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Abstract Thanks to the advent of technologies like Cloud Computing, the idea of
computation offloading of robotic tasks is more than feasible. Therefore, it is possible
to use legacy embedded systems for computationally heavy tasks like navigation
or artificial vision, hence extending its lifespan. In this chapter we apply Cloud
Computing for building a Cloud-Based 3D Point Cloud extractor for stereo images.
The objective is to have a dynamically scalable solution (one of Cloud Computing’s
most important features) and applicable to near real-time scenarios. This last feature
brings several challenges that must be addressed: meeting of deadlines, stability,
limitation of communication technologies. All those elements will be thoroughly
analyzed in this chapter, providing experimental results that prove the efficacy of the
solution. At the end of the chapter, a successful use case of the platform is explained:
navigation assistance.

Keywords Cloud computing · Computation offloading · Robotics · Dynamic scal-
ability

1 Introduction

Nowadays, new computationally expensive tasks are expected to be performed with
relative fluency by robotic platforms. A well-known example is that of artificial
vision and higher level tasks arisen from it, such as object detection, recognition and
tracking; surveillance, gesture recognition, etc. However, these tasks are so com-
putationally heavy that they may take several seconds in current embedded robot
computers. Hence the advantages of using computation offloading (i.e. moving this
computing task to an external computer system) are becoming evident in terms of
time to finish the task, mobile robot energy saving, amongst others.
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An interesting candidate for the aforementioned external computer system is that
of a Cloud infrastructure, thanks to its inherent characteristics [7]: high reliability,
larger storage capacity, stable electric power, reutilization of hardware, dynamic scal-
ability and better resource utilization. In particular, the dynamic scalability property
is very useful in robotics, as it allows the adaptation of the computing power at run-
time (that is, scaling out and back, depending on the needs), and therefore it permits
the robot to rapidly adapt in a changing environment. Moreover, another advantage
of the Cloud is the instant incorporation of more computation demanding algorithms
as they are being implemented.

Apart from computationally heavy tasks, the cloud is being used as a centralized
powerful infrastructure for multi-robot cooperative systems that usually works at
intermediate levels. This area is intensively studied as new cooperative algorithms are
being developed. Examples of these solutions are multi-robot SLAM (simultaneous
localization and mapping), map merging (acquired by several robots), networked
information repository for robots [23], etc.

As a result, an important number of research papers and projects addressing the use
of cloud infrastructures in robotics have been published during the last few years (see
Sect. 3). Besides, the term Cloud Robotics has emerged to include this area, which
promises a fast development of complex distributed robotics tasks in the forthcoming
years.

This chapter addresses the “computation offloading” of an intermediate robot
level task: 3-D point cloud (3DPC) extraction from stereo image pairs. In order to do
so, a Cloud-based 3DPC extraction platform will be developed. This platform has
innumerable applications, such as AI, artificial vision and navigation. The latter is
especially interesting, as 3DPCs are one of the most used representation for several
navigation tasks, including those of motion planning and obstacle avoidance. Because
of that, at the end of the chapter (Sect. 6.5) a navigation use case of our platform will
be briefly explained.

In this respect, current embedded computers are able to extract a 3D point cloud
and to build a map of the surrounding obstacles in a natural and dynamically changing
environment in less than a second, providing that low resolution frames are used.
Nevertheless, when an accurate vision is needed, frame resolution must be increased.
In addition to this, should the robot be in a fast changing environment, then higher
frame rates would be necessary. As a consequence, the limitations of robot embedded
hardware will likely arise, and thus sending the stereo image pairs to the cloud
can compensate the inherent trade-offs of network communications (explained in
Sect. 5.2 in more detail).

In order to exploit the cloud capabilities, the implemented platform must be able
to scale out and back, so the robot gets the results faster when more computation
power is required. Hence, a dynamically parallel algorithm has been implemented.
In this context, the quotient between computation and communication times mainly
indicates if the parallelization is to be successful. The developed platform is expected
to be applied to near real-time systems as well, which is not without several challenges
in terms of meeting deadlines. In this respect, the ratio between local-to-cloud transfer
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time (especially in the case of large amounts of data) and computation time in a single
node must be taken into account as well, as it indicates the usefulness of cloud off-
loading.

