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C.; Mastromarco, M.; Mazzone, A.;

Mengoni, A.; et al. First Results of the
140Ce(n,γ)141Ce Cross-Section

Measurement at n_TOF. Universe

2021, 7, 200. https://doi.org/

10.3390/universe7060200

Academic Editors: Sergio Cristallo

and Paolo Ventura

Received: 31 March 2021

Accepted: 17 May 2021

Published: 17 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

1 INFN Laboratori Nazionali del Sud, 95125 Catania, Italy
2 Dipartimento di Fisica e Astronomia, Università di Catania, 2, 95131 Catania, Italy
3 Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70126 Bari, Italy
4 Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, 06123 Perugia, Italy
5 Istituto Nazionale di Astrofisica—Osservatorio Astronomico d’Abruzzo, 64100 Collurania, Italy
6 Charles University, 11000 Prague, Czech Republic
7 Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, 40127 Bologna, Italy
8 Dipartimento di Fisica e Astronomia, Università di Bologna, 40129 Bologna, Italy
9 European Organization for Nuclear Research (CERN), 1211 Geneva, Switzerland
10 Consiglio Nazionale delle Ricerche, 7, 00185 Bari, Italy
11 Agenzia Nazionale per le Nuove Tecnologie (ENEA), 40129 Bologna, Italy
12 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
13 University of Lodz, 90-137 Łódź, Poland
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Abstract: An accurate measurement of the 140Ce(n,γ) energy-dependent cross-section was performed
at the n_TOF facility at CERN. This cross-section is of great importance because it represents a
bottleneck for the s-process nucleosynthesis and determines to a large extent the cerium abundance in
stars. The measurement was motivated by the significant difference between the cerium abundance
measured in globular clusters and the value predicted by theoretical stellar models. This discrepancy
can be ascribed to an overestimation of the 140Ce capture cross-section due to a lack of accurate
nuclear data. For this measurement, we used a sample of cerium oxide enriched in 140Ce to 99.4%.
The experimental apparatus consisted of four deuterated benzene liquid scintillator detectors, which
allowed us to overcome the difficulties present in the previous measurements, thanks to their very
low neutron sensitivity. The accurate analysis of the p-wave resonances and the calculation of their
average parameters are fundamental to improve the evaluation of the 140Ce Maxwellian-averaged
cross-section.

Keywords: cerium; 140Ce; neutron; capture; cross-section; s-process; n_TOF; MACS; nucleosynthesis

1. Introduction

It has been well ascertained since the late 1950s that the vast majority of the elements
above the iron peak are synthesized in stars, via sequences of neutron captures and β-
decays [1,2]. Depending on the typical time elapsing between two consecutive neutron
captures, and hence on the available neutron densities, these processes are referred to
as slow (s) or rapid (r). In the r-process, neutron densities as high as 1018–1022 cm−3

are attained, triggering the production of very neutron-rich nuclei in an extremely short
time, by means of neutron capture sequences much faster than the β-decays. The physical
conditions of the r-process are met in explosive scenarios, such as neutron star mergers or
core-collapse supernovae, which have typical time scales of the order of a few seconds. The
s-process mainly takes place in the late evolutionary phases of low-mass stars, in particular
during their thermally pulsing asymptotic giant branch (TP-AGB) phase. During that
evolutionary stage, a succession of burning and mixing episodes leads to the production of
neutrons through the reactions 13C(α,n)16O and 22Ne(α,n)25Mg. While the former reaction
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is the major neutron source in low-mass AGBs, the latter significantly contributes to heavy-
element nucleosynthesis in more massive AGBs (5–6 Msun) (see, e.g., [3,4]). Typical neutron
densities in AGB stars are ≈107 cm−3: the relatively long time between two consecutive
captures allows the unstable nuclei to eventually β-decay; the resulting s-process path then
follows the valley of stability up to the synthesis of lead and bismuth.

