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Abstract. We characterize the vector measures n on a Banach lattice such
that the map ‖ ∫ | · |dn‖ provides a quasi-norm which is equivalent to the
canonical norm ‖ · ‖n of the space L1(n) of integrable functions as an specific
type of transformations of positive vector measures that we call cone-open
transformations. We also prove that a vector measure m on a Banach space
X constructed as a cone-open transformation of a positive vector measure can
be considered in some sense as a positive vector measure by defining a new
order on X.

Mathematics Subject Classification (2000). 46G10; 46E30.

Keywords. Vector measures, integration, positive operators.

1. Introduction and notation

Let m : Σ → X be a (countably additive) vector measure, where X is a Banach
lattice. It is said that m is positive if m(A) ∈ C+

X for every A ∈ Σ, where C+
X is

the positive cone of X. It is well-known that in this case the norm of the space
L1(m) of integrable functions with respect to m can be computed by the formula

‖f‖m =
∥
∥
∥
∥

∫
|f |dm

∥
∥
∥
∥ , f ∈ L1(m), (1)

(see Lemma 1.2 for a short proof of this result). The aim of this paper is to char-
acterize the class of vector measures for which this formula gives an equivalent
norm – or at least a quasi-norm – for L1(m). A problem related to this one has
been recently studied in [5, Section 4], where a technique to construct optimal
representations of L1(m) of a positive vector measure m has been introduced. The
motivation of the problem is given by the fact that any order continuous Banach
function space with a weak unit can be written as L1(m) of a vector measure m
([3, Theorem 8]). Therefore it seems natural to analyze when there is a represen-
tation of L1(m) using a vector measure n (i.e. L1(m) = L1(n)) such that the norm



can be computed in an easy way using formula (1). In order to develop our anal-
ysis, we define and study a particular class of transformations of vector measures
defined by means of linear operators preserving certain order relations that we call
cone-open transformations. Actually, we prove in Section 2 that the class of vector
measures m satisfying that formula (1) gives a quasi-norm for L1(m) coincides
with the class of cone-open transformations of positive vector measures.

It is easy to find examples of vector measures for which the expression given
in (1) is not a norm for L1(m). For instance, if ν : Σ → R is a signed measure (with
non-trivial positive and negative parts) then there is always a non-zero function
f ∈ L1(ν) such that

∫ |f |dν = 0, and then the map f �→ ∫ |f |dν does not give a
norm for L1(ν).

Although there are a lot of examples of non-positive vector measures m such
that formula (1) gives a norm for L1(m) (see for instance Example 2.1), we study
if in the case that this property holds it is possible to define a suitable order on X
such that m can be considered in some sense as a positive vector measure. We also
answer in the positive this question, although further requirements for the cone-
open transformations involved are needed; in particular, we need to introduce the
notion of lattice generating operator. This is done in Section 3.

In the rest of this section we give some definitions and basic results. Let X be
a real Banach space with dual X∗, (Ω,Σ) a measurable space and m : Σ −→ X a
vector measure. For any x∗ ∈ X∗ we define 〈m,x∗〉 to be the scalar measure given
by 〈m,x∗〉(A) := 〈m(A), x∗〉, for all A ∈ Σ. Following Lewis in [6] we introduce
the notion of integrable function with respect to m.

Definition 1.1. A measurable function f is integrable with respect to m if
(i) f is integrable with respect to the scalar measure 〈m,x∗〉, for all x∗ ∈ X∗.
(ii) For every A ∈ Σ there exists an element

∫
A

fdm ∈ X such that
〈∫

A

fdm, x∗
〉

=
∫

A

fd 〈m,x∗〉 .

It is well-known that this definition is equivalent to the one given by Bartle,
Dunford and Schwartz in [2]. The space L1(m) is the Banach lattice (of classes)
of integrable functions with respect to m equipped with the norm

‖f‖m := sup
x∗∈BX∗

∫
|f | d|〈m,x∗〉|, f ∈ L1(m).

where |〈m,x∗〉| denotes the variation of the measure 〈m,x∗〉 In fact, L1(m) is a
Köthe function space over any measure of the type μ = |〈m,x∗〉| that satisfies the
Rybakov Theorem (see [7, 1.b.17] for the definition of Köthe function space and
[4, IX.2] for the Rybakov Theorem). The order in L1(m) is the usual μ-almost
everywhere order. Note that L1(m) reduces to the ordinary space of Lebesgue
integrable functions if the measure m is scalar.