Section 3 summarizes several related works. Before presenting the developed plat-
form, a thorough analysis of which robotics tasks (especially those that need some soft
real time requirements) are candidate for computation offloading is done in Sect. 4.
An overall analysis of the implemented solution is depicted in Sect. 5 (together with
a time analysis). Experimental results are shown in Sect. 6 to quantify the benefits
of the cloud approach for different scenarios. In this last section, we summarize an
example application case of the presented platform: a navigation assistant for mobile
robots [19]. Finally, conclusions are summarized in Sect. 7.

2 Background

This book chapter covers several areas. The first (and most important) is that of
Cloud Computing. In this sense, books like [20] can be helpful for understanding
its inherent characteristics. More specifically, this chapter focuses on the idea of
computation offloading of High Performance Computing applications. Therefore,
so some basic concepts this kind of applications, together with basic concepts on
parallelism applied to cloud computing, are crucial to understand this chapter. These
concepts are clearly explained in [4].

In addition to this, the developed platform is used for stereo vision, and more
specifically in 3D Point Cloud extraction. The readers can find several works in the
literature regarding this specific topic, for instance [22]. However, it is not necessary
to know how a 3D Point Cloud is obtained from stereo frame pairs (that is, debayering,
rectification, amongst others) to understand the contents of this chapter.

Moreover, The presented software solution was developed using the ROS Plat-
form. Basic information about this software, together with beginner tutorials, can be
found in their wiki (http://wiki.ros.org/). In [12] there is a thorough outline of current
Robotics Software Frameworks (RSF).

Finally, communication issues are covered in this chapter. Therefore, readers can
read [21] to get basic knowledge about basic networking concepts and technologies.

3 Related Work

In the last few years works and projects that accomplish high level vision tasks
without real time requirements are more and more common [2, 9, 23]. Most of them
use the cloud robotics paradigm to offload the robot from high level tasks like those
related with visual processing or multirobot cooperation. In our opinion this is a
tendency that will burst in the next decade, due to the previous cloud computing
advantages.
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However, a small group of papers proposes offloading the processing of several
parts of the sensor feedback information that are near to real-time. For those opera-
tions, a fast and reliable response is needed. In [3] a high resolution SIFT-based object
detection is speeded up by transmitting on-board preprocessed image information
instead of raw image data to external servers. Here, properties of the cloud computing
paradigm are not fully exploited, because the configuration of these external servers
is specific to this work.

The idea of Computation Offloading is studied in [16]. These authors present
an estimation of the computation and communication times needed for the tasks
of recognition and object tracking in order to minimize the total execution time
(approaching the real-time constraints). Their analysis permits making offloading
decisions for object recognition for different bandwidths, background complexities,
and database sizes. In this sense, the method for identifying the optimal balance
between a cloud system overhead and performance presented in [8] can be useful.
Executing SLAM in the cloud is also studied in [18], where they develop a cloud
mapping framework (C2TAM). They combine both computation offloading and col-
laborative work, as the framework allows fusing the information obtained from sev-
eral robots. They work with a 640 × 480 pixel RGBD camera and an average data
flow of 1 MB/s, below 3 MB/s, which is the usual wireless bandwidth and hence the
mapping is successfully done (moreover, they work with keyframes, reducing the
amount of images to send).

In [24] an object-tracking scenario for a 14-DOF industrial dual-arm robot is
presented. Standard UDP transport protocol for transmitting large-volume images
over an Ethernet network is used. Thanks to the very low sending and cloud image
processing times that are achieved, a stabilizing control law can be implemented. Due
to the inherent time-varying Ethernet protocol delays, actuation signals incorporate
an ingenious hold action.

Finally, the work [1] also asks whether the performance of distributed offloading
tasks can be compared with those executed on-board. While the experiment per-
formed here is simple (a visual line follower that guides the robot using a single low
resolution camera that points to the floor), this demonstrator gives an idea of the
possible scenario for many cloud-based robots of the upcoming future.

