notion of lattice generating operator. This is done in Section 3.

In the rest of this section we give some definitions and basic results. Let X be a real Banach space with dual X^* , (Ω, Σ) a measurable space and $m : \Sigma \longrightarrow X$ a vector measure. For any $x^* \in X^*$ we define $\langle m, x^* \rangle$ to be the scalar measure given by $\langle m, x^* \rangle (A) := \langle m(A), x^* \rangle$, for all $A \in \Sigma$. Following Lewis in [6] we introduce the notion of integrable function with respect to m.

Definition 1.1. A measurable function f is *integrable* with respect to m if

- (i) f is integrable with respect to the scalar measure $\langle m, x^* \rangle$, for all $x^* \in X^*$.
- (ii) For every $A \in \Sigma$ there exists an element $\int_A f dm \in X$ such that

$$\left\langle \int_{A} f dm, x^{*} \right\rangle = \int_{A} f d \left\langle m, x^{*} \right\rangle.$$

It is well-known that this definition is equivalent to the one given by Bartle, Dunford and Schwartz in [2]. The space $L^1(m)$ is the Banach lattice (of classes) of integrable functions with respect to m equipped with the norm

$$||f||_m := \sup_{x^* \in B_{X^*}} \int |f| \ d|\langle m, x^* \rangle|, \ f \in L^1(m)$$

where $|\langle m, x^* \rangle|$ denotes the variation of the measure $\langle m, x^* \rangle$ In fact, $L^1(m)$ is a Köthe function space over any measure of the type $\mu = |\langle m, x^* \rangle|$ that satisfies the Rybakov Theorem (see [7, 1.b.17] for the definition of Köthe function space and [4, IX.2] for the Rybakov Theorem). The order in $L^1(m)$ is the usual μ -almost everywhere order. Note that $L^1(m)$ reduces to the ordinary space of Lebesgue integrable functions if the measure m is scalar.

We will use standard notation of Riesz spaces and Banach lattices which can be found in [1] and [8]. We recall that a *lattice* is a partially ordered set (X, \leq) such that every subset consisting of two elements has supremum and infimum. We denote by $x \vee y$ and $x \wedge y$ the supremum and the infimum of $\{x, y\}$, respectively. On the other hand, (X, \leq) is said to be an *ordered vector space* if X is a vector space and \leq is a partial order compatible with the algebraic structure of X, i.e.,

(i) $x \le y$ implies $x + z \le y + z$ for every $x, y, z \in X$, and

(ii) $x \ge 0$ implies $\alpha x \ge 0$ for each real number $\alpha \ge 0$ and for every $x \in X$.

An ordered vector space that is also a lattice is called a *Riesz space*. If (X, \leq) is a Riesz space, we write C_X^+ for its *positive cone*, that is, the set $\{x \in X : x \geq 0\}$. Given $x \in X$ the *positive part* x^+ , the *negative part* x^- , and the *absolute value* |x| of x are respectively defined by $x^+ := x \lor 0$, $x^- := (-x) \lor 0$, $|x| := x \lor (-x)$ and they verify $x = x^+ - x^-$ and $|x| = x^+ + x^-$.

A norm in $\|\cdot\|$ on a Riesz space X is a *lattice norm* if $|x| \leq |y|$ implies $\|x\| \leq \|y\|$ for all $x, y \in X$. A Riesz space equipped with a lattice norm is called a *normed Riesz space* and a complete normed Riesz space is called a *Banach lattice*.

We also recall that a *quasi-norm* on a vector space X is any map $\|\cdot\| : X \longrightarrow \mathbb{R}^+$ verifying the following properties:

- (i) ||x|| = 0 if and only if x = 0.
- (ii) $\|\alpha x\| = |\alpha| \|x\|$, for all $\alpha \in \mathbb{R}$ and $x \in X$.
- (iii) There exists $M \ge 1$ such that $||x + y|| \le M(||x|| + ||y||)$, for all $x, y \in X$. Note that if the constant M is equal to 1 then $||\cdot||$ is in fact a norm.

To finish this introductory section and for the purpose of completeness we prove the following result.