We will use standard notation of Riesz spaces and Banach lattices which can
be found in [1] and [8]. We recall that a lattice is a partially ordered set (X,≤)



such that every subset consisting of two elements has supremum and infimum. We
denote by x ∨ y and x ∧ y the supremum and the infimum of {x, y}, respectively.
On the other hand, (X,≤) is said to be an ordered vector space if X is a vector
space and ≤ is a partial order compatible with the algebraic structure of X, i.e.,
(i) x ≤ y implies x + z ≤ y + z for every x, y, z ∈ X, and
(ii) x ≥ 0 implies αx ≥ 0 for each real number α ≥ 0 and for every x ∈ X.

An ordered vector space that is also a lattice is called a Riesz space. If (X,≤)
is a Riesz space, we write C+

X for its positive cone, that is, the set {x ∈ X : x ≥ 0}.
Given x ∈ X the positive part x+, the negative part x−, and the absolute value |x|
of x are respectively defined by x+ := x ∨ 0, x− := (−x) ∨ 0, |x| := x ∨ (−x) and
they verify x = x+ − x− and |x| = x+ + x−.

A norm in ‖ · ‖ on a Riesz space X is a lattice norm if |x| ≤ |y| implies
‖x‖ ≤ ‖y‖ for all x, y ∈ X. A Riesz space equipped with a lattice norm is called a
normed Riesz space and a complete normed Riesz space is called a Banach lattice.

We also recall that a quasi-norm on a vector space X is any map ‖ ·‖ : X −→
R

+ verifying the following properties:
(i) ‖x‖ = 0 if and only if x = 0.
(ii) ‖αx‖ = |α| ‖x‖, for all α ∈ R and x ∈ X.
(iii) There exists M ≥ 1 such that ‖x + y‖ ≤ M(‖x‖ + ‖y‖), for all x, y ∈ X.

Note that if the constant M is equal to 1 then ‖ · ‖ is in fact a norm.
To finish this introductory section and for the purpose of completeness we

prove the following result.

Lemma 1.2. If X is a Banach lattice and m : Σ −→ X is a positive vector measure,
then ‖f‖m = ‖ ∫ |f |dm‖,∀f ∈ L1(m).

Proof. Since m is positive and the integration map Im : L1(m) → X is continuous,
it is also positive. Therefore, for every f ∈ L1(m) the element

∫ |f |dm belongs to
C+

X and then

‖f‖m ≥ sup
x∗∈BX∗

〈
∫

|f |dm, x∗〉 =
∥
∥
∥
∥

∫
|f |dm

∥
∥
∥
∥

= sup
x∗∈BX∗

〈
∫

|f |dm, |x∗|〉 = sup
x∗∈BX∗

∫
|f |d|〈m, |x∗|〉| ≥ ‖f‖m,

since X∗ is also a Banach lattice and thus ‖x∗‖ = ‖ |x∗| ‖ for every x∗ ∈ X∗. �

2. The first representation theorem

Although the positivity of the measure m provides the alternative formula for the
norm of L1(m) given in Lemma 1.2, the converse is not true: there are non-positive
measures such that formula (1) also gives the norm ‖ · ‖m. Let us show this with
an example.



Example 2.1. Consider the Lebesgue measure space ([0, 1],Σ, μ) and the vector
measure τ : Σ → �2 given by

τ(A) :=
∞∑

n=1

(−1)n

2n
μ(An ∩ A)en, A ∈ Σ,

where {An : n = 1, 2, . . . } is a non-trivial measurable partition of [0, 1] and {en :
n = 1, 2, . . . } is the canonical basis of �2. A direct calculation shows that, although
the measure is clearly not positive, ‖ ∫ | · |dτ‖ = ‖ · ‖τ .

The purpose of this section is to describe the class of measures n yielding a
quasi-norm ‖ ∫ | · |dn‖ equivalent to ‖ · ‖n. To this end, we introduce the notion of
cone-open transformation of a measure.