Contributions of the chapter: Compared with the described literature, the work
presented in this chapter is the first that tries implement a stereo vision platform with
focus on both dynamic scalability and near real-time applications. Moreover, a gen-
eral offloading architecture (applicable to any case) is proposed, used to implement
the presented platform. In addition to this, a thorough explanation of the the role of
communication technologies, the problems of multi-robot and WiFi AC adds more
novelty to our work.
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4 Cloud Offloading for Robotics Applications

Figure 1 shows a block diagram of a Cloud-based computation offloading robotics
applications. The robot’s controller will collect any necessary environment informa-
tion (using both internal and external sensors) to send the most convenient action
to the actuators. Usually internal sensors (e.g. odometric) and simple sensor (e.g.
sonars) are easy to be processed on-board, so they provide a fast and reactive feed-
back to the robot. On the contrary, the robot can include some others more complex or
high level sensors (e.g. cameras), whose processing algorithms are more demanding
both in computing time and energy.

Because of this, the Cloud-based approach aims that the robot’s controller will be
freed from heavy computations by offloading. In order to do so, it must send to the
Cloud all the sensor information. While the size of high level sensoring is usually
big, the rest of sensors suppose a few additional bits; hence all the information can
be sent to the Cloud. This will even allow the Cloud to do more involved sensor
fusion algorithms without demanding real time constraints (like SLAM). While the
Cloud is performing all those high demanding computations, the robot can dedicate
its computing power for other (real-time) tasks. Once the Cloud has the processed
information ready and tailored to each robot, the robot will receive it and make
use of it for whatever operation the robot may require (e.g. vision, AI, trajectory
modification, etc.). Cloud offloading provides additional benefits due to the inherent
centralization that the Cloud supposes for a distributed robotic team. For example,
team collaborative tasks can be more easily and fluently handled in the Cloud as it
can manage complete information from all the robots.

Even though its advantages are evident, there are several communication bounds
and development issues when offloading robotics tasks. The software architecture
(and its components) of a complex robotic system must cater for a variety of charac-
teristics, which distinguish it from other system. The most relevant characteristics of
are [12]: Concurrent and distributed architecture, Modularity (several components
of high cohesion but low coupling), Robustness and fault tolerance; and real time

Fig. 1 Block Diagram of a Cloud-based computation offloading system
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efficiency. The first two characteristics are primarily benefited by cloud offloading,
while the third introduces new challenges (network robustness and fault tolerance
appear as a new aspect to considerate). Nevertheless, due that the platform described
in this chapter must cope with timing efficiency, communication delays are analyzed
in the rest of this section.

As explained in Fig. 1 the robot has to send sensoring information packets to the
cloud and wait until it receives the Cloud answer. The communication delays suppose
an obligatory inferior bound in the loop controller period. Let BW be the network
bandwidth rate and D, the total amount of transmitted and received data. Therefore
D/BW must be inferior to the controller deadline. This minimum bound does not
suppose for current network technologies a limit, except for the very reactive tasks.
For example a WiFi AC networks can deliver until almost 1 Gbps [5]. Even for a
demanding control loop of 50 Hz (higher than most mobile robot control loops),
this bound would not be exceeded if the transmitted data were less than 0.02 Gbits,
because the loop period is 0.02 s.

If images are to be transmitted, an amount of 20 Mbits of data represents 8 raw
B/W images of 640 × 480 pixels (or 32 images for a lower resolution of 320 × 240
pixels). This suppose that the robot is sending 4 (16 for the lower resolution) stereo
frame pairs at each period (without any compression). This is not the common case
for a current robot, which is equipped usually with only one stereo camera. Moreover,
currently the steady incremental ratio of WiFi networks is more than 40 % per year,
which means that only in two years the bandwidth is predicted to duplicate. Hence
it can be assured that theoretical bandwidth does not impose a limit in computation
offloading. Nevertheless, this may not be the case for latency variability, as our results
in Sect. 6.4 demonstrates.

