
https://doi.org/10.1007/s10846-022-01612-5

REGULAR PAPER

Ornithopter Trajectory Optimization with Neural Networks
and Random Forest

M. A. Pérez-Cutiño1,2 · F. Rodrı́guez1 · L. D. Pascual3 · J. M. Dı́az-Báñez1

Received: 1 October 2021 / Accepted: 5 March 2022
© The Author(s) 2022

Abstract
Trajectory optimization has recently been addressed to compute energy-efficient routes for ornithopter navigation, but its
online application remains a challenge. To overcome the high computation time of traditional approaches, this paper proposes
algorithms that recursively generate trajectories based on the output of neural networks and random forest. To this end, we
create a large data set composed by energy-efficient trajectories obtained by running a competitive planner. To the best of
our knowledge our proposed data set is the first one with a high number of pseudo-optimal paths for ornithopter trajectory
optimization. We compare the performance of three methods to compute low-cost trajectories: two classification approaches
to learn maneuvers and an alternative regression method that predicts new states. The algorithms are tested in several
scenarios, including the landing case. The effectiveness and efficiency of the proposed algorithms are demonstrated through
simulation, which show that the machine learning techniques can be used to compute the flight path of the ornithopter in
real time, even under uncertainties such as wrong sensor readings or re-positioning of the target. Random Forest obtains the
higher performance with more than 99% and 97% of accuracy in a landing and a mid-range scenario, respectively.

Keywords Trajectory optimization · Neural networks · Random forest · Ornithopter · Dataset

Multimedia Material

The Ornithopter Trajectory Optimization (OTO) data set
and evaluation code can be found at https://github.com/
mpcutino/OTO dataset.

1 Introduction

An ornithopter is a flapping wing drone [5] and it is
normally designed to imitate the flight of a bird, a bat
or an insect. These prototypes seek to overcome the
battery limitation and the human-safety problems of the

� M. A. Pérez-Cutiño
mpcutino@us.es;m.perez@virtualmech.com

Extended author information available on the last page of the article.

multi-rotor drones. Over the past few decades, there have
been remarkable advances in the design of flapping wing
vehicles [23, 31]. However, autonomous navigation remains
a challenging task, among other reasons, due to lack of
adequate motion planning algorithms. In robotics, motion
planning is the problem of computing a path that connects
an initial and a target robot configuration, also known as
a trajectory. Motion planning for avoiding collisions has
been the most common goal [12], but other objectives
such as smooth paths or low battery consumption can be
defined.

Trajectory optimization algorithms aim to find the best
trajectory for an object in a space when a set of kinematics
and dynamics rules are considered [13]. An optimal trajec-
tory is the one that minimizes (or maximizes) a given cost
function and satisfies a set of constraints, usually described
in a mathematical differential model. The complexity of
computing an optimal trajectory is closely related to the
number of maneuvers that the object can perform at each
point of the trajectory (i.e. the number of paths that
can be generated). Thus, planning optimal trajectories for
autonomous ornithopters is a complicated problem. First,

/ Published online: 7 May 2022

Journal of Intelligent & Robotic Systems (2022) 105: 17

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-022-01612-5&domain=pdf
http://orcid.org/0000-0002-8841-2565
https://github.com/mpcutino/OTO_dataset
https://github.com/mpcutino/OTO_dataset
mailto: mpcutino@us.es;m.perez@virtualmech.com

these types of vehicles present nonlinear and complex dynam-
ics which must be taken into account when computing
feasible trajectories. Second, the state space is large as it
must include the position, velocities and altitude of the
drone, which are relevant for gliding and perching opera-
tions. Due to these complexities, there is a need for efficient
model-based methods that allow the computation of pseudo-
optimal trajectories with real-time performance. To address
this gap in the research, in this paper we propose super-
vised Machine Learning (ML) algorithms to learn to fly an
ornithopter. Due to the lack of data from real bird flights,
our idea is to generate artificial bio-inspired flight data sets
consisting of pseudo-optimal trajectories computed by a
competitive planner.

A recent approach for the problem of optimizing ornithopters
trajectories is [27]. The authors proposed the planner OSPA
(which stands for Ornithopter Segmentation-based Plan-
ning Approach), a trajectory optimization algorithm for a
real ornithopter prototype. This algorithm can be applied to
any dynamic model and different flight types. The authors
demonstrated that OSPA outperforms alternative probabilis-
tic kinodynamic planners both in cost (total energy) and
accuracy (distance to the target). Unfortunately, OSPA is
only valid for online application in short distances scenar-
ios. Furthermore, in these scenarios OSPA only minimizes
the positional distance, without taking into account the
ornithopter velocity and pitch values at the target configura-
tion.

Here, we present new approaches to plan online ener-
gy-efficient trajectories for an ornithopter, both for long
and short distances scenarios. The goal is improving the
efficiency of the algorithms without degrading the quality
of its solutions. Our method uses neural networks (NNs)
and Random Forest (RF) to significantly improve the com-
putational time of the OSPA planner. To train the supervised
methods, we build a data set of energy-optimized trajecto-
ries based on the OSPA algorithm; see Fig. 1(a). We design
ML algorithms that can learn an optimal policy from the
data set, and predict the sequence of states of an energy-
efficient trajectory that considers transition between flap-
ping and gliding, in order to save as much energy as possi-
ble, as illustrated with the example of Fig. 1(b)).

In our previous work [25], we provide the first data
set containing energy-efficient trajectories for ornithopter
flights. In this paper, four main additional extensions are
developed: 1) we increase the existing data set with a
large number of trajectories, considering a higher number
of maneuvers, as detailed in Section 4; 2) we incorporate
an efficient Random Forest to accurately predict the next
maneuver; 3) we add complex strategies to the networks
architecture and the training process, such as residual
connections [8], and a weighted loss function to consider
class imbalance; 4) we study the performance of the

proposed ML algorithms in more complex scenarios, by
introducing random noise during flights and forcing re-
planning strategies.

In general, our main contributions are the following:

– We create a novel data set for ornithopter trajectory
optimization termed as OTO. To the best of our
knowledge, this is the first dataset with more than 100
000 pseudo-optimal trajectories for ornithopter motion
planning, surpassing by a wide margin the previous
existing one (containing less than 1 000 trajectories).
The data set is benchmarked with several algorithms,
and we provide a training-test split to ensure fair
comparisons.

– We design two classifiers: an artificial neural network
(ANN) and a Random Forest. The algorithms learn
maneuvers and can be queried to predict energy-
optimized trajectories that can be computed online.
These algorithms provide a strong benckmark for our
novel data set.

– We use an alternative recurrent neural network (RNN)
to learn states instead of maneuvers, avoiding the need
of knowing the model of the drone dynamics.

– We show that the proposed ML-based algorithms can
be used for real-time trajectory optimization, both
for medium and short distances. Indeed, our methods
significantly reduce computational costs while resulting
in trajectories comparable to those produced by OSPA.

The remainder of the paper is organized as follows:
Section 2 outlines related articles and Section 3 states
the problem description. Afterwards, the created data set
is introduced in Section 4. The ML-based algorithms are
presented in Section 5, while computational analysis and
results take place in Section 6. Finally, conclusions are
outlined in Section 7.

2 RelatedWork

Trajectory optimization is a crucial task in autonomous
navigation. Over the past decade, the optimization problem
has been vastly studied, specially for multirotors and fixed-
wing vehicles; see [4] for a comprehensive survey. However,
optimizing trajectories with real-time algorithms remains
a challenge, particularly for systems with complex dynam-
ics.