Definition 2.2. Let X be a normed Riesz space and Y a normed space. A linear
and continuous operator S : X −→ Y is called a cone-open operator (resp. a
cone-isometry) if there exists K ≥ 0 such that ‖S(x)‖ ≥ K‖x‖, ∀x ∈ C+

X (resp.
‖S(x)‖ = ‖x‖, ∀x ∈ C+

X).

We also introduce the dual notion in the following sense: let X and Y be
two normed spaces and assume that X is also a Riesz space. A linear opera-
tor S : X −→ Y is said to be cone-continuous if there exists Q ≥ 0 such that
‖S(x)‖ ≤ Q‖x‖, ∀x ∈ C+

X .
However, whenever X is a normed Riesz space, it is easy to see that if S is

cone-continuous then S is in fact continuous (and hence both concepts coincide).
To see this, take an element x of X. Then

‖S(x)‖=‖S(x+ − x−)‖≤‖S(x+)‖+‖S(x−)‖≤2Q · max{‖x+‖, ‖x−‖}≤2Q · ‖x‖,

since |x+| ≤ |x|, |x−| ≤ |x| and ‖ · ‖ is a lattice norm.

Definition 2.3. Given a vector measure m : Σ −→ X and a cone-open operator
S : X −→ Y , we will say that n := S ◦ m is a cone-open transformation of the
measure m.

Proposition 2.4. Let X be a Banach lattice and Y a Banach space. If m : Σ −→ X
is a vector measure and S : X −→ Y is a linear and continuous operator, then
n := S ◦ m is also a vector measure, L1(m) ⊂ L1(n), and

∫
A

fdn = S(
∫

A
fdm),

∀f ∈ L1(m), ∀A ∈ Σ.
Moreover, if S is cone-open (resp. cone-isometry) and m is positive then n

and m are equivalent vector measures. Thus, ‖ ∫ | · |dn‖ is a quasi-norm (resp.
norm) on L1(m).

Proof. The first part of the proposition is well-known. Given f ∈ L1(m) and
y∗ ∈ Y ∗, it is clear that 〈m,S∗(y∗)〉 = 〈n, y∗〉. Since f is integrable with respect
to 〈m,S∗(y∗)〉 we have that f is integrable with respect to 〈n, y∗〉 for all y∗ ∈ Y ∗,
and from



〈S
(∫

A

fdm

)

, y∗〉 = 〈
(∫

A

fdm

)

, S∗(y∗)〉 =
∫

A

fd〈m,S∗(y∗)〉 =
∫

A

fd〈n, y∗〉,

for every y∗ ∈ Y ∗, we conclude that f ∈ L1(n) with
∫

A
fdn = S(

∫
A

fdm).
Note that m(A) = 0 always implies that n(A) = 0 and, if S is cone-open

and m is positive, the converse is also true. Moreover, in this case, it is clear that
‖ ∫ |f |dn‖ = 0 if and only if f = 0, ‖ ∫ |αf |dn‖ = |α| ‖ ∫ |f |dn‖ and, since there
exist K,Q ≥ 0 such that K‖x‖ ≤ ‖S(x)‖ ≤ Q‖x‖ for all x ∈ C+

X , we deduce that
∥
∥
∥
∥

∫
|f + g|dn

∥
∥
∥
∥ =

∥
∥
∥
∥ S

(∫
|f + g|dm

)∥
∥
∥
∥ ≤ Q

∥
∥
∥
∥

∫
|f + g|dm

∥
∥
∥
∥

≤ Q

(∥
∥
∥
∥

∫
|f |dm

∥
∥
∥
∥ +

∥
∥
∥
∥

∫
|g|dm

∥
∥
∥
∥

)

≤ Q

K

(∥
∥
∥
∥S

(∫
|f |dm

)∥
∥
∥
∥ +

∥
∥
∥
∥S

(∫
|g|dm

)∥
∥
∥
∥

)

≤ Q

K

(∥
∥
∥
∥

∫
|f |dn

∥
∥
∥
∥ +

∥
∥
∥
∥

∫
|g|dn

∥
∥
∥
∥

)

.