Going further, a quantitative comparison of the times involved in local versus
remote computing points out new outcomes. Let IPS the rate of instructions per
second that the robot computer can execute [11]. Let us assume that the cloud can
speedup an application S times more than the robot, that is, it gets an IPS of S · IPS.
A high S is expected because of several reasons. Firstly, the cloud is expected to
have far more computational resources than a local (usually low power consuming)
computer. Likewise, there are big amounts of data parallelism to be exploited when
using many sensoring information (image processing, object, voice or face recog-
nition, etc.). Finally these tasks are usually very repetitive. For instance, in image
recognition, a pattern has to be compared with thousands of stored patterns. Hence,
it can be supposed that S is very big for most sensoring applications. Therefore, for
NI computer instructions local and remote execution times are:

tlocal = NI

IPS
; tremote = NI

(IPS · S)
+ D

BW
;

And we can obtain this formula for timing comparison:

tlocal > tremote if
NI

D
>

IPS

BW

jsalmeron2@us.es



which indicates whether computation offloading is faster than local computation, and
gives us a prospect of which applications are prone to be offloaded. For example, let
us compute an estimation of the two members of previous inequality for the Erratic
Robot, which CPU runs at a frequency f = 1.4 GHz and has a CPI (Clocks per
Instruction) around 2.0 [14]. Hence, if a frame pair is computed by this robot in
texec = 0.96 s (see Sect. 6), the number of instructions that are executed [11] results:

NI = (texec · f )

CPI
= 6.72 · 108instructions

Besides, transmitted data of this experiment (see Sect. 6) consists mainly in a color
1024 × 768 frame pair, that is: D = 1024 · 768 · 3 · 2 · 8 = 3.77 · 107bits. Hence:

NI

D 
= 17.8instr/bit

Let us remark that the first term of the inequality is application dependent, which 
means that high intensive computing tasks will be benefited by cloud computing.

f
On

CPI
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[11],
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, the
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IPS 
v
=
e / = . · /a higher IPS. Moreover, a 400 Mbps data rate transmission can be easily 

reached with WiFi IEEE 802.11ac. With these values, offloading is not bounded by 
time latency, as the second term has a very much lower value (1.75 for actual case) 
than the first one. As a conclusion, networking bandwidth is crucial for a successful 
offloading.

Let us finally make some predictions about the tendency of these two terms. If the 
last decade trend continues, uniprocessor IPS will have an annual growth rate much 
inferior to that of network technology [11]. This means that cloud offloading is 
promised to take even more advantage for the next years. With respect to the 
software development, it seems that the only possibility to speedup embedded CPU 
IPS is by means of more parallelism (and by more efficient tools to develop it). But 
this, indeed, would be beneficial for the advancement on cloud programming.

To sum up, it can be concluded that those applications with ratio NI /D bigger 
than a few units, are currently candidates to be remotely executed. Those where this 
ratio would be inferior may be successfully offloaded in a few years. This includes 
many tasks from the top, middle, and even lowest, level of a common layered robot 
architec-ture (see Sect. 1). Moreover, independently of this ratio value, there are 
applications where the size of required (stored) data is huge (see Sect. 1). For them, 
maintaining local massive storage (in terms of power, failure immunity, backup, 
weight, etc.) is a hard problem and it is obvious that external offloading is the best 
solution.
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5 3D Point Cloud (3DPC) Extraction Platform

Using the architecture shown in Fig. 1, the offloading of stereo vision tasks has been
implemented. As stereo cameras are the high level external sensors, the robot will
send a stereo video stream (“Sensor Information” in Fig. 1). The Cloud will extract
all the necessary 3D information, sending that processed data (see Fig. 1) back to the
robot in the form of 3D Point Clouds (3DPC). The resulting architecture can be seen
in Fig. 2. These 3DPCs can be used by the robot to execute, for instance, a navigation
algorithm (as explained in Sect. 6.5) or a SLAM algorithm (together with the internal
sensing).

As mentioned in Sect. 1, with respect to the precision of the extracted informa-
tion, the bigger the image resolution is, the more accurate the reconstruction of the
surrounding objects will be (extensively demonstrated in the literature [10, 15]). The
reason for choosing stereo cameras instead of other simpler sensors (such as those
with infrared or ultrasonic technologies) is the completeness of the information they
can offer, as well as they can serve for other high level visual tasks (like object
detection and recognition, gesture recognition, etc.).