Among the existing techniques for trajectory optimiza-
tion [3], we are interested on developing efficient ML algo-
rithms capable of overcome the existing limitations of tradi-
tional methods. In the existing literature, some types of path
planners based on NNs have been proposed for Unmanned
Aerial Vehicles (UAVs). Most of the methods utilize NNs
to approximate the system dynamics, objective functions,

17 Page 2 of 16 J Intell Robot Syst (2022) 105: 17

Fig. 1 The proposed ML algorithms learn from experience by observ-
ing optimal trajectories starting at a given state (red dot) and targeting
a point in space (red crosses), as in Figure (a). Data is obtained by
implementing OSPA [27], which generates pseudo-optimal trajecto-
ries ending (blue dots) near the target states (red stars). Figure (b) is an

example of a desired trajectory with three maneuvers from 15 meters
before landing. The landing operation is achieved by a first maneuver
with flapping, a second one performing gliding, and the last one using
tail deflection

and gradients, which removes the requirement for colloca-
tion [10, 15]. Another promising approach is the use of deep
NNs. For instance, in the paper [16], a Convolutional NN
(CNN) model has been introduced to formulate path plan-
ning as a supervised classification problem. On the other
hand, recurrent NNs (RNNs) has been proposed for solv-
ing 2-D maze navigation in [11], and algorithms combining
RNNs with other learning techniques have been recently
studied in [7, 32]. Finally, other learning approaches, as
Q-learning [34], cooperative learning [37], random forest
[22] and reinforcement learning algorithms [38] have been
proposed for UAV path planning.

The aforementioned algorithms have been designed for
the problem of path planning, which is usually the first
step before obtaining an optimal trajectory. Our proposal is
capable of generating an optimal trajectory without using an
initial trajectory as reference.

Trajectory optimization algorithms using neural net-
works have been proposed in [17, 18]. In [18], an student-
teacher strategy is used to couple an Artificial Neural
Network and a trajectory optimization method based on
contact-invariant optimization [19]. On the other hand, [17]
trained a Multilayer Perceptron on trajectories obtained with
the use of differential game theory. Both methods evidences
the benefits of using NNs as part of the optimization pro-
cess. Moreover, when properly controlling the parameters of
these algorithms, the NNs can produce real-time responses.

Despite the development of the aforementioned works,
trajectory optimization using ML algorithms for complex
systems, such as ornithopters, is an under researched area.
In this paper, a dataset with a large number of pseudo-optimal
trajectories is provided, and several ML-based methods are
proposed to achieve ornithopter real-time path planning.

The algorithms are tested in complex environments, address-
ing a trade-off between path quality and efficiency.

3 ProblemDescription

Suppose that we have an autonomous ornithopter with a
known model of its dynamics (see [27] for more details
about the specific dynamic model assumed in this paper).
The problem is to plan online energy-efficient trajectories
to navigate the ornithopter from a starting point to a target
location. Those trajectories have to comply with the ornithopter
dynamics, therefore they are flyable. Then, we assume the
existence of lower-level algorithms to control the ornithopter
through the computed trajectory.

A trajectory is a sequence of flight states, where a state
describes the ornithopter configuration at a given instant of
time. A flight state is given by a tuple s = (x, z, u, w, �, q),
where x and z are the positional values, u and w are velocity
components in the body reference frame, � is the pitch
angle and q is the pitch angular velocity. Our trajectories are
constrained to the XZ plane, as we assume a longitudinal
motion model for the ornithopter.

The ornithopter reaches a state (dynamically feasible) per-
forming a specific control maneuver. A control maneuver is
a tuple of values m = (δ, f), where δ is the tail deflection,
determined by the deflection angle (up and down), and f

is the wing flapping, determined by the flapping frequency
(including zero value for gliding). Thus an energy-efficient
trajectory can be described by combining flapping, gliding
and tail flick. An example of an ornithopter trajectory is illus-
trated in Fig. 1(b). In this paper, we establish a maneuver set
M composed by all combinations of flapping frequencies

Page 3 of 16 17J Intell Robot Syst (2022) 105: 17

Table 1 The considered maneuvers with their corresponding labels

class maneuver class maneuver

0 (−4◦, 0 H/z) 13 (−2◦, 3 H/z)

1 (−4◦, 1 H/z) 14 (−2◦, 4 H/z)

2 (−4◦, 2 H/z) 15 (−1◦, 0 H/z)

3 (−4◦, 3 H/z) 16 (−1◦, 1 H/z)

4 (−4◦, 4 H/z) 17 (−1◦, 2 H/z)

5 (−3◦, 0 H/z) 18 (−1◦, 3 H/z)

6 (−3◦, 1 H/z) 19 (−1◦, 4 H/z)

7 (−3◦, 2 H/z) 20 (0◦, 0 H/z)

8 (−3◦, 3 H/z) 21 (0◦, 1 H/z)

9 (−3◦, 4 H/z) 22 (0◦, 2 H/z)

10 (−2◦, 0 H/z) 23 (0◦, 3 H/z)

11 (−2◦, 1 H/z) 24 (0◦, 4 H/z)

12 (−2◦, 2 H/z)

F = {0 Hz, 1 Hz, 2 Hz, 3 Hz, 4 Hz} and tail deflection
angles T = {−4◦, −3◦, −2◦, −1◦, 0◦}, see Table 1.

We assume an open space where the drone flies without
obstacles, and we consider two scenarios: the landing
problem, where the X-distance is within a range of 15 to 25
meters, and the mid-range problem, where the X-distance
between starting and target points is within a range of 25 to
100 meters.

The optimization function is the total energy cost (bat-
tery) consumed by the ornithopter. Two main metrics will
be used in the experiments: precision and cost. The preci-
sion measures how far the final state is from the target in
the XZ-plane. The cost is given by the energy consump-
tion determined by maneuvers performed by the ornithopter.
The energy consumed by the ornithopter performing a cer-
tain maneuver for a time step ts is given by the following
formula:

E = ts(Kaerof
3 + cr). (1)

The first term represents the energy consumption in the
flapping wings maneuver. It has been empirically proven
that this consumption is proportional to the cube of the
flapping frequency [20]. The constant coefficient Kaero is
estimated empirically based on the physical characteristics
of the ornithopter1. The second term models the residual
energy consumption cr when the ornithopter is not flapping,
mainly due to the onboard electronics. As the cost of
moving the tail is negligible compared to the average
consumption of the electronics, we consider the cost cr

constant2. As expected, Equation 1 shows that the energy
cost is dominated by the flapping maneuvers.

1All the experiments in this paper used a value Kaero = 2.5 W/Hz3,
obtained empirically for the ornithopter prototype used in [27].
2The empirically estimated upper bound of cr is 5W .

There are some approaches to address this optimization
problem but unfortunately, solving the highly non-linear
system that describes the dynamics of the ornithopter is time
consuming and the methods from the literature are no valid
to be used online. Thus, the main goal in this paper is to
use supervised learning algorithms to compute short-term
trajectory optimization for an ornithopter.

4 OTOData Set

To our knowledge, the first data set available for ornithopter
trajectory optimization was given by [25]. The data set was
created to train NN’s using the planner OSPA [27] with
scenarios involving flapping, gliding and landing maneu-
vers. In this paper, we improve the data set provided in [25]
by adding a great number of new flight trajectories. For
the sake of reproducibility, we make our data set publicly
available3.

4.1 Data Generation

Our intention is to make a large and representative ornithopter
flight data. To this end we create a set of initial states for
the ornithopter describing many possible starting positions
in terms of velocity and pitch. A simple translation is
applied over the initial and target state to simulate that
every trajectory starts at the origin of coordinates. Thus, we
assume that the ornithopter always starts at (0, 0) position
in the XZ plane with null angular velocity. We pick 9 initial
states by taking the combinations of pitch and speed values
P = {−30◦, 0◦, 30◦} and S = {0.5 m/s, 1 m/s, 1.5 m/s},
respectively.

From each of these initial states, we mimic the technique
proposed in [27] to expand a tree of states by applying each
maneuver in the set M consecutively taking a timestep of
0.1s and 1s between maneuvers for the landing and mid-
range problems, respectively. We consider a sequence of
maneuvers increasing by 1Hz in flapping frequency and 1◦
in tail deflection angle (see Table 1).

In order to create a large number of trajectories while
avoiding exponential grow, we expand the tree of states and
prune some vertices using a clustering approach at each
level. This technique consists in grouping nearby states in
space and keeping only the ones with lower cost in each
cluster for the next iteration. With a big enough number
of clusters by iteration, we get wide trees of low-cost
trajectories scattered in space.