Therefore ‖ ∫ |·|dm‖ is a quasi-norm (and in fact a norm if and only if Q = K,
that is, if S is a cone-isometry). �

Proposition 2.4 guarantees that every cone-open transformation of a positive
measure yield a quasi-norm ‖ ∫ | · |dn‖ on L1(m). It is a natural matter to study
the relation of these quasi-norms with the canonical norm on L1(n).

To finish this section we characterize vector measures for which the function
f �→ ∫ |f |dm gives an equivalent expression for the norm of L1(m).

Proposition 2.5. Let m : Σ −→ X be a positive vector measure, S : X −→ Y be a
cone-open operator and n := S ◦ m. Then:

(i) The quasi-norm ‖ ∫ | · |dn‖ is equivalent to the norm ‖ ∫ | · |dm‖ on L1(m).
(ii) ‖·‖n and ‖·‖m are equivalent norms on L1(m). In particular, L1(n) = L1(m).

Proof. Since S is continuous and cone-open, there exist K,Q ≥ 0 such that
K‖x‖ ≤ ‖S(x)‖ ≤ Q‖x‖, ∀x ∈ C+

X . Applying these inequalities to x =
∫ |f |dm ∈

C+
X , for each f ∈ L1(m) it follows that ‖ ∫ | · |dn ‖ and ‖ ∫ | · |dm ‖ are equivalent

on L1(m).
To prove (ii), we will work with the following equivalent norms of L1

(see [3]):

‖ · ‖n ∼ sup
A∈Σ

∥
∥
∥
∥

∫

A

· dn

∥
∥
∥
∥ and ‖ · ‖m ∼ sup

A∈Σ

∥
∥
∥
∥

∫

A

· dm

∥
∥
∥
∥

Thus, there exist convenient constants K ′,K ′′, Q′, Q′′ such that

‖f‖n ≤ Q′ sup
A∈Σ

∥
∥
∥
∥

∫

A

fdn

∥
∥
∥
∥ ≤ Q′ sup

A∈Σ

∥
∥
∥
∥S(

∫

A

fdm)
∥
∥
∥
∥ ≤ Q′′ sup

A∈Σ

∥
∥
∥
∥

∫

A

fdm

∥
∥
∥
∥ ≤ Q′′‖f‖m



and

‖f‖m ≤ K ′ sup
A∈Σ

∥
∥
∥
∥

∫

A

fdm

∥
∥
∥
∥ ≤ K ′

(

sup
A∈Σ

∥
∥
∥
∥

∫

A

f+dm

∥
∥
∥
∥ + sup

A∈Σ

∥
∥
∥
∥

∫

A

f−dm

∥
∥
∥
∥

)

≤

≤ K ′′
(

sup
A∈Σ

∥
∥
∥
∥

∫

A

f+dn

∥
∥
∥
∥ + sup

A∈Σ

∥
∥
∥
∥

∫

A

f−dn

∥
∥
∥
∥

)

≤ 2K ′′ sup
A∈Σ

∥
∥
∥
∥

∫

A

fdn

∥
∥
∥
∥

≤ 2K ′′‖f‖n

which yield the equivalence between both norms. �

Using these results, we will prove that the cone-open transformations of pos-
itive measures are precisely the measures n for which the map ‖ ∫ | · |dn‖ is a
quasi-norm describing the topology of L1(n), that is

Theorem 2.6. Let Y be a normed space and n : Σ −→ Y be a vector measure. The
following statements are equivalent:

(i) The function ‖ ∫ |·|dn‖ is a quasi-norm equivalent to (resp. a norm coinciding
with) the norm ‖ · ‖n on L1(n).

(ii) There exist a Banach lattice X, a positive vector measure m : Σ −→ X and a
cone-open operator (resp. cone-isometry) S : X −→ Y such that n = S ◦ m.

Moreover, in this case, L1(n) and L1(m) are isomorphic Banach lattices.

Proof. (i) ⇒ (ii) Setting X := L1(n), m(A) := χA,∀A ∈ Σ and S(f) :=
∫

f dn,
∀f ∈ X we have a positive vector measure m : Σ −→ X and a cone-open operator
(resp. cone-isometry) S : X −→ Y such that n = S ◦ m.

