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Abstract. We characterize the vector measures n on a Banach lattice such
that the map || [| - |dn| provides a quasi-norm which is equivalent to the
canonical norm || - ||, of the space Li(n) of integrable functions as an specific
type of transformations of positive vector measures that we call cone-open
transformations. We also prove that a vector measure m on a Banach space
X constructed as a cone-open transformation of a positive vector measure can
be considered in some sense as a positive vector measure by defining a new
order on X.
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1. Introduction and notation

Let m : ¥ — X be a (countably additive) vector measure, where X is a Banach
lattice. It is said that m is positive if m(A) € CF for every A € ¥, where C¥; is
the positive cone of X. It is well-known that in this case the norm of the space
L'(m) of integrable functions with respect to m can be computed by the formula
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(see Lemma 1.2 for a short proof of this result). The aim of this paper is to char-
acterize the class of vector measures for which this formula gives an equivalent
norm — or at least a quasi-norm — for L*(m). A problem related to this one has
been recently studied in [5, Section 4], where a technique to construct optimal
representations of L!(m) of a positive vector measure m has been introduced. The
motivation of the problem is given by the fact that any order continuous Banach
function space with a weak unit can be written as L'(m) of a vector measure m
([3, Theorem 8]). Therefore it seems natural to analyze when there is a represen-
tation of L'(m) using a vector measure n (i.e. L'(m) = L'(n)) such that the norm




can be computed in an easy way using formula (1). In order to develop our anal-
ysis, we define and study a particular class of transformations of vector measures
defined by means of linear operators preserving certain order relations that we call
cone-open transformations. Actually, we prove in Section 2 that the class of vector
measures m satisfying that formula (1) gives a quasi-norm for L'(m) coincides
with the class of cone-open transformations of positive vector measures.

It is easy to find examples of vector measures for which the expression given
in (1) is not a norm for L*(m). For instance, if v : ¥ — R is a signed measure (with
non-trivial positive and negative parts) then there is always a non-zero function
f € L'(v) such that [|f|dv = 0, and then the map f — [ |f|dv does not give a
norm for L!(v).

Although there are a lot of examples of non-positive vector measures m such
that formula (1) gives a norm for L'(m) (see for instance Example 2.1), we study
if in the case that this property holds it is possible to define a suitable order on X
such that m can be considered in some sense as a positive vector measure. We also
answer in the positive this question, although further requirements for the cone-
open transformations involved are needed; in particular, we need to introduce the
notion of lattice generating operator. This is done in Section 3.

In the rest of this section we give some definitions and basic results. Let X be
a real Banach space with dual X*, (Q2, %) a measurable space and m : ¥ — X a
vector measure. For any z* € X* we define (m, z*) to be the scalar measure given
by (m,z*)(A) := (m(A),z*), for all A € . Following Lewis in [6] we introduce
the notion of integrable function with respect to m.

Definition 1.1. A measurable function f is integrable with respect to m if

(i) f is integrable with respect to the scalar measure (m,x*), for all * € X*.
(ii) For every A € ¥ there exists an element [, fdm € X such that

([ gama) = [ fama).

It is well-known that this definition is equivalent to the one given by Bartle,
Dunford and Schwartz in [2]. The space L'(m) is the Banach lattice (of classes)
of integrable functions with respect to m equipped with the norm
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where |{(m,2*)| denotes the variation of the measure (m,z*) In fact, L'(m) is a
Kothe function space over any measure of the type p = |(m, z*)| that satisfies the
Rybakov Theorem (see [7, 1.b.17] for the definition of Kothe function space and
[4, IX.2] for the Rybakov Theorem). The order in L!(m) is the usual p-almost
everywhere order. Note that L!(m) reduces to the ordinary space of Lebesgue
integrable functions if the measure m is scalar.