We randomly generate a large number of target states
in the space within the spatial ranges shown in Table 2.
Target states have fixed pitch and speed values of 30◦ and

3https://github.com/mpcutino/OTO dataset/tree/master/data

17 Page 4 of 16 J Intell Robot Syst (2022) 105: 17

https://github.com/mpcutino/OTO_dataset/tree/master/data

Table 2 Ranges of target state position used in the experiments. MR:
mid-range, L: landing

Problem X range (m) Z range (m)

L [0, 25] [0, −25]
MR [25, 100] [−50, 50]

0 m/s, respectively. This represents a suitable posture for
the ornithopter to reach the target. For each target point
and the expanded tree, we select all states within a ratio
of 0.01 m and 1 m from the target for the landing and the
mid-range problem, respectively. From the selected states,
we take as optimal ending state the one with better pitch
and speed compared to the target in the landing problem,
and the one with lower energy consumption in the mid-
range problem. We use these metrics because precision is
more important than energy in the landing problem. For
each of the optimal ending states we get its trajectory from
the corresponding tree and include it into the data sets.

Following the above procedure we create over 27.026
different trajectories (a total of 345.676 states) for the
landing problem, and 95.153 different trajectories (a total
of 876.333 states) for the mid-range problem. From each
trajectory, we store the state-control waypoints, the initial
and target states, the timestep and the energy cost. Finally,
we use the 80% of the data to train the models and the rest
for testing.

4.2 Data Analysis

The ML-based algorithms proposed in this study use
information about flight states and maneuvers to predict
efficient trajectories between initial and target states. In this
section we made a brief study over the maneuvers and over
all variables in flight states in the OTO data set. With this
study we pretend to observe the difficulty of our problem
and to obtain some insights to improve the accuracy of
predictions.

Recall that the tree of states in the OSPA algorithm
is expanded using the set M of maneuvers in Table 1.
Figure 2 shows the percent of use of each maneuver in the
landing and middle range data sets. We can observe that
all maneuvers are used in the mid-range data set, but there
are some of them with very low use rate. In this cases,
the difficulty of predicting the correct maneuvers increases.
On the other hand, for the landing scenario, the percentage
value of each maneuver used decreases. As a result, the
maneuver corresponding to class 24 is not used by OSPA
during the landing flights.

Figure 3 illustrates the data distribution of the landing
dataset, using the difference between the target and current
state of the ornithopter. The analysis using these values is

Fig. 2 (a) and (b) show the percent of use of the maneuvers in landing
and mid-range problems, respectively

important as it highlights the distribution of each variable
in the data set. In addition, the difference of the states
is the input of our algorithms. As each variable represent
a different distribution, in the training phase we scale its
values to have zero mean and unit standard deviation. On the
other hand, the box-plots across the action classes highlights
the complexity of our problem. For each individual variable,
there are several outliers, which increase the variability in
the data, but decreases the statistical power.

We also performed a scaling operation on the training
phase for the data corresponding to the mid-range problem.
The distribution of the variables and the box-plots of the
mid-range data set, result in a similar picture to the one
generated for the landing scenario.

5Machine Learning Algorithms

The OSPA planner performance depends on the maneuvers
it takes at a given state. Our proposal relies on trajectories
generated by OSPA, using different supervised ML algo-
rithms. The goal is to obtain energy-efficient trajectories and
reduce computational times compared to exploratory algo-
rithms. Thus, computational cost is a key point in the design
of the architectures of our models.

We propose two types of Artificial Neural Networks:
a Multi-Layer Perceptron (MLP), to predict actions; and

Page 5 of 16 17J Intell Robot Syst (2022) 105: 17

Fig. 3 Distribution of the landing problem dataset. The variables (u, v,
omega, theta, x, z) represents the difference between the target and ini-
tial state. The distributions are depicted in the first and third plot with

a Kernel Density Estimation (KDE) function. The box-plots in the sec-
ond and fourth column shown the values of the variables across the
different action codes, from 0 to 23

a Recurrent Neural Network (RNN), to predict states.
For the MLP, we consider a discrete set of actions or
maneuvers in a continuous space of configurations. This
derives in two different kinds of problems, classification
and regression, respectively. The advantage of the maneuver
classification network is that it can generate feasible paths
for the ornithopter according to the predefined dynamic
model and, it is possible to compute the cost in terms of
energy. However, this network only consider a discrete set of
available maneuvers. Therefore, we propose a second type
of network to directly predict a set of future states given the
past states in the flight. In this case we tackle the continuous
problem, even if the training data is generated in a discrete
manner.

For the classification problem, we also propose the
use of Random Forest (RF) [2], as an alternative to
the MLP. Random Forest has proved to outperform
classifiers based on neural networks in terms of recognition
accuracy, stability, and robustness to features in several
scenarios [6, 21, 36]. Moreover, RF produces fast responses

when properly controlling the number of trees in the
forest.

5.1 Multi-Layer Perceptron

MLP is a feed-forward artificial neural network that is usually
trained in a supervised manner and contains several hidden
layers. For our problem, we model a trajectory from the data
as a discrete set of state-maneuver pairs. Since the set of
maneuvers is fixed, we train the network to learn the next
control maneuver depending on the current and target states.

The goal is to build a MLP to learn the best maneuver
in each scenario. For this, we label the maneuvers with a
class tag from C = {0, 1, · · · , N} where N represents the
maximum integer identifier of the proposed maneuvers, as
in Table 1, depending on the evaluated problem. For the
landing task, N = 23, and N = 24 for the mid-range
flights. The input of the network is the difference between
the current and target states, and the output is the maneuver
to be performed.

17 Page 6 of 16 J Intell Robot Syst (2022) 105: 17

Fig. 4 Definition of a Basic Block for the MultiLayer Perceptron. It is
composed by a Linear layer with input of size n and output of size m, a
Normalization layer, a ReLU activation function, and a Dropout layer
with probability p

5.1.1 MLP Architecture

The architecture of the network is designed as the applica-
tion of consecutive Basic Blocks. The definition of a Basic
Block is depicted on Fig. 4. First, a Linear layer transform a
vector of size n into a vector of size m. The result is normal-
ized applying the Layer Normalization technique described
in [1]. We introduce non-linearities with the use of the ReLU
activation function, and finally we add a Dropout layer to
prevent complex co-adaptations between neurons [9].

The bells and whistles of the proposed MLP are depicted
on Fig. 5. We use a Deep Neural Network with 8 modules,
containing a total of 777.792 neurons. Residuals connec-
tions are applied between the second and the fourth Basic
Block, and between the fourth and the sixth. This type
of connection reduce the complexity of the learning task,
making the network easier to optimize [8].

5.1.2 Training

The MLP was trained using the RMSprop optimizer with a
loss function based on Cross-Entropy. The loss values are
weighted to consider the different a priori probabilities of
the classes adopted. The function is defined as:

LCE(x) = −
∑

i

wipi(x) log qi(x), (2)

where pi(x) is the probability of sample x of belonging to
the class i, qi(x) is the probability prediction of the MLP,
and wi is a weight function to take into account the different
probabilities of belonging to class i. The weight value per
class is computed as:

wi = (1 − Pi)
αi , (3)

Fig. 5 Architecture of the proposed MLP. The arrows between non-
consecutive blocks represents residual connections. The parameter C

in the output layer is the number of classes depending on the problem:
C = 24 for landing, and C = 25 for mid-range flights

where Pi is the a priori probability of class i and it is
estimated as the percentage of samples of class i in the
training dataset, and αi is a parameter that highlights the
class relevance. wi is useful to compensate the differences
in the representation of each class and, at the same time, it
allows to push the network prediction in a specific direction
to reduce (increase) the false negatives (positives).

5.1.3 Path Generation

Once trained, the MLP can predict the control maneuver m

from a flight state s. Also, we implement the kinodynamic
model introduced in [27], K(s, m), to compute the next state
given an initial state and a control maneuver. This allows us
to compute the full trajectory by using the next formula in a
loop starting at the initial state:

si+1 = K(si,N (si)),

where N (si) represents the action predicted by the network
for the state si . The loop is stopped when si+1 is further than
si from the target state.