Lemma 1.2. If X is a Banach lattice and $m : \Sigma \longrightarrow X$ is a positive vector measure, then $||f||_m = ||\int |f|dm||, \forall f \in L^1(m).$

Proof. Since m is positive and the integration map $I_m : L^1(m) \to X$ is continuous, it is also positive. Therefore, for every $f \in L^1(m)$ the element $\int |f| dm$ belongs to C_X^+ and then

$$\begin{split} \|f\|_m &\geq \sup_{x^* \in B_{X^*}} \langle \int |f| dm, x^* \rangle = \left\| \int |f| dm \right\| \\ &= \sup_{x^* \in B_{X^*}} \langle \int |f| dm, |x^*| \rangle \ = \sup_{x^* \in B_{X^*}} \int |f| d| \langle m, |x^*| \rangle| \geq \|f\|_m, \end{split}$$

since X^* is also a Banach lattice and thus $||x^*|| = ||x^*||$ for every $x^* \in X^*$. \Box

2. The first representation theorem

Although the positivity of the measure m provides the alternative formula for the norm of $L^1(m)$ given in Lemma 1.2, the converse is not true: there are non-positive measures such that formula (1) also gives the norm $\|\cdot\|_m$. Let us show this with an example.

Example 2.1. Consider the Lebesgue measure space $([0,1], \Sigma, \mu)$ and the vector measure $\tau : \Sigma \to \ell_2$ given by

$$\tau(A) := \sum_{n=1}^{\infty} \frac{(-1)^n}{2^n} \mu(A_n \cap A) e_n, \quad A \in \Sigma,$$

where $\{A_n : n = 1, 2, ...\}$ is a non-trivial measurable partition of [0, 1] and $\{e_n : n = 1, 2, ...\}$ is the canonical basis of ℓ_2 . A direct calculation shows that, although the measure is clearly not positive, $\|\int |\cdot| d\tau \| = \|\cdot\|_{\tau}$.

The purpose of this section is to describe the class of measures n yielding a quasi-norm $\|\int |\cdot| dn \|$ equivalent to $\|\cdot\|_n$. To this end, we introduce the notion of cone-open transformation of a measure.

Definition 2.2. Let X be a normed Riesz space and Y a normed space. A linear and continuous operator $S : X \longrightarrow Y$ is called a *cone-open* operator (resp. a *cone-isometry*) if there exists $K \ge 0$ such that $||S(x)|| \ge K||x||, \forall x \in C_X^+$ (resp. $||S(x)|| = ||x||, \forall x \in C_X^+$).

We also introduce the dual notion in the following sense: let X and Y be two normed spaces and assume that X is also a Riesz space. A linear operator $S: X \longrightarrow Y$ is said to be *cone-continuous* if there exists $Q \ge 0$ such that $||S(x)|| \le Q||x||, \forall x \in C_X^+$.

However, whenever X is a normed Riesz space, it is easy to see that if S is cone-continuous then S is in fact continuous (and hence both concepts coincide). To see this, take an element x of X. Then

$$||S(x)|| = ||S(x^{+} - x^{-})|| \le ||S(x^{+})|| + ||S(x^{-})|| \le 2Q \cdot \max\{||x^{+}||, ||x^{-}||\} \le 2Q \cdot ||x||,$$

since $|x^{+}| \le |x|, |x^{-}| \le |x|$ and $||\cdot||$ is a lattice norm.

Definition 2.3. Given a vector measure $m : \Sigma \longrightarrow X$ and a cone-open operator $S : X \longrightarrow Y$, we will say that $n := S \circ m$ is a *cone-open transformation* of the measure m.

Proposition 2.4. Let X be a Banach lattice and Y a Banach space. If $m : \Sigma \longrightarrow X$ is a vector measure and $S : X \longrightarrow Y$ is a linear and continuous operator, then $n := S \circ m$ is also a vector measure, $L^1(m) \subset L^1(n)$, and $\int_A f dn = S(\int_A f dm)$, $\forall f \in L^1(m), \forall A \in \Sigma$.

Moreover, if S is cone-open (resp. cone-isometry) and m is positive then n and m are equivalent vector measures. Thus, $\|\int |\cdot| dn \|$ is a quasi-norm (resp. norm) on $L^1(m)$.