We will use standard notation of Riesz spaces and Banach lattices which can
be found in [1] and [8]. We recall that a lattice is a partially ordered set (X, <)



such that every subset consisting of two elements has supremum and infimum. We
denote by x V y and x A y the supremum and the infimum of {z,y}, respectively.
On the other hand, (X, <) is said to be an ordered vector space if X is a vector
space and < is a partial order compatible with the algebraic structure of X, i.e.,
(i) z <y implies x + z <y + z for every z,y,z € X, and
(ii) « > 0 implies ax > 0 for each real number « > 0 and for every = € X.
An ordered vector space that is also a lattice is called a Riesz space. If (X, <)
is a Riesz space, we write C;g for its positive cone, that is, the set {x € X : x > 0}.
Given x € X the positive part %, the negative part =, and the absolute value |x|
of x are respectively defined by 27 := 2V 0, 27 := (—2) V0, |z| := 2 V (—z) and
they verify z =2+ — 2~ and || = 2T + 2~
A norm in || - || on a Riesz space X is a lattice norm if |x| < |y| implies
[lz]| < |ly| for all z,y € X. A Riesz space equipped with a lattice norm is called a
normed Riesz space and a complete normed Riesz space is called a Banach lattice.
We also recall that a quasi-norm on a vector space X is any map ||| : X —
RT verifying the following properties:
(i) |lz|| =0 if and only if z = 0.
(ii) |azx| = |af ||z||, for all @« € R and = € X.
(iii) There exists M > 1 such that |z + y|| < M(||z] + ||y[), for all z,y € X.

Note that if the constant M is equal to 1 then [ - || is in fact a norm.

To finish this introductory section and for the purpose of completeness we
prove the following result.

Lemma 1.2. If X is a Banach lattice and m : ¥ — X is a positive vector measure,

then || fllm = || [ 1fldml|,Yf € L*(m).

Proof. Since m is positive and the integration map I,,, : L'(m) — X is continuous,
it is also positive. Therefore, for every f € L'(m) the element [ |f|dm belongs to
CY and then

£ > sup ([ \fiam,a*) = | [ isiam
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since X* is also a Banach lattice and thus ||z*|| = || |z*|| for every z* € X*. O

2. The first representation theorem

Although the positivity of the measure m provides the alternative formula for the
norm of L!(m) given in Lemma 1.2, the converse is not true: there are non-positive
measures such that formula (1) also gives the norm || - ||,,,. Let us show this with
an example.



Ezample 2.1. Consider the Lebesgue measure space ([0,1],%, ¢) and the vector
measure 7 : X — {5 given by

o (-D)"
A) = A, NAe, AeX,
)= 3t e
where {A,, : n=1,2,...} is a non-trivial measurable partition of [0,1] and {e, :
n =1,2,...} is the canonical basis of ¢5. A direct calculation shows that, although
the measure is clearly not positive, || [|-|dr| = | - ||--

The purpose of this section is to describe the class of measures n yielding a
quasi-norm || [ |- |dn| equivalent to || - ||,,. To this end, we introduce the notion of
cone-open transformation of a measure.

Definition 2.2. Let X be a normed Riesz space and Y a normed space. A linear
and continuous operator S : X — Y is called a cone-open operator (resp. a
cone-isometry) if there exists K > 0 such that ||S(z)| > K||z|, Vo € C5 (resp.
[S@)] = llz]l, Yz € C%).

We also introduce the dual notion in the following sense: let X and Y be
two normed spaces and assume that X is also a Riesz space. A linear opera-
tor S : X — Y is said to be cone-continuous if there exists Q > 0 such that
1S@)I < Qllall, ¥a € .

However, whenever X is a normed Riesz space, it is easy to see that if S is
cone-continuous then S is in fact continuous (and hence both concepts coincide).
To see this, take an element x of X. Then

IS@)I=[1S@* =2 I<ISE)+S@@ ) <2Q - max{||lz™ |, =~ [} <2Q - |||,
since |27 < |z|, 27| < |z] and || - || is a lattice norm.

Definition 2.3. Given a vector measure m : ¥ — X and a cone-open operator
S: X — Y, we will say that n := S om is a cone-open transformation of the
measure m.

Proposition 2.4. Let X be a Banach lattice and Y a Banach space. If m : % — X
is a vector measure and S : X — Y is a linear and continuous operator, then
n = Som is also a vector measure, L'(m) C L*(n), and [, fdn = S([, fdm),
VfeL'(m), VAeX.

Moreover, if S is cone-open (resp. cone-isometry) and m is positive then n
and m are equivalent vector measures. Thus, || [| - |dn|| is a quasi-norm (resp.
norm) on L'(m).

Proof. The first part of the proposition is well-known. Given f € L'(m) and
y* € Y™, it is clear that (m, S*(y*)) = (n,y*). Since f is integrable with respect
to (m, S*(y*)) we have that f is integrable with respect to (n,y*) for all y* € Y*,
and from



(s (/Afdm>,y*><(/Afdm>,5*(y*)>Afd<m,5*(y*)>Afd<n7y*>,

for every y* € Y*, we conclude that f € L'(n) with [, fdn = S([, fdm).