5.2 Recurrent Neural Network (RNN)

The goal of the proposed MLP is to predict the next maneu-
ver at each time step using the information of the cur-
rent state. Note that this strategy is dependent from the
ornithopter model. We propose a RNN to predict the next

Page 7 of 16 17J Intell Robot Syst (2022) 105: 17

flight state based on previous states. Recurrent architectures
have been widely adopted for solving forecasting prob-
lems, with the use of Gated Recurrent Units (GRU) [28, 29]
or Long Short-Term Memory (LSTM) neurons to handle
sequential relationships [33].

In this case, we use a decoder architecture so only the
initial distance is needed to develop a complete trajectory
from it. As can be seen in the Fig. 6, a decoder has a single
input, and produces a sequence starting from this input. For
our specific case, the input is the initial distance, and the
output is a set containing the next states in the trajectory.

5.2.1 RNN Architecture

We build a simple RNN with one recurrent layer and one
output layer with a linear activation function. The output
layer has as many units as flight states considered for pre-
diction (two states for the mid-range problem and six states
for the landing problem). The input is the initial distance
from the current to the target state, and the output is the
set of distances between each element in the trajectory and
the target state. The RNN is executed recursively to get the
complete trajectory starting from the initial distance. All
input variables are normalized following the same strategy
as in the MLP scenario. This represents an efficient strat-
egy to push the network to predict low values while keeping
the ability to compute the next state. The next state can be
obtained by simply subtracting the output of the network
and the target state. The recurrent layer has 11 LSTM neu-
rons. We select LSTM neurons to deal with the vanishing
gradient problem encountered by traditional recurrent neu-
rons. In addition, we decide to keep a small architecture to
obtain a fast predictions rate.

Fig. 6 Overview of the decoder RNN architecture

5.2.2 Training

The network is trained with one trajectory at a time, by
comparing its output with the expected values. The goal of
the training is to obtain the same input sequence shifted by
one step ahead. The optimization process is carried out by
the Adam optimizer using the values recommended in [14]:
a learning rate of 0.001, a β1 value of 0.9, a β2 value of
0.999, an epsilon value of 1e-8 and no weight decay. The
learning is stopped after 100 epochs. The loss function used
is the MSE (Mean Squared Error):

LMSE = 1

N

N∑

i=1

(
d(yi, ŷi)

)2
,

where N is the number of considered flight states, yi is the
i component of the OSPA state and ŷi is the i-component
of the RNN predicted state. In our specific case, minimizing
the MSE implies that the likelihood function between the
predicted states distribution and the OSPA states is maxi-
mized.

5.2.3 Path Computation

At every time step t , the information to predict the next state
consists on the previous prediction of the distance (yt−1)
at time step t − 1, and the recurrent layer hidden states
(ht−1) at the same time step. The hidden states condenses
all previous information regarding the trajectory; see Fig. 7
for a representation of the proposed RNN, unrolled until
time step t − 1. The algorithm ends when an output yt is
close enough to zero, i.e. the target has been reached and the
trajectory is over. For t = 0, we use as input the difference
between the target and the initial state.

5.3 Random Forest

The combination of different models over the same clas-
sification problem is usually known as ensemble learning.

Fig. 7 Decoder RNN neuron. The input neuron (red box) contains six
units, one for each variable of the ornithopter state

17 Page 8 of 16 J Intell Robot Syst (2022) 105: 17

In the case of RF, the predictions are obtained by a vot-
ing process over the output of different Decision Tress [26].
To produce different distributions in the models, every tree
selects randomly a subset of the features present in the data,
and random samples from the dataset.

To evaluate the importance of the attributes before
creating a new node in the trees, we selected the Gini
Index (GI) as it results in higher precision on the conducted
experiments. GI is calculated by subtracting the sum of the
squared probabilities of each class from one.

GI = 1 −
C∑

i=1

p2
i , (4)

where C represent the number of classes and pi is the proba-
bility of class i, obtained as the frequency of appearance on
the considered split.

The RF architecture for training is obtained by applying
a Grid Search strategy. For each task, i.e. landing and mid-
range flights, we define a set of possible parameters, and we
create different forest using all possible combinations. Each
forest is evaluated on a small portion of the training data,
i.e. a validation set, and the best configuration of parameters
is maintained for full training. The specific values of the
parameters are depicted on Section 6. In addition, the path
generation follows the same guidelines detailed in the MLP
section.

6 Experiments

In this section we compare the proposed ML methods against
the OSPA planner4. The metrics used are the average values
of energy consumption (Cost), execution time (Time), the
Euclidean distance between the last state and the target
(Precision) and the mean distance between the calculated
and OSPA trajectories (Error). The precision is calculated
by using the x and z values of the states. The Error is defined
as the average distance between a fixed number of points
in trajectories generated by OSPA and the ML algorithms.
The points are obtained by sampling 10 random states for
each trajectory and computing the correspondent positional
distance. This metric gives us an idea about the similarity
between two given trajectories. Metrics are computed over
the testing dataset.

4It is important to notice that our problem is very specific from an
engineering point of view, and we need to integrate complex and
non-linear dynamics. This makes it hard to find heuristics that works
properly. This is why we decided to only compare with OSPA, which
is particularly suited for the problem at hand.

The classifiers are compared using the metrics Accuracy,
average Recall, and Macro average Recall. In a binary
setting, Recall and Accuracy are defined as:

Recall = T P

T P + FN
, (5)

Accuracy = T P + T N

N
, (6)

where T P, FN, T N represent True Positive, False Neg-
ative and True Negatives samples, respectively. N is the
cardinality of the test set. As our problem is not binary,
we compute the Accuracy as the fraction of correctly clas-
sified samples. On the other hand, Recall is computed per
class, thus transforming our problem in C binary tasks. The
average Recall is computed as the weighted average of the
recall per class. The weight is defined by the number of
samples of the class in the test set. In addition, the Macro
average metric does not take into account the number of
samples; therefore, it assumes equal importance on every
class. This value is a representation of the behaviour on
classes less populated on the dataset. To counteract the class
imbalance, the α parameter selected in the loss function of
the MLP is 5.

In both scenarios, mid-range and landing, the 20% of
the training dataset is used for validation. Validation data
is used differently depending on the algorithms. For the
neural networks, we keep the model with lower loss value
on the validation data; for Random Forest, we perform a gird
search to optimize the model parameters.

The ML algorithms were tested on a Intel Core i5-8250U
CPU, with a clock frequency of 1.60GHz. The NNs were
optimized using the nvidia graphic card GeForce MX150.
We use Pytorch [24] for the implementation of the MLP, and
Keras for implementing the RNN.

6.1 Landing Problem

Landing phase remains to be one of the most crucial and
difficult tasks to achieve among the flight envelope of an
aerial robot. Landing requires complex maneuvers in order
to prepare the ornithopter to perform a perching operation.
Moreover, there is a need for a fast computation because
the ornithopter has limited time for reaction. Also, for the
landing problem it is more relevant to end the trajectory
closer to the target rather than reducing the energy cost.

In the learning phase for this task, RNN and MLP are
trained by a maximum of 100 and 300 epochs, respectively.
The validation dataset is used to keep the model with the
best loss value across all the epochs. In this manner, we
ensure a better generalization when predicting over unseen
data. For the RF algorithm, we perform a grid search over
the validation data, resulting in a model that uses 100 trees,
the Gini Index as the quality function, and a maximum depth

Page 9 of 16 17J Intell Robot Syst (2022) 105: 17

Table 3 Accuracy and Recall of the proposed classifiers on the test
data set for the landing problem. M-AVG Recall stands for Macro AVG
Recall

Algorithm Accuracy AVG Recall M-AVG Recall

ANN [25] 80.13 80 49

MLP 91.59 92 67

RF 99.82 99 98

of 25 for every tree. The classifiers uses 24 classes in this
scenario. For its part, the RNN considers six states to train
and predict.