(ii) ⇒ (i) By proposition 2.5 and lemma 1.2 we conclude that ‖·‖n ∼ ‖·‖m =
‖ ∫ | · |dm‖ ∼ ‖ ∫ | · |dn‖ on L1(m) = L1(n). (The equivalence is an equality if S is
an isometry.) �

3. The second representation theorem

In this section we study if it is possible to define an order on the image of the
vector measure m in such a way that if the expression ‖ ∫ | · |dm‖ is a quasi-norm
for L1(m), then m can be considered, in a sense, as a positive vector measure.
This happens for instance in Example 2.1, where τ is positive whenever the new
order (λi)∞

i=1 ≤ (ηi)∞
i=1 iff λi ≤ ηi for i = 2, 4, . . . and λi ≥ ηi for i = 1, 3, 5, . . .

is considered in �2. Therefore, a natural question arises: is this in general true?,
i.e. is it always possible to define a new order on the space such that m is positive
with respect to this order?

We will see that cone-open transformations of positive vector measures are
closely related to positive vector measures since cone-open operators induce a
natural order on its range which is partially compatible with the normed space
structure in the following precise sense:



Proposition 3.1. Let X be a Banach lattice, let S : X −→ Y be a cone-open
operator and let Z be the range rg(S) of S. The relation z1 ≤S z2 ⇔ ∃x ∈ C+

X :
z2 − z1 = S(x) defines an order in Z under which Z is an ordered vector space.

Moreover, there exists M ≥ 1 such that if z1, z2 ∈ Z, z1 ≥S 0, z2 ≥S 0 and
z1 ≤S z2 then ‖z1‖ ≤ M‖z2‖ (and M = 1 if and only if S is an cone-isometry).

Proof. Since z −z = 0 = S(0),∀z ∈ Z, the relation ≤S is reflexive. Given z1 ≤S z2

and z2 ≤S z3 there exist x1, x2 ∈ C+
X such that z2−z1 = S(x1) and z3−z2 = S(x2).

Thus, we have z3 − z1 = S(x1 + x2) with x1 + x2 ∈ C+
X , that is, z1 ≤S z3,

and consequently the relation ≤S is transitive. To prove that ≤S is also anti-
symmetric, assume that z1 ≤S z2 and z2 ≤S z1. Thus, there exist x1, x2 ∈ C+

X

such that z2 − z1 = S(x1) and z1 − z2 = S(x2) which implies that S(x1 + x2) = 0.
Since S is cone-open we conclude that x1 = x2 = 0 and hence z1 = z2. The com-
patibility of this order with the vector space structure of Z follows directly from
the definition of the order and the linearity of S.

Finally, given z1, z2 ∈ Z, z1 ≥S 0, z2 ≥S 0 and z1 ≤S z2, there exist
x1, x2, x3 ∈ C+

X such that z1 = S(x1), z2 = S(x2) and z2−z1 = S(x3). In addition,
there exist K,Q ≥ 0 such that K‖x‖ ≤ ‖S(x)‖ ≤ Q‖x‖, ∀x ∈ C+

X . Therefore

‖z2‖ = ‖S(x3 + x1)‖ ≥ K‖x3 + x1‖ ≥ K‖x1‖ ≥ K

Q
‖S(x1)‖ =

K

Q
‖z1‖

and thus M := Q
K verifies the required property. �

Definition 3.2. Given M ≥ 1, a normed space X with norm ‖ · ‖ is called an M -
normed Riesz space if there exists an order ≤ such that X is a Riesz space and
‖x1‖ ≤ M‖x2‖ holds for every x1, x2 ∈ X with x1 ≥ 0, x2 ≥ 0 and x1 ≤ x2.

Definition 3.3. A vector measure n : Σ −→ Y on a normed space Y is called
pseudo-positive if there exists an order ≤ in Y such that Y is an M -normed Riesz
space and n is positive for this order.

Definition 3.4. Let X be a normed Riesz space and let Y be a normed space. Let
S : X −→ Y be a cone-open operator and let ≤S be the order induced by S in
Z := rg(S). We will say that S is lattice generating if for all z1, z2 ∈ Z there exist
x1, x2 ∈ X such that
(i) z1 = S(x1), z2 = S(x2), and
(ii) ∀z ∈ Z : z ≥S z1, z ≥S z2, ∃h ∈ X : S(h) = z, h ≥ x1 ∨ x2.