Proof. The first part of the proposition is well-known. Given $f \in L^1(m)$ and $y^* \in Y^*$, it is clear that $\langle m, S^*(y^*) \rangle = \langle n, y^* \rangle$. Since f is integrable with respect to $\langle m, S^*(y^*) \rangle$ we have that f is integrable with respect to $\langle n, y^* \rangle$ for all $y^* \in Y^*$, and from

$$\langle S\left(\int_A fdm\right), y^* \rangle = \langle \left(\int_A fdm\right), S^*(y^*) \rangle = \int_A fd\langle m, S^*(y^*) \rangle = \int_A fd\langle n, y^* \rangle,$$

for every $y^* \in Y^*$, we conclude that $f \in L^1(n)$ with $\int_A f dn = S(\int_A f dm)$.

Note that m(A) = 0 always implies that n(A) = 0 and, if S is cone-open and m is positive, the converse is also true. Moreover, in this case, it is clear that $\|\int |f|dn\| = 0$ if and only if f = 0, $\|\int |\alpha f|dn\| = |\alpha| \|\int |f|dn\|$ and, since there exist $K, Q \ge 0$ such that $K\|x\| \le \|S(x)\| \le Q\|x\|$ for all $x \in C_X^+$, we deduce that

$$\begin{split} \left\| \int |f+g|dn \right\| &= \left\| S\left(\int |f+g|dm \right) \right\| \le Q \left\| \int |f+g|dm \right\| \\ &\le Q\left(\left\| \int |f|dm \right\| + \left\| \int |g|dm \right\| \right) \le \frac{Q}{K} \left(\left\| S\left(\int |f|dm \right) \right\| + \left\| S\left(\int |g|dm \right) \right\| \right) \\ &\le \frac{Q}{K} \left(\left\| \int |f|dn \right\| + \left\| \int |g|dn \right\| \right). \end{split}$$

Therefore $\|\int |\cdot|dm\|$ is a quasi-norm (and in fact a norm if and only if Q = K, that is, if S is a cone-isometry).

Proposition 2.4 guarantees that every cone-open transformation of a positive measure yield a quasi-norm $\|\int |\cdot| dn \|$ on $L^1(m)$. It is a natural matter to study the relation of these quasi-norms with the canonical norm on $L^1(n)$.

To finish this section we characterize vector measures for which the function $f \mapsto \int |f| dm$ gives an equivalent expression for the norm of $L^1(m)$.

Proposition 2.5. Let $m : \Sigma \longrightarrow X$ be a positive vector measure, $S : X \longrightarrow Y$ be a cone-open operator and $n := S \circ m$. Then:

- (i) The quasi-norm $\|\int |\cdot| dn \|$ is equivalent to the norm $\|\int |\cdot| dm \|$ on $L^1(m)$.
- (ii) $\|\cdot\|_n$ and $\|\cdot\|_m$ are equivalent norms on $L^1(m)$. In particular, $L^1(n) = L^1(m)$.

Proof. Since S is continuous and cone-open, there exist $K, Q \ge 0$ such that $K||x|| \le ||S(x)|| \le Q||x||$, $\forall x \in C_X^+$. Applying these inequalities to $x = \int |f| dm \in C_X^+$, for each $f \in L^1(m)$ it follows that $||\int |\cdot| dn ||$ and $||\int |\cdot| dm ||$ are equivalent on $L_1(m)$.

To prove (ii), we will work with the following equivalent norms of L^1 (see [3]):

$$\|\cdot\|_n \sim \sup_{A \in \Sigma} \left\| \int_A \cdot dn \right\| \quad \text{and} \quad \|\cdot\|_m \sim \sup_{A \in \Sigma} \left\| \int_A \cdot dm \right\|$$

Thus, there exist convenient constants K', K'', Q', Q'' such that

$$\|f\|_n \le Q' \sup_{A \in \Sigma} \left\| \int_A f dn \right\| \le Q' \sup_{A \in \Sigma} \left\| S(\int_A f dm) \right\| \le Q'' \sup_{A \in \Sigma} \left\| \int_A f dm \right\| \le Q'' \|f\|_m$$

and

$$\begin{split} \|f\|_{m} &\leq K' \sup_{A \in \Sigma} \left\| \int_{A} f dm \right\| \leq K' \left(\sup_{A \in \Sigma} \left\| \int_{A} f^{+} dm \right\| + \sup_{A \in \Sigma} \left\| \int_{A} f^{-} dm \right\| \right) \\ &\leq K'' \left(\sup_{A \in \Sigma} \left\| \int_{A} f^{+} dn \right\| + \sup_{A \in \Sigma} \left\| \int_{A} f^{-} dn \right\| \right) \\ &\leq 2K'' \|f\|_{n} \end{split}$$

which yield the equivalence between both norms.