Note that m(A) = 0 always implies that n(A) = 0 and, if S is cone-open
and m is positive, the converse is also true. Moreover, in this case, it is clear that
|| [1fldn|| = 0 if and only if f = 0, || [ |af|dn| = |a| || [ |f|dn| and, since there
exist K,Q > 0 such that K||z| < ||S(x)|| < Q||z|| for all z € C¥, we deduce that

sl = (o)l o+
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Therefore || [ |-|dm|| is a quasi-norm (and in fact a norm if and only if Q = K,
that is, if S is a cone-isometry). O

Proposition 2.4 guarantees that every cone-open transformation of a positive
measure yield a quasi-norm || [ |- [dn|| on L*(m). It is a natural matter to study
the relation of these quasi-norms with the canonical norm on L*(n).

To finish this section we characterize vector measures for which the function
[+~ [|fldm gives an equivalent expression for the norm of L!(m).

Proposition 2.5. Let m : ¥ — X be a positive vector measure, S : X — Y be a
cone-open operator and n := S om. Then:

(i) The quasi-norm || [| - |dn|| is equivalent to the norm || [| - |dm| on L*(m).

(i) ||-|ln and |||l are equivalent norms on L*(m). In particular, L*(n) = L*(m).

Proof. Since S is continuous and cone-open, there exist K, > 0 such that
K|z|| < ||S(x)|| < Q|lz||, YV € C%. Applying these inequalities to x = [ |f|dm €
Oy, for each f € L'(m) it follows that || [ |- |dn|| and || [ |- |dm || are equivalent
on Li(m).

To prove (ii), we will work with the following equivalent norms of L!

(see [3):
[ oo

Thus, there exist convenient constants K’, K”,Q’, Q" such that
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which yield the equivalence between both norms. O

Using these results, we will prove that the cone-open transformations of pos-
itive measures are precisely the measures n for which the map || [| - |dn| is a
quasi-norm describing the topology of L!(n), that is

Theorem 2.6. Let Y be a normed space and n : ¥ — 'Y be a vector measure. The
following statements are equivalent:

(i) The function || [ |-|dn| is a quasi-norm equivalent to (resp. a norm coinciding
with) the norm || - ||, on L*(n).

(ii) There exist a Banach lattice X, a positive vector measure m : % — X and a
cone-open operator (resp. cone-isometry) S : X — Y such that n = S om.

Moreover, in this case, L'(n) and L'(m) are isomorphic Banach lattices.

Proof. (i) = (ii) Setting X := L'(n), m(A) := xa,VA € ¥ and S(f) := [ fdn,
Vf € X we have a positive vector measure m : 3 — X and a cone-open operator
(resp. cone-isometry) S : X — Y such that n = S om.

(ii) = (i) By proposition 2.5 and lemma 1.2 we conclude that ||« ||, ~ || |lm =
|| [1-1dm| ~ | [|-]dn|| on L*(m) = L'(n). (The equivalence is an equality if S is
an isometry.) O

3. The second representation theorem

In this section we study if it is possible to define an order on the image of the
vector measure m in such a way that if the expression || [ | - |[dm|| is a quasi-norm
for L'(m), then m can be considered, in a sense, as a positive vector measure.
This happens for instance in Example 2.1, where 7 is positive whenever the new
order (A)2, < ()2 it Ay < for i =2,4,...and \; > n; for i = 1,3,5,...
is considered in ¢5. Therefore, a natural question arises: is this in general true?,
i.e. is it always possible to define a new order on the space such that m is positive
with respect to this order?

We will see that cone-open transformations of positive vector measures are
closely related to positive vector measures since cone-open operators induce a
natural order on its range which is partially compatible with the normed space
structure in the following precise sense:



Proposition 3.1. Let X be a Banach lattice, let S : X — Y be a cone-open
operator and let Z be the range 7g(S) of S. The relation z1 <g z2 < 3z € C¥ :
zo — z1 = S(x) defines an order in Z under which Z is an ordered vector space.
Moreover, there exists M > 1 such that if z1,20 € Z, 21 >5 0, 20 >5 0 and
21 <g 22 then ||z1|| < M||z2|| (and M =1 if and only if S is an cone-isometry).