6.1.1 Results

A comparison between the classifiers is depicted in Table 3.
Both MLP and RF perform with high accuracy and recall,
but RF obtains the best results by a large margin. Moreover,
the Macro average metric reflects a drop in the performance
of MLP for the underrepresented classes on the test set,
while RF maintains its excellent results. The performance
of the Artificial Neural Network (ANN) proposed in our
previous work [25] is also evaluated. The goal is to evidence
the impact of the improvements conducted in this work:
better performance for more complex algorithms using a
dataset 10 times larger.

Table 4 shows the performance of the algorithms com-
pared to OSPA. We added two new metrics, (V-error) and
(P-error), measuring the error in the last state in terms of
speed (m/s) and pitch (rad), respectively. Since the trajec-
tory in the landing scenario must end just before a perching
maneuver, the goal now is to predict trajectories very close
to the target with suitable velocity and pitch angle, specifi-
cally 0 and 30◦, respectively.

The experiments highlight the capabilities of the ML-
based methods to significantly improves computational time
without a meaningful loss in the other metrics. It is worth
noting that although the velocity error is not negligible, this
result is similar to the one obtained by the OSPA algorithm.
On the other hand, RF outperforms both the networks and
the OSPA on almost all metrics. This result is an expression
of the learning capabilities of the ensemble of trees. The
algorithm has learned an efficient optimization function,

Table 4 Results for the landing problem

Algorithm Cost Time (s) Precision (m) Error V-error P-error

OSPA 21.61 37.24 0.07 na 0.63 0.81

MLP 22.30 0.21 0.17 0.54 0.63 0.77

RNN na 0.08 0.74 1.01 0.63 0.45

RF 20.72 2.3e-3 0.06 0.01 0.63 0.80

that is capable to outperform the heuristic used to collect
the training data. Moreover, this increased performance is
obtained on previously unseen samples. To push further the
study of performance under different conditions, we design
two additional experiments.

6.1.2 Robustness

The ornithopter is equipped with sensors to know its situa-
tion and the relative location of the target. These sensors are
subject to noise; therefore the actual position and state are
known with some degree of incertitude and noise.

We simulate the uncertainty by adding a random Gaus-
sian noise to the state vector at each time step, defined as:

f (x) = 1

σ
√

2π
e−0.5(

x−μ
σ

)2
. (7)

The states are normalized prior to the noise injection. We
consider a zero mean (μ = 0) distribution, but we vary the
value of the standard deviation σ , to compare the perfor-
mance of the algorithms under different conditions. Table 5
shows the effect of the perturbation. It can be noticed
how the performance degrades as the noise increase. We

Table 5 Results for the landing problem assuming a Gaussian noise on
every state of the trajectory. MLP shows robustness to noise even on
hard conditions, i.e. when σ = 1, which can be equivalent to moving
the ornithopter more than 10 meters from its original position

Sigma Algorithm Cost Precision V-error P-error

0.01 MLP 22.39 0.18 0.63 0.76

RNN na 0.73 0.46 0.62

RF 21.09 0.45 0.64 0.83

0.02 MLP 21.82 0.20 0.63 0.77

RNN na 0.77 0.45 0.62

RF 21.35 0.73 0.65 0.85

0.05 MLP 22.49 0.35 0.63 0.75

RNN na 0.83 0.45 0.68

RF 20.82 1.14 0.66 0.88

0.1 MLP 22.64 0.59 0.63 0.71

RNN na 1.19 0.44 0.67

RF 20.53 1.52 0.66 0.86

0.2 MLP 22.63 0.92 0.62 0.62

RNN na 1.42 0.45 0.77

RF 21.29 2.26 0.68 0.82

0.5 MLP 23.04 1.72 0.63 0.51

RNN na 2.88 0.45 0.86

RF 21.93 3.01 0.70 0.75

1 MLP 22.77 2.93 0.65 0.51

RNN na 9.02 0.39 0.65

RF 21.10 4.16 0.73 0.74

17 Page 10 of 16 J Intell Robot Syst (2022) 105: 17

can conclude that the drone is able to reach the neigh-
borhood of the target despite applying noise to the states.
Moreover, a few remarks can be done:

– MLP outperforms the other algorithms in terms of
precision by a large margin.

– RNN has a lower precision than RF on small noise,
i.e. for σ ∈ {0.01, 0.02}. However, its performance
is boosted for harder noise values, except σ = 1. In
addition, RNN obtains the lower velocity error for all
values of σ .

– RF and MLP performance is acceptable even on hard
noise, i.e. when σ = 1. In terms of position, this value
represents changes up to 13.7m in the X axis and 6.4m

in the Z axis.
– The V-error and P-error are not highly affected under

different configurations. This is due to the fact that
the OSPA planner does not have constraints on the
velocities and pitch values, thus they are not optimized.
In addition, a high standard deviation affects these
variables differently, as their values fall in a smaller
range when compared to the positional variables.

6.1.3 Replanning

In real scenarios, the flight environment can be constantly
changing. Therefore, replanning ability is critical for adapt-
ing to unforeseen events. For instance, the target changes
and the agent must re-plan the path.

In order to simulate a re-planning in the middle of a
trajectory, we randomly change the target position when the
trajectory reaches the fifth waypoint. This new position is
given by adding to the normalized target a Gaussian offset
of zero mean and standard deviation σ (see Equation 7). As
the value of σ can drastically change the target value on the
X coordinate, we discard the noise if the new x value of the
target position is lower than the x value of the current state.
We also consider a lower upper bound for σ compared to
the previous scenario. The upper bound for σ translates in a
maximum change of 6.8m for the x value and 3.2m for the
z value.

Table 6 shows the precision reached by the algorithms
with regard to sigma. Note that the error is no longer rele-
vant, as we have no equivalent OSPA trajectory to compare
with. On this new scenario, both RF and MLP obtains a
similar performance in terms of precision, being RF a little
bit more accurate when replanning. It has to be noticed
how the performance drop faster if compared to the previ-
ous experiments. This behaviour can be explained by the
nature of the experiments. Changing the target position can
result on a configuration that is not reachable from the cur-
rent state. However, in the previous experiment, the state of
the ornithopter is changed on every point of the trajectory;

Table 6 Results for the replanning problem when sigma varies

Sigma Algorithm Cost Precision V-error P-error

0.01 MLP 22.37 0.25 0.63 0.78

RNN na 0.74 0.46 0.61

RF 20.22 0.14 0.63 0.79

0.02 MLP 22.32 0.35 0.63 0.79

RNN na 0.70 0.46 0.62

RF 20.22 0.28 0.63 0.79

0.05 MLP 22.54 0.69 0.63 0.79

RNN na 0.67 0.45 0.60

RF 20.25 0.68 0.63 0.80

0.1 MLP 22.43 1.31 0.64 0.78

RNN na 0.85 0.45 0.62

RF 20.04 1.29 0.64 0.80

0.2 MLP 22.63 2.77 0.62 0.62

RNN na 0.84 0.44 0.66

RF 20.14 2.56 0.63 0.81

0.5 MLP 22.29 6.09 0.60 0.78

RNN na 1.06 0.45 0.78

RF 20.31 5.68 0.63 0.82

therefore, if the current configuration is not reachable, there
is a chance that the next random noise results in a better
setting.

Another relevant insight obtained from Table 6 is that
RNN is capable of better adaptation when applying medium
and hard noise (σ > 0.05) to the target state. This behaviour
is obtained because the proposed RNN is independent from
the ornithopter model. Therefore, in principle, any target
state is reachable. In addition, as in the previous experiment,
RNN excels on the velocity and pitch error when compared
to the classifiers.

Finally, note that the RNN estimates the optimal trajec-
tory as a sequence of states, but the required actions are not
provided, thus a trajectory controller is further needed. In
order to mitigate the effects of disturbances and unmodeled
dynamics, a robust trajectory tracking controller could be
used; see [30, 35] as some examples.