Using these results, we will prove that the cone-open transformations of positive measures are precisely the measures n for which the map $\|\int |\cdot| dn \|$ is a quasi-norm describing the topology of $L^1(n)$, that is

Theorem 2.6. Let Y be a normed space and $n : \Sigma \longrightarrow Y$ be a vector measure. The following statements are equivalent:

- (i) The function || ∫ |·|dn|| is a quasi-norm equivalent to (resp. a norm coinciding with) the norm || · ||_n on L¹(n).
- (ii) There exist a Banach lattice X, a positive vector measure $m : \Sigma \longrightarrow X$ and a cone-open operator (resp. cone-isometry) $S : X \longrightarrow Y$ such that $n = S \circ m$.

Moreover, in this case, $L^{1}(n)$ and $L^{1}(m)$ are isomorphic Banach lattices.

Proof. (i) \Rightarrow (ii) Setting $X := L^1(n)$, $m(A) := \chi_A, \forall A \in \Sigma$ and $S(f) := \int f \, dn$, $\forall f \in X$ we have a positive vector measure $m : \Sigma \longrightarrow X$ and a cone-open operator (resp. cone-isometry) $S : X \longrightarrow Y$ such that $n = S \circ m$.

(ii) \Rightarrow (i) By proposition 2.5 and lemma 1.2 we conclude that $\|\cdot\|_n \sim \|\cdot\|_m = \|\int |\cdot|dm\| \sim \|\int |\cdot|dn\|$ on $L^1(m) = L^1(n)$. (The equivalence is an equality if S is an isometry.)

3. The second representation theorem

In this section we study if it is possible to define an order on the image of the vector measure m in such a way that if the expression $\|\int |\cdot| dm \|$ is a quasi-norm for $L^1(m)$, then m can be considered, in a sense, as a positive vector measure. This happens for instance in Example 2.1, where τ is positive whenever the new order $(\lambda_i)_{i=1}^{\infty} \leq (\eta_i)_{i=1}^{\infty}$ iff $\lambda_i \leq \eta_i$ for $i = 2, 4, \ldots$ and $\lambda_i \geq \eta_i$ for $i = 1, 3, 5, \ldots$ is considered in ℓ_2 . Therefore, a natural question arises: is this in general true?, i.e. is it always possible to define a new order on the space such that m is positive with respect to this order?

We will see that cone-open transformations of positive vector measures are closely related to positive vector measures since cone-open operators induce a natural order on its range which is partially compatible with the normed space structure in the following precise sense:

 \Box

Proposition 3.1. Let X be a Banach lattice, let $S : X \longrightarrow Y$ be a cone-open operator and let Z be the range rg(S) of S. The relation $z_1 \leq_S z_2 \Leftrightarrow \exists x \in C_X^+ : z_2 - z_1 = S(x)$ defines an order in Z under which Z is an ordered vector space.

Moreover, there exists $M \ge 1$ such that if $z_1, z_2 \in Z$, $z_1 \ge_S 0$, $z_2 \ge_S 0$ and $z_1 \le_S z_2$ then $||z_1|| \le M ||z_2||$ (and M = 1 if and only if S is an cone-isometry). Proof. Since $z - z = 0 = S(0), \forall z \in Z$, the relation \le_S is reflexive. Given $z_1 \le_S z_2$ and $z_2 \le_S z_3$ there exist $x_1, x_2 \in C_X^+$ such that $z_2 - z_1 = S(x_1)$ and $z_3 - z_2 = S(x_2)$. Thus, we have $z_3 - z_1 = S(x_1 + x_2)$ with $x_1 + x_2 \in C_X^+$, that is, $z_1 \le_S z_3$, and consequently the relation \le_S is transitive. To prove that \le_S is also antisymmetric, assume that $z_1 \le_S z_2$ and $z_2 \le_S z_1$. Thus, there exist $x_1, x_2 \in C_X^+$ such that $z_2 - z_1 = S(x_1)$ and $z_1 - z_2 = S(x_2)$ which implies that $S(x_1 + x_2) = 0$. Since S is cone-open we conclude that $x_1 = x_2 = 0$ and hence $z_1 = z_2$. The compatibility of this order with the vector space structure of Z follows directly from the definition of the order and the linearity of S.