Proof. Since z— 2z =0 = 5(0),Vz € Z, the relation <g is reflexive. Given z; <g 2z
and z9 <g 23 there exist x1,z2 € C} such that zo—z; = S(x1) and z3—29 = S(22).
Thus, we have z3 — 21 = S(x1 + x3) with z7 + 29 € Cj(, that is, 21 <g =z3,
and consequently the relation <g is transitive. To prove that <g is also anti-
symmetric, assume that z; <g z5 and zo <g z;. Thus, there exist z1,x2 € C;Q
such that zo — 2y = S(x1) and z1 — 29 = S(x2) which implies that S(z; + z2) = 0.
Since S is cone-open we conclude that 1 = z9 = 0 and hence z; = z5. The com-
patibility of this order with the vector space structure of Z follows directly from
the definition of the order and the linearity of S.

Finally, given z1,20 € Z, z1 >g 0, 22 >g 0 and 21 <g 29, there exist
T1,T9,T3 € C’;E such that z; = S(21), 22 = S(x2) and 25 — 21 = S(x3). In addition,
there exist &, Q > 0 such that K|z| < |S(z)|| < Q|z|, Yz € C%. Therefore

K K
Iz2ll = 1S (25 + 21)[| = Kl + 2] = K[| > alls(fﬂl)H = 5||21||

and thus M := % verifies the required property. O

Definition 3.2. Given M > 1, a normed space X with norm || - || is called an M-
normed Riesz space if there exists an order < such that X is a Riesz space and
|z1]] < M||x2]| holds for every x1,x9 € X with 2y > 0, z2 > 0 and x; < @xs.

Definition 3.3. A vector measure n : ¥ — Y on a normed space Y is called
pseudo-positive if there exists an order < in Y such that Y is an M-normed Riesz
space and n is positive for this order.

Definition 3.4. Let X be a normed Riesz space and let Y be a normed space. Let
S : X — Y be a cone-open operator and let <g be the order induced by S in
Z :=rg(9). We will say that S is lattice generating if for all z1, z0 € Z there exist
r1,x9 € X such that

(i) 21 = S(x1), 20 = S(x3), and

(i) Vz€Z: 2>z, 2>5 22, dheX: Sh)=2z, h>x1Vxs.

Example 3.5. A in a sense canonical example of a lattice generating cone-open
transformation is the integration map f — I,(f) = [ fdp with respect to a prob-
ability measure u, I, : L'(u) — R. To see this is enough to consider, for every
element r € R, the function r - yq. Taking these functions as the associated ele-
ments x1,22 € LY(p) to 21 = r1,20 = 79, 1,72 € R in Definition 3.4, it is clear
that (ii) in this definition is satisfied for h := max{ry,7r2} - xq.

Other simple example is given by the identity map S = Id : X — X in any
Banach lattice X. In this case, S(x1) = 1, S(x2) = z2 and clearly (ii) is satisfied
for h :=x1 V x5.



Corollary 3.6. The range of every cone-open and lattice generating operator is an
M -normed Riesz space.

Therefore every cone-open and lattice generating transformation of a positive
vector measure is a pseudo-positive vector measure.

Proof. Tt is sufficient to prove that z; Vg 25 is well defined by S(z1 V x2) for every
z1, 22 € rg(S) independently of x1, zo satisfying (i) and (ii) of Definition 3.4.

Let us check it. Let @1, x2 and 2, 25, two couples associated to the elements
z1 and 2o satisfying (i) and (ii) above. Then S(z1 V z3) = S(z] V 25).

To see this, let us define z = S(x1 Va2) and 2/ = S(z] V), and let us prove
that z = 2’. Since clearly S(x] V z}) >g z1 = S(a}) = S(x1) and S(a) V z)) >5
zo = S(z4) = S(x2), we have that there is an element h’ such that S(h') = 2/
and h' > x1 V 5. Therefore, the positive element 7 := h' — x1 V x5 satisfies that
S(h') — S(z1V x2) = S(r), and then 2’ >g z.

The same argument can be given for proving that z >g 2/, that implies that
z = 7’ as a consequence of the fact that S is cone-open and then <g is an order
relation by Proposition 3.1. O

In the opposite direction we prove in Theorem 3.7 that pseudo-positive mea-
sures are precisely this particular type of cone-open transformations of positive
vector measures, that is:

Theorem 3.7. If n : X — Y is a pseudo-positive vector measure then n can be
written as a cone-open and lattice generating transformation of a positive vector
measure (into a normed Riesz space).