6.2 Mid-Range Problem

Performing long flights is one of the main advantages
of ornithopters, as they optimize energy consumption by
switching from flapping maneuvers to gliding. In this
scenario, we consider the mid-range problem as the task
of reaching a given configuration in a location that is far
from the current position of the drone. The target setting has
no restrictions on the variables involved in the state of the
ornithopter.

Page 11 of 16 17J Intell Robot Syst (2022) 105: 17

For this new scenario, we apply the same methodology
as for the landing problem, in terms of data generation, data
preprocessing, network arquitecture and path generation.
For RF, the best parameters obtained when performing the
grid search over the validation data are: a forest with 200
trees, the Gini Index as quality function, and no restrictions
over the maximum depth of the trees. The number of
considered maneuvers in this approach is 25.

6.2.1 Results

Table 7 shows the performance of the proposed classifiers
for the mid-range problem. We add the results computed
with the neural network classifier used in [25], evidenc-
ing once again the improvements obtained by expanding
the dataset, and by adding more complexity to the neural
network structure and loss function. In addition, RF outper-
forms MLP by a large margin in all the metrics evaluated.
However, the average Recall and the Macro average recall
is similar in both methods. This translates in a similar
performance across different maneuvers, despite the class
imbalance present on the data. The high values obtained in
theses metrics accentuate the importance of the α parame-
ter used in the loss function during training, for the MLP.
On the other hand, RF is more naturally robust against the
imbalance as every tree learns from a random subset of the
data. One aspect to notice is that the Macro average has
a higher value for the MLP in this task when compared
to the value obtained in the landing problem. This can be
explained by the number of samples in the underrepresented
classes. In the landing task, the least populated class has 14
items, while in the mid-range problem, it has 144.

Table 8 displays a comparison between OSPA, MLP,
RNN, and RF for the metrics related to flight performance.
Note that RNN does not compute maneuvers, therefore the
value of Cost can not be calculated. However, we assume
that a predicted trajectory with a small value of Error
has a similar cost to the OSPA solution. The experiments
show that ML algorithms drastically outperform the OSPA
algorithm in execution time. In addition, MLP and RF
are capable of lower energy consumption. However, the
saving in battery results in a lower precision; i.e. the ML

Table 7 Accuracy and Recall of the proposed classifiers on the test
dataset for the mid-range flights. RF outperforms MLP and ANN by a
large marging in all the metrics computed. M-AVG Recall stands for
Macro AVG Recall

Algorithm Accuracy AVG Recall M-AVG Recall

ANN [25] 69.2 69 63

MLP 80.0 80 81

RF 97.7 98 98

Table 8 Comparison results (average) for the mid-range problem. na
is the acronym used for not applicable values

Algorithm Cost Time (s) Precision (m) Error

OSPA 74.11 524 0.68 na

MLP 65.34 0.22 1.26 4.33

RNN na 0.07 2.71 6.42

RF 69.74 2.7e-3 1.44 0.72

algorithms end further from the target state. In terms of
error, the trajectories generated by MLP and RNN has
an average distance to OSPA of 4 and 6m, respectively.
Compared to the landing case, the learning process struggles
to adapt to the OSPA trajectories. This is highly related
to the integration time. In the landing scenario, each way-
point on the trajectory is computed every 0.25s of flight

0 10 20 30 40 50

−30

−25

−20

−15

−10

−5

0
Initial stateInitial state

OSPAOSPAPP

RNNRNN

RFRF

MLPMLP

Target stateTaTT rget state

0 10 20 30 40 50
−35

−30

−25

−20

−15

−10

−5

0
Initial stateInitial state

OSPAOSPAPP

RNNRNN

RFRF

MLPMLP

Target stateTaTT rget state

Fig. 8 Trajectories for OSPA, RNN, RF and MLP in the XZ-plane for
the mid-range problem. When a given trajectory perfectly match other
trajectory, then it is occluded on the drawings. The order of drawings is
defined on the legend of the figures. Trajectories obtained with OSPA
are drawn with dashed lines

17 Page 12 of 16 J Intell Robot Syst (2022) 105: 17

0 10 20 30 40 50

−50

−40

−30

−20

−10

0
Initial stateInitial state

OSPAOSPAPP

RNNRNN

RFRF

MLPMLP

Target stateTaTT rget state

0 10 20 30 40 50 60 70

−35

−30

−25

−20

−15

−10

−5

0
Initial stateInitial state

OSPAOSPAPP

RNNRNN

RFRF

MLPMLP

Target stateTaTT rget state

Fig. 9 Examples of bad performance of MLP and RNN in the mid-
range testing dataset. The same drawing principle of Fig. 8 was
followed

time, while in the mid-range problem, this value increases
to 1s. A higher integration step produces higher errors when
actions are predicted incorrectly. Moreover, it provides less
opportunities to the algorithms to adapt. However, as in the
landing scenario, RF produces the most accurate results.
The trajectories are similar to the ones produced by OSPA,
which is a direct consequence of the high accuracy values
obtained in the testing data set.

Figure 8 shows good examples of the path generated
using the ML algorithms, in terms of x and z components.
In general, RF produces trajectories with a high similarity
to those obtained with OSPA. In addition, it can be noticed
the capabilities for reaching a given target even when the
predictions does not match the states obtained with OSPA,
as for RNN in Fig. 8 (a), and the three ML algorithms in
Fig. 8 (b).

We found some situations where the MLP and RNN
does not perform as well as expected. Figure 9 illustrates
examples of bad convergence. For instance, the RNN has
not been able to capture some trajectory behaviours, such
as a sudden ornithopter climb before continuing its descent,
as in Fig. 9 (a). This limitation is due to the simplicity
of the RNN architecture, as it only contains 11 hidden
neurons, which are insufficient for this type of trajectory
complexity.

Another limitation of the proposed RNN is depicted
on Fig. 9 (b). This algorithm is independent of the kyno-
dynamic model of the ornithopter. Therefore, some trajec-
tories can not be followed by the UAV. However, a simple
not-moving-back behaviour can be implemented by only
connecting points in the trajectory that moves forward. In
addition, in most of the settings, RNN behaves well and
tends to get near the target. On the other hand, for MLP is
sometimes harder to obtain a similar trajectory to the one
produced by OSPA, specially when the initial prediction is
wrong, as in both examples of Fig. 9.

We believe that there is a strong correlation between the
predictions of the ML algorithms and the target elevation
in z compared to its position in x. To support this intuition,
we carried out a study depending on the ratio | z/x |. As
a convention, we term as long trajectories to those where
| z/x |≤ 0.4; short trajectories to those where | z/x |> 0.8;
and balanced trajectories in any other case. We acknowledge
that | z/x |≤ 0.4 does not necessarily means that the
corresponding trajectory is long. However, this is the case
in our data since this result is obtained when the x value is
high. A similar analysis can be established for the rest of the
intervals defined.

Table 9 shows different values for the metrics according
to the positional ratio. Each metric is obtained from trajec-
tories that lies on a spatial rectangle defined by the ratio.

Table 9 Performance
depending on the rectangle
ratio. The best result per
algorithm and metric is
highlighted

| z/x | Cost Precision Error Total paths

MLP | RNN | RF MLP | RNN | RF MLP | RNN | RF

(0.8, 1] 59.59 | na | 42.30 1.23 | 0.57 | 0.59 2.08 | 4.40 | 0.30 2772

(0.6, 0.8] 40.44 | na | 40.65 1.40 | 0.60 | 0.57 3.98 | 2.75 | 0.50 4129

(0.4, 0.6] 43.86 | na | 46.12 0.89 | 2.21 | 0.55 4.64 | 6.4 | 0.80 8537

(0.2, 0.4] 100.9 | na | 115.0 1.60 | 4.05 | 3.10 4.95 | 5.8 | 0.91 8247

[0, 0.2] 147.0 | na | 302.4 0.94 | 1.92 | 0.50 3.48 | 0.72 | 0.16 104

Page 13 of 16 17J Intell Robot Syst (2022) 105: 17

The higher the ratio, the more similar are the absolute values
of z and x. This study helps the user to make the deci-
sion on which algorithm to use depending on the scenario.
It must be noticed the reduction of Cost for the trajecto-
ries found in the interval of (0.4, 1]. This is explained by
the maneuvers performed on each case. For long distances,
i.e. values in the interval [0, 0.4], some flapping maneuvers
has to be performed to reach the target. On the other hand,
short and balanced intervals provide a better environment
for gliding, which translates in a lower cost.