In the last few decades, accurate knowledge of the s-process site led to a considerable
effort in modeling the evolution of the AGB stars and evaluating the contribution of all the
nuclear reactions involved in the nucleosynthesis of heavy elements (see, e.g., [5–8]). These
models allowed studying the AGB chemical evolution and their role as polluters of the
galactic medium. Clearly, high-quality nuclear data are required in order to determine the
final abundances of all the elements produced in stellar interiors. This holds in particular
for neutron capture cross-sections. The comparison between the observed abundances and
the ones predicted by stellar models represents an essential tool to test the robustness of
the models, in particular for those elements that are synthesized mainly via the s-process.

Such a kind of comparison was carried out by Straniero et al. [9], considering the
globular clusters M4 [10] and M22 [11]. Thanks to the presence of many stars, which
allow calculating the average distributions and the clear determination of the r-process
contribution, these clusters represent an ideal site to test the robustness of s-process predic-
tions. Figure 1 shows the comparison between stellar models’ predictions and the chemical
composition of M22 stars, in the usual spectroscopic notation1. In this case, AGB stars
in the mass range 3–6 Msun contribute to the s-process production. In general, a good
agreement is observed for most of the elements, but a large discrepancy is present in the
case of Ce (Z = 58). For cerium, belonging to the second s-process peak (Ba-La-Pr-Nd), the
theoretical expectation is ≈30% lower than the values observed in the M22 cluster, while
nearby elements astonishingly agree with the theory. Being a neutron-magic nucleus, 140Ce
represents a very interesting isotope, since its very small capture cross-section acts as a
bottleneck for the s-process, greatly enhancing its abundance with respect to the nearby
non-magic isotopes. Since the majority of natural cerium is made of 140Ce (89%), its de-
struction channel, i.e., the capture of a neutron, largely determines the cerium abundance
on the stellar surface. The reaction 140Ce(n,γ) lacks accurate experimental data, while its
production channel, the neutron capture on 139La, has already been investigated with high
accuracy at n_TOF [12]. Therefore, a nuclear origin of the discrepancy needed to be further
investigated, since a reduction of the 140Ce(n,γ) cross-section could justify the observed
overestimation. Considering the potential contributions from AGBs with different initial
masses, the evaluation of a variation of the neutron capture rate on the whole energy
spectrum will be performed when the stellar neutron capture rate is available.

The main nuclear capture quantities that serve as the input for s-process nucleosyn-
thesis models are the MACS, i.e., the convolution of the capture cross-sections and the
Maxwellian energy distribution of neutrons for a given temperature kT. The results pre-
sented in [9] were obtained by using the MACS provided by the database KADoNiS0.3 [13],
which is a (on-line) database for cross-sections relevant to the s- and p-processes. The
MACS reported in KADoNiS comes from activation measurement [14] of a natural cerium
sample using a quasi-stellar neutron spectrum of kT = 25 keV. Theoretical models, based
on the Hauser–Feshbach (HF) theory, permitted extrapolating the experimental MACS for
other values of kT. The HF calculations of the 30 keV MACS reported in [14] overestimated
the experimental MACS by 30% in the case of 140Ce. The disagreement is related to the
uncertainty and incorrectness of the average resonance parameters used in the calculations.
Although there exist estimates based on experimental data of resonance spacing (D0) and
radiation width (Γγ) for s-wave resonances, any estimate of the average Γγ for p-wave (and
higher l) resonances is missing (and is thus based only on calculations). Furthermore, since
the large part of the 140Ce captures take place at kT ≈ 8 keV, its abundance results in being
even more sensitive to the extrapolation of the MACS towards lower energies, especially
because relatively few resonances are present in this energy range.
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Figure 1. Average abundances observed in the globular cluster M22 (red points) compared to the
theoretical expectations deduced from stellar models (from [9]).

Very few experimental energy-dependent cross-sections of 140Ce are available, and
the cross-section reported by the nuclear libraries largely relies on transmission experi-
ments, usually performed with natural cerium samples, hence with large effects due to
the presence of 142Ce (which acts as a contaminant). The only capture measurement with
an energy resolution sufficient to effectively resolve individual resonance was performed
by Musgrove et al. [15], where C6F6 detectors were employed, which are known to be
not particularly suited for capture measurement on isotopes with very high scattering
cross-sections [16], such as 140Ce.