5.1 Software Implementation

In order to convert the image stream sent by the robot to a set of point clouds, the best
option is the Point Cloud Library (PCL, http://www.pointclouds.org) combined with
the OpenCV Library (www.opencv.org). These large-scale, open source projects for
2D/3D point cloud processing and computer vision, are used by a ROS (Robotics
Operating System) library called stereo_image_proc.

This package offers a node that converts two stereo frames to a 3D Point Cloud.
In order to do so, the node has an inner pipeline (using ROS nodelets) with several
stages. Firstly, a monochrome version of the image is produced (debayer stage).

Fig. 2 Block diagram of the 3DPC extraction platform



Secondly, using the stereo camera intrinsic matrices, a rectified version of the image
is produced (rectify stage). With the rectified frames, the image matching occurs,
obtaining a disparity map (disparity stage). Finally, with this information, the fourth
and last step is the 3D point cloud construction (3DPC stage). Due to the very different
processing times of the four steps, the minimum time for processing a frame pair
will be the maximum of all step times (usually the disparity stage, which lasts most
of the whole processing time).

As it can be seen, the aforementioned process cannot be parallelized, as the steps
need to be done in order. However, one of the objectives outlined in Sect. 1 is to
have a dynamically scalable platform. In order to do so we have exploited the frame
pair-level parallelism. Figure 3 depicts the parallel solution. The 3DPC extraction
pipeline (stereo_image_proc) is replicated in several virtual instances in the cloud.
Therefore, each stereo frame pair will be sent to a different virtual machine in a round-
robin fashion. This solution requires an intermediate front-end node, responsible of
scattering the stereo stream between the available 3DPC extraction nodes. This way,
should the need faster 3DPC extraction times, then more virtual instances could be
spun up. However, some extra considerations must be taken into account in order to
exploit the parallelism successfully. These considerations are thoroughly explained
in Sect. 6.3.

Nevertheless, if we want our system to be dynamically scalable, then it must be
able to adapt itself at runtime. Therefore, the buffer node must be able to know how
many virtual instances are alive at any moment. This feature is implemented thanks

Fig. 3 Stereo frame pipeline process. Four nodes process (in a pipeline fashion) the frame pairs
that the front-end node delivers in a round-robin form. T f is the robot’s stereo camera frequency, to
is the time required to send the frame and tp is the time required to obtain the 3DPC (see Sect. 5.2
for more information on the involved times). The time required to forward the frame from the buffer
node to the 3DPC extractors, thanks to the Gigabit Ethernet connection, is negligible
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Fig. 4 Dynamic adaptation of the platform when the number of 3DPC extractors changes

to ROS bond library. This library helps to establish a link between the intermediate
buffer node and a 3DPC extractor. So, if one of the nodes of the link disappears, the
other would be automatically notified. Figure 4 shows the different cases:

• A new 3DPC Extractor is added at runtime: as soon as a 3DPC Extractor node is
spun up, it will automatically contact the buffer node and establish a bond between
them. The buffer node, with this new link added, will add this new node to the
round-robin list.

• One existing 3DPC Extractor is shut down: if this occurs, then the bond would
be broken, and the buffer node would be immediately informed. Therefore, the
round-robin list would be updated.

When dealing with dynamically scalable solutions, another question arises: When
should the platform launch more 3DPC extractors or shut down virtual instances?
For vision processing applications a simple Quality-of-Service (QoS) magnitude can
serve to determine these actions (with a previous agreement between the robot and
the platform). For instance: if the robot has agreed a 3DPC reception frequency of
5 Hz and the cloud is under-providing, then it can scale out to satisfy its demands. The
same could be applied for over-providing. The user could change this QoS agreement
at any time, and the platform would have to apply it accordingly.