Example 3.5. A in a sense canonical example of a lattice generating cone-open
transformation is the integration map f �→ Iμ(f) =

∫
fdμ with respect to a prob-

ability measure μ, Iμ : L1(μ) → R. To see this is enough to consider, for every
element r ∈ R, the function r · χΩ. Taking these functions as the associated ele-
ments x1, x2 ∈ L1(μ) to z1 = r1, z2 = r2, r1, r2 ∈ R in Definition 3.4, it is clear
that (ii) in this definition is satisfied for h := max{r1, r2} · χΩ.

Other simple example is given by the identity map S = Id : X → X in any
Banach lattice X. In this case, S(x1) = x1, S(x2) = x2 and clearly (ii) is satisfied
for h := x1 ∨ x2.



Corollary 3.6. The range of every cone-open and lattice generating operator is an
M -normed Riesz space.

Therefore every cone-open and lattice generating transformation of a positive
vector measure is a pseudo-positive vector measure.

Proof. It is sufficient to prove that z1 ∨S z2 is well defined by S(x1 ∨ x2) for every
z1, z2 ∈ rg(S) independently of x1, x2 satisfying (i) and (ii) of Definition 3.4.

Let us check it. Let x1, x2 and x′
1, x

′
2 two couples associated to the elements

z1 and z2 satisfying (i) and (ii) above. Then S(x1 ∨ x2) = S(x′
1 ∨ x′

2).
To see this, let us define z = S(x1 ∨x2) and z′ = S(x′

1 ∨x′
2), and let us prove

that z = z′. Since clearly S(x′
1 ∨ x′

2) ≥S z1 = S(x′
1) = S(x1) and S(x′

1 ∨ x′
2) ≥S

z2 = S(x′
2) = S(x2), we have that there is an element h′ such that S(h′) = z′

and h′ ≥ x1 ∨ x2. Therefore, the positive element r := h′ − x1 ∨ x2 satisfies that
S(h′) − S(x1 ∨ x2) = S(r), and then z′ ≥S z.

The same argument can be given for proving that z ≥S z′, that implies that
z = z′ as a consequence of the fact that S is cone-open and then ≤S is an order
relation by Proposition 3.1. �

In the opposite direction we prove in Theorem 3.7 that pseudo-positive mea-
sures are precisely this particular type of cone-open transformations of positive
vector measures, that is:

Theorem 3.7. If n : Σ −→ Y is a pseudo-positive vector measure then n can be
written as a cone-open and lattice generating transformation of a positive vector
measure (into a normed Riesz space).

This result can be deduced from the following facts:
(i) If Y is an M -normed Riesz space with norm ‖ · ‖ then

|||y||| := ||(|y|)||, ∀y ∈ Y

defines a quasi-norm on Y such that ||y|| ≤ 2M |||y||| for all y ∈ Y .
(ii) If Y is an M -normed Riesz space with norm ‖ · ‖ then

|||y|||0 := inf{|||z||| : |y| ≤ |z|}, ∀y ∈ Y

is a lattice norm on Y which is equivalent to ||| · |||. In fact,

|||y|||0 ≤ |||y||| ≤ M |||y|||0 for all y ∈ Y

(iii) If Y is an M -normed Riesz space with norm ‖ · ‖ then the identity map
Id : (Y, ||| · |||0) −→ (Y, ‖ · ‖) is a (continuous) cone-open operator.

(iv) If Y is an M -normed Riesz space, X is a normed space, T : Y −→ X is
a linear and cone-continuous operator and

∑

n

yn is a convergent series of

positive terms yn ∈ Y , then
∑

n

T (yn) is also a convergent series in X and

T

( ∞∑

n=1

yn

)

=
∞∑

n=1

T (yn)



(v) If n : Σ −→ Y is a pseudo-positive vector measure and T : Y −→ X is
cone-continuous then ñ := T ◦ n is a vector measure into X.