The lack of highly reliable experimental data makes the evaluation process very
challenging, so that it is not surprising that the MACS evaluated with the resonance
parameters of the major nuclear libraries (as ENDF, JEFF, and JENDL) led to very different
results, as shown in Figure 2. In particular, the MACS calculated with the ENDF/B-
VIII [17], JENDL-4.0 [18], and JEFF3.3 [19] resonance parameters largely disagree, and all
are systematically lower than KADoNiS0.3 and the most recent KADoNiS1.0 [20]. The
accuracy of the MACS can be significantly improved by adding new experimental data.
In particular, more strict constraints on the statistical model parameters are required to
reduce the uncertainty of the theoretical calculations. In order to clarify the discrepancy
that emerged in [9] and to produce a more accurate evaluation of the MACS, a new
measurement of the 140Ce(n,γ) cross-section was performed at the n_TOF facility in 2018.
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Figure 2. The MACS calculated with the resonance parameters provided by major libraries compared
with the values reported in KADoNiS0.3 and KADoNiS1.0.

2. Experimental Apparatus and Data Analysis

The n_TOF facility represents a unique site where high-precision measurements of
neutron-induced cross-sections can be performed. Since its operational start in 2001, the
n_TOF collaboration [21] has largely contributed to the improvement of nuclear data of
interest for the nuclear astrophysics community, in particular performing many accurate
neutron capture cross-section measurements (see, e.g., the two recent works [22,23]). The
n_TOF white pulsed neutron beam is produced by spallation reactions on a cylindrical lead
target induced by a 20 GeV/c proton beam accelerated with the CERN Proton Synchrotron
(PS). The kinetic energy of the neutrons reaching the two experimental areas is measured
with the time-of-flight technique. The 140Ce(n,γ) measurement required the high-energy
resolution of the beam present in Experimental Area 1 (EAR1), thanks to its long flight
path of ≈185 m. In EAR1, it is possible to reach a resolution from 5 × 10−4 at 1 keV to
3 × 10−3 at 100 keV [24], which is essential to effectively resolve the resonances in the
region of interest.

The sample employed was composed of 12.318 grams of CeO2 powder, enriched
to 99.4% of 140Ce, with only 0.6% of 142Ce as a relevant contamination (natural cerium
presents 11% of 142Ce). The sample was produced at Paul Sherrer Insitut (PSI) via the
sintering process. The CeO2 powder was pressed and enclosed in a PEEK (polyether ether
ketone) cylindrical capsule of 1 mm in thickness and heated at 100 ◦C for 4 h in a glove
box with a controlled O2 and H2O atmosphere (concentration lower than 1 ppm). A 197Au
sample, having a diameter almost identical to the cerium one, was used to normalize the
cerium data and to exactly determine the flight path length. The latter was obtained from
fitting the gold capture resonances in the energy interval from 100 eV to 2 keV. In order to
evaluate the different sources of background data, an empty sample was used to measure
the component related to the beam, while a lead sample was employed to measure the
sample-related background. Finally, the detectors were calibrated, acquiring data on a
weekly basis with four γ sources: 137Cs, 137Y, Am-Be, and Cm-C.

The neutron captures were observed by detecting the γ-rays produced by the decay
of the compound nucleus 141Ce. The experimental apparatus was made of four deuterated
benzene (C6D6) liquid scintillator detectors [25] encapsulated in a cylindrical case made
of carbon fiber, to guarantee a very low neutron sensitivity. A relatively high neutron
sensitivity is one of the difficulties encountered with C6F6 detectors employed in the
measurement by [15]. The detectors were placed at ≈10 cm from the center of the sample
holder at angles of 125◦ with respect to the neutron beam. The adopted configuration
minimized the effect of the anisotropic emission of γ-rays; moreover, the upstream position
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with respect to the sample position reduced the background due to the in-beam γ-rays,
which were scattered by the sample. In order to monitor the neutron flux, the Silicon
Monitor (SiMon) detector [26] was installed upstream with respect to the capture apparatus.