For more technical details of the platform, the code is available with GPL license
in GitHub.1 In addition to this, there are cloud images ready for deployment using the
newest cloud technologies: Amazon EC2 virtual machines 2 and Docker containers.3

1https://github.com/javsalgar/cloud_3dpc_extractor.
2The EC2 AMI is ami-893b11b9.
3https://registry.hub.docker.com/u/javsalgar/cloud_3dpc_extractor/.



Fig. 5 Time diagram of the point cloud extraction for one virtual node. More virtual nodes suppose
that more processes P will be running in parallel with different frames, so a little number of frames
would be discarded

5.2 Time Analysis

Processes are running in different machines that are interconnected via standard net-
work protocols, due that the system is running over the Robotic Software Framework
ROS [17]. Figure 5 shows a simplified timing diagram for one virtual node (the front-
end node is not shown because its delay times are negligible with respect to the other
involved times). The two physical systems are shown in the upper part of the figure:
the robot and the cloud, each one containing the different logical nodes of the system.
As seen in Fig. 2, the robot comprises the stereo camera O and the robot controller
R (responsible of tasks such as motor actuation subsystem, motion planner, amongst
others). Here, R only contains a reception process that validates the point clouds and
do the timing calculation. On the other side, the cloud is running the point cloud
extractor P , which can be cloned in several virtual nodes.

Pairs of frames are continuously sent from camera node O to the cloud at a spec-
ified frequency. The transmission time from O to P is to. Each virtual node receives
frames in a round robin fashion (in the figure only one node P[1] is represented for
simplicity). P[1] extracts the 3DPC, being tp the time invested.

This new extracted 3DPC is sent back to the robot R. If a new stereo pair joins the
stereo_image_proc inner pipeline (explained in Sect. 5) and enters a stage that is still
busy processing a previous frame, this new stereo pair will be discarded. Therefore,
when processing times of P (tp in Fig. 5) are elevated (more than the period of O),
some frames are discarded (shown like clear rectangles in Fig. 5) until the point cloud
extractors are idle again.
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One of the crucial points in the timing analysis is the determination of the number
of nodes that the cloud computer dedicates to the image processing (tp in Fig. 5), in
order to assure that the mean time to process a pair of frames is less than the transfer
time (to in Fig. 5). To get rid of this issue, and due that a scalable cloud computer is
available, this number is overestimated, so tp/p < to is always guaranteed (where
p is the number of active nodes).

A common issue in distributed systems is the synchronization of the different
processes and platforms. For the present experiments a simple solution has been
carried out: a ping-pong messaging loop is executed between the cloud and the
robot. In spite of non-deterministic TCP protocols, an offset under 0.03 s is always
achieved, which is enough for our purposes as total computing latencies (see Sect. 6)
are always above 0.2 s. Of course a better synchronization will be reached by using
TDMA methods or by the incorporation of an external sync device to each platform.

6 Experimental Results

In this section, a set of experiments is described to do an intensive performance testing
for different stereo streams, cloud states and connection technologies (between the
robot and the cloud). Our cloud-based solution has been deployed in a private small
cluster of 5 physical nodes (1 front-end node and 4 computing nodes). Each node has
a AMD Phenom 965 × 4 CPU (with virtual extensions enabled) and 8 GB of RAM.
They are all connected using Gigabit Ethernet bandwidth and Openstack Havana is
the cloud middleware installed (other well known solutions such as Hadoop were
not suitable as we are working with real time systems).

6.1 Scalability of the Platform

The first of the tests is a demonstration that the scalability of our solution is working
properly. Thus we use high resolution images (1920 × 1080 pixels) that result into
large 3DPC processing times. In order to isolate this experiment from other delaying
factors, the test is carried out with offline video images, and the robot is emulated
using an Intel Core i7 4750-HQ laptop with 16 GB of RAM. Moreover, the fastest
available TCP network (Gigabit) is used to reduce transmission delay overheads. A
variable number of frames is sent to the cloud, which processes them and sends a
3DPC back to the emulated robot.

As Gigabit Ethernet is a possible scenario for static robots, this experiment serves
also as a reference of the number of virtual nodes needed to extract 3DPC for high
resolution images.