Finally, given $z_1, z_2 \in Z$, $z_1 \geq_S 0$, $z_2 \geq_S 0$ and $z_1 \leq_S z_2$, there exist $x_1, x_2, x_3 \in C_X^+$ such that $z_1 = S(x_1), z_2 = S(x_2)$ and $z_2 - z_1 = S(x_3)$. In addition, there exist $K, Q \geq 0$ such that $K||x|| \leq ||S(x)|| \leq Q||x||$, $\forall x \in C_X^+$. Therefore

$$||z_2|| = ||S(x_3 + x_1)|| \ge K||x_3 + x_1|| \ge K||x_1|| \ge \frac{K}{Q}||S(x_1)|| = \frac{K}{Q}||z_1||$$

and thus $M := \frac{Q}{K}$ verifies the required property.

Definition 3.2. Given $M \ge 1$, a normed space X with norm $\|\cdot\|$ is called an *M*normed Riesz space if there exists an order \le such that X is a Riesz space and $\|x_1\| \le M \|x_2\|$ holds for every $x_1, x_2 \in X$ with $x_1 \ge 0, x_2 \ge 0$ and $x_1 \le x_2$.

Definition 3.3. A vector measure $n : \Sigma \longrightarrow Y$ on a normed space Y is called *pseudo-positive* if there exists an order \leq in Y such that Y is an M-normed Riesz space and n is positive for this order.

Definition 3.4. Let X be a normed Riesz space and let Y be a normed space. Let $S : X \longrightarrow Y$ be a cone-open operator and let \leq_S be the order induced by S in Z := rg(S). We will say that S is *lattice generating* if for all $z_1, z_2 \in Z$ there exist $x_1, x_2 \in X$ such that

(i)
$$z_1 = S(x_1), z_2 = S(x_2)$$
, and

(ii) $\forall z \in Z : z \geq_S z_1, z \geq_S z_2, \exists h \in X : S(h) = z, h \geq x_1 \lor x_2.$

Example 3.5. A in a sense canonical example of a lattice generating cone-open transformation is the integration map $f \mapsto I_{\mu}(f) = \int f d\mu$ with respect to a probability measure μ , $I_{\mu} : L^{1}(\mu) \to \mathbb{R}$. To see this is enough to consider, for every element $r \in \mathbb{R}$, the function $r \cdot \chi_{\Omega}$. Taking these functions as the associated elements $x_{1}, x_{2} \in L^{1}(\mu)$ to $z_{1} = r_{1}, z_{2} = r_{2}, r_{1}, r_{2} \in \mathbb{R}$ in Definition 3.4, it is clear that (ii) in this definition is satisfied for $h := \max\{r_{1}, r_{2}\} \cdot \chi_{\Omega}$.

Other simple example is given by the identity map $S = Id : X \to X$ in any Banach lattice X. In this case, $S(x_1) = x_1$, $S(x_2) = x_2$ and clearly (ii) is satisfied for $h := x_1 \lor x_2$.

Corollary 3.6. The range of every cone-open and lattice generating operator is an *M*-normed Riesz space.

Therefore every cone-open and lattice generating transformation of a positive vector measure is a pseudo-positive vector measure.

Proof. It is sufficient to prove that $z_1 \vee_S z_2$ is well defined by $S(x_1 \vee x_2)$ for every $z_1, z_2 \in rg(S)$ independently of x_1, x_2 satisfying (i) and (ii) of Definition 3.4.

Let us check it. Let x_1, x_2 and x'_1, x'_2 two couples associated to the elements z_1 and z_2 satisfying (i) and (ii) above. Then $S(x_1 \vee x_2) = S(x'_1 \vee x'_2)$.

To see this, let us define $z = S(x_1 \vee x_2)$ and $z' = S(x'_1 \vee x'_2)$, and let us prove that z = z'. Since clearly $S(x'_1 \vee x'_2) \ge_S z_1 = S(x'_1) = S(x_1)$ and $S(x'_1 \vee x'_2) \ge_S z_2 = S(x'_2) = S(x_2)$, we have that there is an element h' such that S(h') = z'and $h' \ge x_1 \vee x_2$. Therefore, the positive element $r := h' - x_1 \vee x_2$ satisfies that $S(h') - S(x_1 \vee x_2) = S(r)$, and then $z' \ge_S z$.