The data analysis employed the total energy detection principle in combination with
the pulse height weighting technique [27,28] to eliminate the dependence of the detection
efficiency from the γ cascade path following the neutron capture. This is achieved if the
detection efficiency of an i-th γ ray, emitted during the γ cascade, is proportional to its
energy Ei

γ. In such a case, the detection of the full cascade becomes proportional to its total
energy Etot

γ :

εcascade =
m

∑
i=1

εi(Ei
γ) =

m

∑
i=1

k × Ei
γ = k × Etot

γ (1)

In the case of C6D6 detectors, the proportionality between the deposited energy and
the γ-rays detection efficiency is achieved through an off-line weighting function applied
to the detector signals. These functions were calculated by simulating the full experimental
apparatus with a Monte Carlo simulation, performed with the Geant4 [29] code. After the
weighting procedure, the experimental capture yield can be written as:

Yexp(En) = N
Cw(En)− Bw(En)

ε(En)φ(En)
(2)

where Cw are the weighted count rates with the sample, Bw is the weighted background,
φ the neutron flux on the target, and N a normalization factor. The latter includes many
geometrical factors, such as the sample area, the beam interception factor (BIF), and the
different solid angle of the flux monitor and the capture setup. The neutron flux measured
with SiMon was compared with the official n_TOF flux [30], evaluated with different
detectors and standard reactions, resulting in an excellent agreement in the energy interval
of interest. Therefore, in order to calculate the 140Ce capture yield, the official neutron flux
was used, which is known with an uncertainty better than 1% below 3 keV and within
4–5% up to 100 keV.

The gold sample background was evaluated according to the method described in [28],
using the data collected with the empty sample and with the lead sample, properly scaled.
As an example, Figure 3 shows the gold neutron energy spectrum for one of the detectors,
compared with the background and the beam-off component. The latter corresponds to
the ambient background, and it is almost negligible for En > 10 eV. As expected, from
20 to 50 eV, the gold spectrum is almost equal to the background because of the very
small 197Au capture cross-section, confirming the correctness of the procedure adopted for
the background evaluation. The same method could not be applied for cerium, since the
component of the background depending on the sample was dominant, due to the very high
areal density of the cerium sample (1.291×10−2 atoms/barn) and high neutron scattering
cross-section. At the present stage of analysis, the cerium background is considered to be
linear in the vicinity of each fitted resonance. A more rigorous approach, by means of a
Monte Carlo simulation, is currently under study.
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Figure 3. Energy spectrum measured with the gold sample (red), compared with the total evaluated
background (blue) and the ambient background (green).

The normalization factor N was calculated by applying the saturated resonance
method [31] to the opaque gold capture resonance at 4.9 eV. The resulting value (N =
0.7127 ± 0.0014) was substantially in agreement with the beam interception factor reported
in [24] for the 2 cm-diameter samples. The cerium data were suitably corrected to take
into account the slightly smaller diameter of the sample (1.95 cm). The gold data allowed
verifying the robustness of the analysis in the energy interval where the 140Ce capture
resonances are located. Figure 4 shows that the experimental results on average agreed
with the 197Au(n,γ) cross-section evaluated by the ENDF/B-VIII library, in the neutron
energy range from 1 keV to 100 keV.

Figure 4. Experimental 197Au(n,γ) cross-section (black dots) compared to the evaluation of ENDF/B-
VIII (red dashed line).

A preliminary analysis of the cerium capture yield was carried out with the Bayesian
R-matrix code SAMMY [32]. This code can manage the self-shielding and multiple in-
teractions of neutrons in the sample and other experimental effects such as Doppler and
resolution broadening by including the resolution function, which is a property of all
neutron time-of-flight facilities, which describes the distribution of the neutron time of
flight for a given kinetic energy. The resonance parameters provided by the JENDL-4.0
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library were initially adopted as a reference, including the spin-parity assignment, which
was almost identical to those of other libraries, such as ENDF/B-VIII.