This result can be deduced from the following facts:

(i) Y is an M-normed Riesz space with norm || - || then
[yl == NICyDIl, vy € Y
defines a quasi-norm on Y such that ||y|| < 2M]|||y]|| for all y € Y.
(i) IfY is an M-normed Riesz space with norm || - || then
lylllo = it {{[[z[[| - [y <[]}, vy €V
is a lattice norm on Y which is equivalent to ||| - [||. In fact,

lylllo < llylll < Ml[lylllo for ally € ¥

(iii) If Y is an M-normed Riesz space with norm || - | then the identity map
Id: (Y, ||| - |llo) — (Y, - ||) is a (continuous) cone-open operator.
(iv) If Y is an M-normed Riesz space, X is a normed space, T : ¥ — X is
a linear and cone-continuous operator and Zyn is a convergent series of
n

positive terms y,, € Y, then ZT (yn) is also a convergent series in X and

n

T <Z:1 yn) = Z:lT(yn)



(v) Ifn: X — Y is a pseudo-positive vector measure and T : ¥V — X is
cone-continuous then 7 := T on is a vector measure into X.

Proof. (i) It is clear that |||y||| = 0 if and only if y = 0 and that |||ay||| = || ||]y]]|
for all @ € R and for all y € Y. Moreover, given z,y € Y we have

[z +ylll = [[(J= +yDIl < M=) + [1yDID) = M| + [[lyll])

and since y* < |y[, y~ < |yl it follows that [jy™ | < M|[|y[ll, [y~ < M]||yll| and
hence

lyll = lly™ =y~ I < g™l + [y~ 1| < 2 ][[yl]]-

(ii) Let us check that ||| - |||o is a norm. Only the triangle inequality is not
obvious. Now take ¢ > 0 and consider two elements z,y € Y. Then there are
2p,2y € Y such that |z| < |z, and |y| < |zy|, and |[||z;]|] < |[[|z[||o + § and
Hzylll < [llylllo + 5. Then |& + y| < |z2| + |2y, and so

[z +ylllo < [zl + [z Il = I[ 22| + 2] |
< lzz [l + 2y
< llzlllo + [llylllo + .

Moreover, if |z| < |y| then for any z € Y such that |y| < |z| in particular we
have |z < |z| and hence |||2[|lo < [||z][[. Thus |[[z|llo < nf{[[[z]] : [y| < |2|} =
[lly||lo, which proves that ||| - |||o is in fact a lattice norm.

The equivalence between ||| - ||| and ||| - ||]o is easy to check. On the one hand
it is evident that |||y||lo < |||y]]| for all y € Y, and on the other hand given any
2 € Y with [y| < [2| it follows that ||ly|[| < M]|2]]| and hence [[lgl]l < Ml[lylllo
forally e Y.

(iii) Id : (Y, ||| - [llo) — (Y, ]| - ||) is a cone-open operator since for all y € Y,

1Zd(y)Il = llyll < 2M[llyll| < 2022[[]ylllo
and for all y € Y with y > 0,

@)l = Nyl = Myl = [llyllo-

(iv) Since T is cone-continuous, there exists Q > 0 such that ||T(y)|| < Q||y||,
for all y > 0. Thus, given n € N we have

T (i y;g) - iT@k)
k=1 k=1

which converges to 0 when n goes to infinity.
(v) n is countably additive since for all pairwise disjoint A; € X, n(A;) > 0,

n (U Ai> =Ton (U Ai> =T (Zn(AJ) = ZTon(Ai) = Zﬁ(Ai)'

i=1 i=1

:Zyk

k=n+1




Proof (Proof of Theorem 3.7). We define S to be Id : (Y, ||| - |llo) — (Y, - |)
which is a cone-open operator by (iii) and hence T := Id~! is cone-continuous.
Then, from (iv) we deduce that 7 := T o n is a measure. Moreover it is clear that
7 is positive and, since S generates the same order on Y, we conclude that S on

is a cone-open and lattice generating transformation of a positive vector measure
and n = Son. O

We can summarize the main results of this paper in the following

Corollary 3.8. Let Y be a normed space and n : > — Y be a vector measure. The
following sentences are equivalent:

(i) The map || [|-|dn| is a quasi-norm equivalent to the norm || - ||, on L*(n).
(ii) n is a cone-open transformation of a positive vector measure.

Moreover, the following stronger statements are also equivalent:

(iii) n is a cone-open and lattice generating transformation of a positive vector
measure
(iv) n is a pseudo-positive vector measure.
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