The same argument can be given for proving that $z \ge_S z'$, that implies that z = z' as a consequence of the fact that S is cone-open and then \leq_S is an order relation by Proposition 3.1.

In the opposite direction we prove in Theorem 3.7 that pseudo-positive measures are precisely this particular type of cone-open transformations of positive vector measures, that is:

Theorem 3.7. If $n : \Sigma \longrightarrow Y$ is a pseudo-positive vector measure then n can be written as a cone-open and lattice generating transformation of a positive vector measure (into a normed Riesz space).

This result can be deduced from the following facts:

(i) If Y is an M-normed Riesz space with norm $\|\cdot\|$ then

$$|||y||| := ||(|y|)||, \ \forall y \in Y$$

defines a quasi-norm on Y such that $||y|| \leq 2M |||y|||$ for all $y \in Y$.

(ii) If Y is an M-normed Riesz space with norm $\|\cdot\|$ then

$$|||y|||_0 := \inf\{|||z||| : |y| \le |z|\}, \ \forall y \in Y$$

is a lattice norm on Y which is equivalent to $||| \cdot |||$. In fact,

 $|||y|||_0 \le |||y||| \le M |||y|||_0$ for all $y \in Y$

- (iii) If Y is an M-normed Riesz space with norm $\|\cdot\|$ then the identity map $Id: (Y, \||\cdot\||_0) \longrightarrow (Y, \|\cdot\|)$ is a (continuous) cone-open operator.
- (iv) If Y is an M-normed Riesz space, X is a normed space, $T: Y \longrightarrow X$ is a linear and cone-continuous operator and $\sum_{n} y_n$ is a convergent series of

positive terms $y_n \in Y$, then $\sum_{n} T(y_n)$ is also a convergent series in X and

$$T\left(\sum_{n=1}^{\infty} y_n\right) = \sum_{n=1}^{\infty} T(y_n)$$

(v) If $n : \Sigma \longrightarrow Y$ is a pseudo-positive vector measure and $T : Y \longrightarrow X$ is cone-continuous then $\tilde{n} := T \circ n$ is a vector measure into X.

Proof. (i) It is clear that |||y||| = 0 if and only if y = 0 and that $|||\alpha y||| = |\alpha| |||y|||$ for all $\alpha \in \mathbb{R}$ and for all $y \in Y$. Moreover, given $x, y \in Y$ we have

$$|||x + y||| = \|(|x + y|)\| \le M(\|(|x|)\| + \|(|y|)\|) = M(|||x||| + |||y|||)$$

and since $y^+ \leq |y|, \; y^- \leq |y|$ it follows that $\|y^+\| \leq M|||y|||, \; \|y^-\| \leq M|||y|||$ and hence

$$||y|| = ||y^+ - y^-|| \le ||y^+|| + ||y^-|| \le 2M|||y|||.$$

(ii) Let us check that $||| \cdot |||_0$ is a norm. Only the triangle inequality is not obvious. Now take $\epsilon > 0$ and consider two elements $x, y \in Y$. Then there are $z_x, z_y \in Y$ such that $|x| \leq |z_x|$ and $|y| \leq |z_y|$, and $|||z_x||| \leq |||x|||_0 + \frac{\epsilon}{2}$ and $|||z_y||| \leq |||y|||_0 + \frac{\epsilon}{2}$. Then $|x + y| \leq |z_x| + |z_y|$, and so

$$\begin{split} |||x + y|||_0 &\leq ||| |z_x| + |z_y| ||| = || |z_x| + |z_y| || \\ &\leq |||z_x||| + |||z_y||| \\ &\leq |||x|||_0 + |||y|||_0 + \epsilon. \end{split}$$

Moreover, if $|x| \leq |y|$ then for any $z \in Y$ such that $|y| \leq |z|$ in particular we have $|x| \leq |z|$ and hence $|||x|||_0 \leq |||z|||$. Thus $|||x|||_0 \leq \inf\{|||z||| : |y| \leq |z|\} = |||y|||_0$, which proves that $||| \cdot |||_0$ is in fact a lattice norm.