3. Discussion and perspectives

The preliminary 140Ce data allowed resolving and performing the resonance shape
analysis (RSA) of 81 of the 102 resonances reported by the library JENDL-4.0 below 65
keV, to determine their kernel2 and in some cases the radiation and scattering widths (Γγ

and Γn, respectively). Between 2.5 keV, where the first 140Ce resonance is located, and 34
keV, the data made it possible to fit the parameters of 46 resonances, while JENDL-4.0
reported 47 resonances. From 34 keV to 65 keV, JENDL-4.0 indicated the presence of 55
resonance, while the experimental data allowed fitting 35 of them; no resonances could be
clearly identified above. Only one structure due to the 142Ce contamination was observed
in the experimental capture yield at 1.15 keV, far away from any 140Ce resonance; hence,
the presence of 142Ce did not represent an issue for the analysis.

Figure 5 shows the contribution to the MACS of a different sub-set of resonances
using their parameters from the JENDL-4.0 library. It is noteworthy that the resonances
with energies lower than 60 keV (red line) made the major contribution to the MACS in
the temperature interval of interest for the s-process (<30 keV). One can also observe the
importance of the p-waves’ contribution, which was responsible for approximately 50%
of the MACS at 8 keV and even more with increasing energy. The n_TOF measurement
ensured the accurate measurements of the resonances kernel; furthermore, it can increase
the accuracy on their average width and spacing with respect to the values available during
the evaluation of the MACS by [14].

Figure 5. Maxwellian averaged cross-section calculated with the individual resonance parameters
as provided by JENDL-4.0 (orange dashed line), compared with the contribution given by different
sub-sets of resonances.

An example of the RSA in the case of a p-wave resonance is shown in Figure 6, where
the quality of the experimental data is clearly sufficient to accurately determine the kernel
and resonance energy. It is interesting that the n_TOF fit of the capture yield showed large
discrepancies compared to both the JENDL-4.0 and ENDF/B-VIII libraries. As shown by
Table 1, the value of gΓγΓn/Γ measured at n_TOF was a factor of two larger with respect
to both libraries and to the values from [15]. The results showed an excellent energy
resolution achievable at n_TOF; in fact, we were able to determine the resonance energy
with a precision of two orders of magnitude better than [15].
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Figure 6. Example of the RSA in the case of p-wave resonance; in this case, the n_TOF fit (red) of the
capture yield shows large discrepancies, compared to both the JENDL-4.0 (green) and ENDF/B-VIII
(blue) libraries.

Table 1. Capture kernel measured at n_TOF compared to the values reported by the ENDF/B-VIII
and JENDL-4.0 libraries and by [15].

Source Energy (eV) gΓγΓn/Γ (meV)

n_TOF 5636.56 ± 0.05 21.6 ± 1.2
JENDL-4.0 5640 11.0

ENDF/B-VIII 5640 10.5
Musgrove et al. 5640 ± 5 10 ± 1

The first results demonstrated that the accurate energy-dependent cross-section of
140Ce(n,γ) was measured successfully at n_TOF and the resonances parameters were deter-
mined with uncertainties significantly lower than previous experiments. The combination
of the C6D6 detectors, with their very low neutron sensitivity, and the high energy reso-
lution of n_TOF were decisive to measure this very low capture cross-section. The data
allowed performing a reliable RSA of approximately 80 resonances, a large fraction of
which are p-waves. These are of particular interest for the s-process, since they provide a
larger contribution to the MACS between 8 keV and 30 keV. Direct experimental informa-
tion will largely determine the MACS at 8 keV and significantly tighten the constraints of
the statistical model to calculate the MACS at about 30 keV. The new neutron capture rate,
once included in the nucleosynthesis stellar models, will shed more light on the discrepancy
with the cerium abundance measured in the M22 globular cluster.
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Notes
1 [El/Fe] = log(N(El)/N(Fe))star − log(N(El)/N(Fe))sun.
2 Area of a resonance, defined as gΓγΓn/Γ.
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