Another important aspect to notice from Table 9 is the
behaviour of RF. In all scenarios, the ensemble of trees is
capable of providing trajectories similar to OSPA, meaning
a high precision when reaching the target. This value is only
affected for the interval (0.2, 0.4], where MLP is by a large
margin, the most precise algorithm. In the case of RNN,
a better precision is obtained for high ratios. This may be
because for longer trajectories flapping is needed, and RNN
misses long-term patterns.

7 Conclusions

In this paper, a novel data set for ornithopter trajectory
optimization, OTO, is constructed. To our knowledge, OTO
data set is the first data set with a high number of
pseudo-optimal trajectories for ornithopter motion planning.
Two different scenarios are defined: mid-range flights,
and the landing task. For each scenario, a train-test split
is made publicly available to provide a fair point of
comparison among different algorithms. In addition, we
release the code related to the ornithopter model. This
model can be used in future researches for increasing the
data, or testing other techniques, such as Reinforcement
Learning.

We provide a benchmark on our data set using different
algorithms targeting two tasks: classification of maneuvers,
and direct prediction of the next state. As classifiers,
we propose a novel MLP architecture with residual
connections, and a Random Forest. Both classifiers obtains
similar metrics to those provided by OSPA and, in addition,
they can be used online. We emphasize the use of RF,
which is an understudied technique in the aerial robotic
community when compared to other ML-based algorithms.
Our proposed RF algorithm is capable to outperform
OSPA, even in the average precision measure for the
landing scenario; i.e. the supervised algorithm overcomes
the planner used to collect the data. We also propose a RNN
as the regression approach. Using this strategy, it is possible
to obtain trajectories without using the mathematical model
of the ornithopter. This algorithm is specially efficient for
re-plannig, i.e. when the target state is changed during
the flight. Moreover, our algorithms, in particular MLP,

are robust under the injected noise which simulates wrong
sensors readings.

Future lines of research includes the investigation of bet-
ter architectures for the Recurrent Neural Network. Further-
more, regression techniques for predicting the tail deflection
and the flapping frequency can be implemented to com-
pare with the approach exposed in this work. In addition,
other machine learning techniques can be explored, both
for comparison and for extending the use cases of our
proposal. For instance, algorithms of Reinforcement Learn-
ing can be designed to study the optimal trajectory in the
presence of obstacles. Finally, performing experiments with
a real ornithopter can provide a feedback for combining our
planners with nonlinear controllers for flight stabilization
and trajectory tracking.

Acknowledgements This work is partially supported by the Span-
ish Ministry of Economy and Competitiveness (MTM2016-76272-
R AEI/FEDER,UE), the Spanish Ministry of Science and Inno-
vation CIN/AEI/10.13039/501100011033/ (PID2020-114154RB-I00)
and European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Sklodowska-Curie grant agreement #734922.

Author Contributions All authors contributed to the study conception
and design. Material preparation, data collection and analysis were
performed by M.A. Pérez-Cutiño, F. Rodrı́guez and L.D. Pascual.
The first draft of the manuscript was written by J.M. Dı́az-Bañez and
all authors commented on previous versions of the manuscript. All
authors read and approved the final manuscript. Conceptualization and
supervision was mainly performed by J.M. Dı́az-Bañez.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature.

Code or data availability The Ornithopter Trajectory Optimization
(OTO) data set and evaluation code can be found at https://github.com/
mpcutino/OTO dataset.

Declarations

Ethics approval All of the authors confirm that there is no potential
acts of misconduct in this work, and approve of the journal upholding
the integrity of the scientific record.

Consent to participate The authors consent to participate.

Consent for Publication The authors consent to publish.

Conflict of Interests The authors have no conflicts of interest to declare
that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright

17 Page 14 of 16 J Intell Robot Syst (2022) 105: 17

https://github.com/mpcutino/OTO_dataset
https://github.com/mpcutino/OTO_dataset

holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization.
arXiv:1607.06450 (2016)

2. Breiman, L.: Random forests. Machine Learning 45(1), 5–32
(2001)

3. Chai, R., Savvaris, A., Tsourdos, A., Chai, S.: Overview of
trajectory optimization techniques. In: Design of Trajectory
Optimization Approach for Space Maneuver Vehicle Skip Entry
Problems. Springer, pp. 7–25 (2020)

4. Coutinho, W.P., Battarra, M., Fliege, J.: The unmanned aerial
vehicle routing and trajectory optimisation problem, a taxonomic
review. Comput. Indust. Eng. 120, 116–128 (2018)

5. DeLaurier, J.D.: An ornithopter wing design. Canadian aeronau-
tics and space journal 40(1), 10–18 (1994)

6. Han, T., Jiang, D., Zhao, Q., Wang, L., Yin, K.: Comparison
of random forest, artificial neural networks and support vector
machine for intelligent diagnosis of rotating machinery. Trans.
Inst. Meas. Control. 40(8), 2681–2693 (2018)

7. Hausknecht, M., Stone, P.: Deep recurrent q-learning for partially
observable Mdps. In: 2015 Aaai Fall Symposium Series (2015)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for
image recognition. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 770–778 (2016)

9. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I.,
Salakhutdinov, R.R.: Improving neural networks by preventing
co-adaptation of feature detectors. arXiv:1207.0580 (2012)

10. Horn, J.F., Schmidt, E.M., Geiger, B.R., DeAngelo, M.P.:
Neural network-based trajectory optimization for unmanned aerial
vehicles. J. Guidance Control Dynam. 35(2), 548–562 (2012)

11. Ilin, R., Kozma, R., Werbos, P.J.: Beyond feedforward models
trained by backpropagation: a practical training tool for a more
efficient universal approximator. IEEE Trans. Neural Netw. 19(6),
929–937 (2008)

12. Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.:
Stomp: Stochastic trajectory optimization for motion planning. In:
2011 IEEE International Conference on Robotics and Automation.
IEEE, pp. 4569–4574 (2011)

13. Kelly, M.: An introduction to trajectory optimization: How to
do your own direct collocation. SIAM Rev. 59(4), 849–904
(2017)

14. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization.
arXiv:1412.6980 (2014)

15. Kosari, A., Maghsoudi, H., Lavaei, A., Ahmadi, R.: Optimal
online trajectory generation for a flying robot for terrain following
purposes using neural network. Proceedings of the Institution of
Mechanical Engineers Part G: Journal of Aerospace Engineering
229(6), 1124–1141 (2015)

16. Lu, Y., Yi, S., Liu, Y., Ji, Y.: A novel path planning method for
biomimetic robot based on deep learning. Assembly Automation
(2016)

17. Mirzaei, M., Kosari, A., Maghsoudi, H.: Optimal path planning for
two Uavs in a pursuit-evasion game. In: 2021 IEEE International
Conference on Automation/XXIV Congress of the Chilean
Association of Automatic Control (ICA-ACCA). IEEE, pp. 1–7
(2021)

18. Mordatch, I., Todorov, E.: Combining the benefits of function
approximation and trajectory optimization. In: Robotics: Science
and Systems, vol. 4 (2014)

19. Mordatch, I., Todorov, E., Popović, Z.: Discovery of complex
behaviors through contact-invariant optimization. ACM Transac-
tions on Graphics (TOG) 31(4), 1–8 (2012)

20. Nguyen, T.A., Phan, H.V., Au, T.K.L., Park, H.C.: Experimental
study on thrust and power of flapping-wing system based on rack-
pinion mechanism. Bioinspiration & Biomimetics 11(4), 046001
(2016). https://doi.org/10.1088/1748-3190/11/4/046001