The equivalence between $||| \cdot |||$ and $||| \cdot |||_0$ is easy to check. On the one hand it is evident that $|||y|||_0 \leq |||y|||$ for all $y \in Y$, and on the other hand given any $z \in Y$ with $|y| \leq |z|$ it follows that $|||y||| \leq M|||z|||$ and hence $|||y||| \leq M|||y|||_0$ for all $y \in Y$.

(iii) $Id: (Y, ||| \cdot |||_0) \longrightarrow (Y, || \cdot ||)$ is a cone-open operator since for all $y \in Y$,

$$||Id(y)|| = ||y|| \le 2M |||y||| \le 2M^2 |||y|||_0$$

and for all $y \in Y$ with $y \ge 0$,

$$||Id(y)|| = ||y|| = |||y||| \ge |||y|||_0.$$

(iv) Since T is cone-continuous, there exists $Q \ge 0$ such that $||T(y)|| \le Q||y||$, for all $y \ge 0$. Thus, given $n \in \mathbb{N}$ we have

$$\left\| T\left(\sum_{k=1}^{\infty} y_k\right) - \sum_{k=1}^{n} T(y_k) \right\| = \left\| \sum_{k=n+1}^{\infty} y_k \right\|$$

which converges to 0 when n goes to infinity.

(v) \tilde{n} is countably additive since for all pairwise disjoint $A_i \in \Sigma$, $n(A_i) \ge 0$,

$$\tilde{n}\left(\bigcup_{i=1}^{\infty}A_i\right) = T \circ n\left(\bigcup_{i=1}^{\infty}A_i\right) = T\left(\sum_{i=1}^{\infty}n(A_i)\right) = \sum_{i=1}^{\infty}T \circ n(A_i) = \sum_{i=1}^{\infty}\tilde{n}(A_i).$$

Proof (Proof of Theorem 3.7). We define S to be $Id : (Y, ||| \cdot |||_0) \longrightarrow (Y, || \cdot ||)$ which is a cone-open operator by (iii) and hence $T := Id^{-1}$ is cone-continuous. Then, from (iv) we deduce that $\tilde{n} := T \circ n$ is a measure. Moreover it is clear that \tilde{n} is positive and, since S generates the same order on Y, we conclude that $S \circ \tilde{n}$ is a cone-open and lattice generating transformation of a positive vector measure and $n = S \circ \tilde{n}$.

We can summarize the main results of this paper in the following

Corollary 3.8. Let Y be a normed space and $n : \Sigma \longrightarrow Y$ be a vector measure. The following sentences are equivalent:

- (i) The map $\|\int |\cdot| dn \|$ is a quasi-norm equivalent to the norm $\|\cdot\|_n$ on $L^1(n)$.
- (ii) *n* is a cone-open transformation of a positive vector measure.

Moreover, the following stronger statements are also equivalent:

- (iii) n is a cone-open and lattice generating transformation of a positive vector measure
- (iv) *n* is a pseudo-positive vector measure.

Acknowledgements

The authors acknowledge the support of the Ministerio de Educación y Ciencia (Spain), under the research project MTM2006-11690-c02, and FEDER.

References

- [1] C. D. Aliprantis, K. C. Border, *Infinite dimensional analysis* Springer, Berlin (1999).
- [2] R. G. Bartle, N. Dunford, J. Schwartz, Weak compactness and vector measures. Can. J. Math. 7 (1955), 289–305.
- [3] G. P. Curbera, Operators into L¹ of a vector measure and applications to Banach lattices, Math. Ann. 293 (1992), 317–330.
- [4] J. Diestel, J. J. Uhl Jr., Vector measures. Math. Surveys 15, Am. Math. Soc. Providence (1977).
- [5] A. Fernández, F. Mayoral, F. Naranjo, C. Sáez, E. A. Sánchez Pérez, Spaces of integrable functions with respect to a vector measure and factorizations through L^p and Hilbert spaces. J. Math. Anal. Appl. **330** (2007), 1249–1263
- [6] D. R. Lewis, Integration with respect to vector measures. Pacific J. Math. 23(1) (1970), 157–165.
- [7] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces II. Springer. Berlin (1996).
- [8] W. A. J. Luxemburg, A. C. Zaanen, *Riesz spaces*. North-Holland, Vol I, Amsterdam (1971).