Proof. (i) It is clear that |||y||| = 0 if and only if y = 0 and that |||αy||| = |α| |||y|||
for all α ∈ R and for all y ∈ Y . Moreover, given x, y ∈ Y we have

|||x + y||| = ‖(|x + y|)‖ ≤ M(‖(|x|)‖ + ‖(|y|)‖) = M(|||x||| + |||y|||)
and since y+ ≤ |y|, y− ≤ |y| it follows that ‖y+‖ ≤ M |||y|||, ‖y−‖ ≤ M |||y||| and
hence

‖y‖ = ‖y+ − y−‖ ≤ ‖y+‖ + ‖y−‖ ≤ 2M |||y|||.
(ii) Let us check that ||| · |||0 is a norm. Only the triangle inequality is not

obvious. Now take ε > 0 and consider two elements x, y ∈ Y . Then there are
zx, zy ∈ Y such that |x| ≤ |zx| and |y| ≤ |zy|, and |||zx||| ≤ |||x|||0 + ε

2 and
|||zy||| ≤ |||y|||0 + ε

2 . Then |x + y| ≤ |zx| + |zy|, and so

|||x + y|||0 ≤ ||| |zx| + |zy| ||| = ‖ |zx| + |zy| ‖
≤ |||zx||| + |||zy|||
≤ |||x|||0 + |||y|||0 + ε.

Moreover, if |x| ≤ |y| then for any z ∈ Y such that |y| ≤ |z| in particular we
have |x| ≤ |z| and hence |||x|||0 ≤ |||z|||. Thus |||x|||0 ≤ inf{|||z||| : |y| ≤ |z|} =
|||y|||0, which proves that ||| · |||0 is in fact a lattice norm.

The equivalence between ||| · ||| and ||| · |||0 is easy to check. On the one hand
it is evident that |||y|||0 ≤ |||y||| for all y ∈ Y , and on the other hand given any
z ∈ Y with |y| ≤ |z| it follows that |||y||| ≤ M |||z||| and hence |||y||| ≤ M |||y|||0
for all y ∈ Y .

(iii) Id : (Y, ||| · |||0) −→ (Y, ‖ · ‖) is a cone-open operator since for all y ∈ Y ,

‖Id(y)‖ = ‖y‖ ≤ 2M |||y||| ≤ 2M2|||y|||0
and for all y ∈ Y with y ≥ 0,

‖Id(y)‖ = ‖y‖ = |||y||| ≥ |||y|||0.
(iv) Since T is cone-continuous, there exists Q ≥ 0 such that ‖T (y)‖ ≤ Q‖y‖,

for all y ≥ 0. Thus, given n ∈ N we have
∥
∥
∥
∥
∥
T

( ∞∑

k=1

yk

)

−
n∑

k=1

T (yk)

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∞∑

k=n+1

yk

∥
∥
∥
∥
∥

which converges to 0 when n goes to infinity.
(v) ñ is countably additive since for all pairwise disjoint Ai ∈ Σ, n(Ai) ≥ 0,

ñ

( ∞⋃

i=1

Ai

)

= T ◦ n

( ∞⋃

i=1

Ai

)

= T

( ∞∑

i=1

n(Ai)

)

=
∞∑

i=1

T ◦ n(Ai) =
∞∑

i=1

ñ(Ai).

�



Proof (Proof of Theorem 3.7). We define S to be Id : (Y, ||| · |||0) −→ (Y, ‖ · ‖)
which is a cone-open operator by (iii) and hence T := Id−1 is cone-continuous.
Then, from (iv) we deduce that ñ := T ◦ n is a measure. Moreover it is clear that
ñ is positive and, since S generates the same order on Y , we conclude that S ◦ ñ
is a cone-open and lattice generating transformation of a positive vector measure
and n = S ◦ ñ. �

We can summarize the main results of this paper in the following

Corollary 3.8. Let Y be a normed space and n : Σ −→ Y be a vector measure. The
following sentences are equivalent:

(i) The map ‖ ∫ | · |dn‖ is a quasi-norm equivalent to the norm ‖ · ‖n on L1(n).
(ii) n is a cone-open transformation of a positive vector measure.

Moreover, the following stronger statements are also equivalent:

(iii) n is a cone-open and lattice generating transformation of a positive vector
measure

(iv) n is a pseudo-positive vector measure.
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