21. de Oliveira, G.G., Ruiz, L.F.C., Guasselli, L.A., Haetinger,
C.: Random forest and artificial neural networks in landslide
susceptibility modeling: a case study of the fão river basin,
southern brazil. Nat. Hazards 99(2), 1049–1073 (2019)

22. Otte, M., Correll, N.: C-forest: Parallel shortest path planning with
superlinear speedup. IEEE Trans. Robot. 29(3), 798–806 (2013)

23. Park, J.H., Yoon, K.J.: Designing a biomimetic ornithopter
capable of sustained and controlled flight. Journal of Bionic
Engineering 5(1), 39–47 (2008)

24. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al:
Pytorch: an imperative style, high-performance deep learning
library. Advances in Neural Information Processing Systems 32,
8026–8037 (2019)

25. Pérez-Cutiño, M., Rodrı́guez, F., Pascual, L., Dı́az-Báñez, J.: Neu-
ral Networks Algorithms for Ornithopter Trajectory Optimization.
In: 2021 International Conference on Unmanned Aircraft Systems
(ICUAS). IEEE, pp. 1665–1670 (2021)

26. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1),
81–106 (1986)

27. Rodrı́guez, F., Dı́az-Báñez, J.M., Sanchez-Laulhe, E., Capitán,
J., Ollero, A.: Kinodynamic planning for an energy-efficient
autonomous ornithopter. Computers & Industrial Engineering
163, 107814 (2022)

28. Salloom, T., Kaynak, O., He, W.: A novel deep neural network
architecture for real-time water demand forecasting. J. Hydrol.
599, 126353 (2021)

29. Salloom, T., Kaynak, O., Yu, X., He, W.: Proportional integral
derivative booster for neural networks-based time-series predic-
tion: Case of water demand prediction. Eng. Appl. Artif. Intel.
108, 104570 (2022)

30. Salloom, T., Yu, X., He, W., Kaynak, O.: Adaptive neural network
control of underwater robotic manipulators tuned by a genetic
algorithm. J. Intell. Robot. Syst. 97(3), 657–672 (2020)

31. Suarez, A., Perez, M., Heredia, G., Ollero, A.: Small-Scale
Compliant Dual Arm with Tail for Winged Aerial Robots. In:
2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, pp. 208–214 (2019)

32. Woo, M.H., Lee, S.H., Cha, H.M.: A study on the optimal
route design considering time of mobile robot using recurrent
neural network and reinforcement learning. J. Mech. Sci. Technol.
32(10), 4933–4939 (2018)

33. Wu, H., Yan, W., Xu, Z., Li, S., Cheng, T., Zhou, X.: Multimodal
prediction-based robot abnormal movement identification under
variable time-length experiences. Journal of Intelligent & Robotic
Systems 104(1), 1–15 (2022)

34. Yijing, Z., Zheng, Z., Xiaoyi, Z., Yang, L.: Q Learning Algorithm
Based Uav Path Learning and Obstacle Avoidence Approach.
In: 2017 36Th Chinese Control Conference (CCC). IEEE, pp.
3397–3402 (2017)

35. Yu, X., He, W., Li, H., Sun, J.: Adaptive Fuzzy Full-State
and Output-Feedback Control for Uncertain Robots with Output
Constraint. IEEE Transactions on Systems Man, and Cybernetics
Systems (2020)

36. Zekić-Sušac, M., Has, A., Knežević, M.: Predicting energy cost
of public buildings by artificial neural networks, cart, and random
forest. Neurocomputing 439, 223–233 (2021)

Page 15 of 16 17J Intell Robot Syst (2022) 105: 17

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1412.6980
https://doi.org/10.1088/1748-3190/11/4/046001

37. Zhang, B., Liu, W., Mao, Z., Liu, J., Shen, L.: Cooperative and
geometric learning algorithm (cgla) for path planning of uavs with
limited information. Automatica 50(3), 809–820 (2014)

38. Zhang, B., Mao, Z., Liu, W., Liu, J.: Geometric reinforcement
learning for path planning of uavs. Journal of Intelligent &
Robotic Systems 77(2), 391–409 (2015)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Miguel Angel Pérez-Cutiño is a PhD student in Mathematics at the
University of Seville, Spain. He has received a bachelor’s degree in
Computer Science from University of Havana in 2018, and a master’s
degree in Logic, Computing and Artificial Intelligence from University
of Seville in 2021. He is currently working at VirtualMech developing
computer vision systems for fault detection. His research interests
include computational geometry, computer vision and deep learning.

Fabio Rodrı́guez is in his second year of the Ph.D. program in
Mathematics at the University of Seville. His work is focus on
the areas of algorithms, computational theory, and mathematics and
recently, data science and machine learning. He is passionate about
the algorithms design and analysis and currently, he is applying
computational techniques to the resolution of problems with drones in
industry. He has participated in many international conferences related
to algorithms and machine learning. Fabio’s research is supported
by the DENiM European Grant Agreement (https://cordis.europa.
eu/project/id/958339). He holds a Master degree in Mathematicsin

University of Seville and a Bachelor of Computer Science from the
University of Havana. See more info at https://www.linkedin.com/in/
fabio25-rodriguez.

Luis David Pascual Callejo is an aeronautical engineer at Airbus,
working currently as product owner of an Airbus developed web
application. During his professional career he has gained experience
in aircraft production, web development and project management. He
has a double Master of Sc.in aeronautical engineering between the
University of Madrid and Supareo (Toulouse), an MBA at College des
Ingenieurs (Paris) and a master’s in mathematics at the University of
Seville. His research interests are mainly focused on machine learning
applied to aeronautics. See full bio at https://www.dpascual.space.

José-Miguel Dı́az-Báñez is a Full Professor of Applied Mathematics
at the University of Seville, Spain. His research interests include
computational geometry, decentralized algorithms for cooperative
UAVs and computational ethnomusicology, within the common theme
of geometric algorithms. He has coauthored 75 research papers in
indexed journals by the Journal Citation Reports, 3 books, 15 book
chapters and more than 80 conference papers. He has organized several
international conferences related to geometric algorithms. Prof. Dı́az-
Báñez has supervised 8 PhD’s thesis and 12 Master’s thesis. He
has led 15 research projects, most of them funded by the European
Commission and Spanish Government. He is currently the coordinator
of the Optidrone project, as well as other projects on geometric
algorithms applied to path planning with drones. See more info at
http://alojamientos.us.es/galgo/ and https://diazbanez.wordpress.com/.

Affiliations

M. A. Pérez-Cutiño1,2 · F. Rodrı́guez1 · L. D. Pascual3 · J. M. Dı́az-Báñez1

F. Rodrı́guez
frodriguex@us.es

L. D. Pascual
d.pascualcallejo@gmail.com

J. M. Dı́az-Báñez
dbanez@us.es

1 Department of Applied Mathematics II, University of Seville,
Seville, Spain

2 VirtualMech, Seville, Spain
3 Airbus, Seville, Spain

17 Page 16 of 16 J Intell Robot Syst (2022) 105: 17

https://cordis.europa.eu/project/id/958339
https://cordis.europa.eu/project/id/958339
https://www.linkedin.com/in/fabio25-rodriguez
https://www.linkedin.com/in/fabio25-rodriguez
https://www.dpascual.space
http://alojamientos.us.es/galgo/
https://diazbanez.wordpress.com/
http://orcid.org/0000-0002-8841-2565
mailto: frodriguex@us.es
mailto: d.pascualcallejo@gmail.com
mailto: dbanez@us.es

	Ornithopter Trajectory Optimization with Neural Networks and Random Forest
	Abstract
	Multimedia Material
	Introduction
	Related Work
	Problem Description
	OTO Data Set
	Data Generation
	Data Analysis

	Machine Learning Algorithms
	Multi-Layer Perceptron
	MLP Architecture
	Training
	Path Generation

	Recurrent Neural Network (RNN)
	RNN Architecture
	Training
	Path Computation

	Random Forest

	Experiments
	Landing Problem
	Results
	Robustness
	Replanning

	Mid-Range Problem
	Results

	Conclusions
	Declarations
	References
	Affiliations