Needless to say that, for low resolution images, 3DPC computation is sufficiently
fast, so elevated frequencies are obtained for any p (number of virtual computing
cloud nodes). The performance test shown in Table 1 measures the time required for
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Table 1 Total times to process and receive n point clouds using p 3DPC extractors

Execution time (s)

p/n 32 64 128 256 512 1024 2048

1 53.97 96.76 173 331 632 1213 2494

2 32.5 48.47 91.71 178 318 629 1218

4 25.38 33.84 55.09 106 186 437 904

6 27.07 36.66 51.48 87.02 171.3 351 635

Resolution of the stereo pairs is 1920×1080

the emulated robot to receive n point clouds processed in p nodes for HD 1080i
video stream frames. A significant speedup (ratio between total time for 1 node and
for p nodes) is obtained, approaching a sustained average frequency near to 4 frame
pairs per second (reached when a high number of frames are processed). In this case,
cloud elasticity makes it possible for the robot to change between different computing
resources depending on the frequency required by the robot.

6.2 Communication Technology Performance Measures

Once the scalability of the cloud computing solution has been demonstrated, a second
experiment is devised to analyze the performance impact of different communication
technologies. As stated before, Gigabit Ethernet is a possible scenario for static
robots, but the case of mobile robots (where the use of wireless technologies is
practically mandatory) must be taken into account as well.

With this in mind, we have tested two wireless technologies: IEEE 802.11n WiFi
and IEEE 802.11ac WiFi. The latter, though being still quite recent, can theoretically
achieve bandwidths of 768 Mbps (which is close to what Gigabit Ethernet can offer).
In this experiment, we have used the on-board computer of the Videre Erratic robot.
the stereo camera and the image transmission has been carried out by a real mobile
robot (in this case Videre Erratic by LLC). The cloud is configured to have p = 6
3DPC Extractors.

Table 2 compares the performance of the system (in terms of 3DPC reception fre-
quency) using different technologies and frame resolutions. Two facts can be deduced
from these results. First of all, for the case of extracting 3DPC for small resolution
frames, no performance boost has been found. This is due to two factors: the robot’s
hardware hardware is powerful enough (for simpler robots, cloud offloading of this
process may be beneficial), and insufficient bandwidth of the networks used (better
results could have been found for 10 Gbps Ethernet or Infiniband).

However, the robot starts performing worse (due to its hardware limitations) when
the quality of the frames is increased. Hence we are able to obtain speed-ups when
offloading this demanding computations.
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Table 2 Performance measures for different communication technologies

Average Frequency of 3DPC reception (Hz)

320 × 240 640 × 480 1024 × 768 1920 × 1080

Gigabit 16.3 6.65 2.22 0.84

WiFi 11n 4.04 2.04 0.29 0.14

WiFi 11ac 4.98 3.02 0.76 0.24

Erratic alone 7.15 2.61 1.01 0.02

Erratic alone means that the Erratic robot is working alone, that is, working as a local stereo vision
system

Note that there are performance differences between the Erratic robot and the
laptop used in Sect. 6.1. To begin with, the laptop’s hardware (both RAM and CPU)
is 4 times better than that of Erratic’s. Moreover, there are extra factors that affect the
overall performance (even though the robot’s controller has less to compute because
of the offloading), such as frame buffering and sending, peer to peer connection
management, 3DPC reception, amongst others.

This experiment (together with the one explained in Sect. 6.4) shows the current
limitations of wireless technologies due to the big amount of data to transfer. In
order to address this (as explained in Sect. 4) the computation versus communication
trade-off must be carefully analyzed for each application case (as done in Sect. 6.5).

6.3 Time Delay Measures

Very delayed data is usually useless for most information processing applications,
especially those with near real-time requirements. Taking into account the timing
explained in Sect. 5.2, in this third experiment the average latencies to receive the
3DPC of each individual frame are obtained. Each latency is defined here as the time
passed since the source stereo frame was actually obtained to the 3DPC reception.

Table 3 shows the latencies obtained (using 1024768 resolution frames) for dif-
ferent communication technologies. The last row shows the same times for Erratic
robot computing all the process on its own (no network is used). Once again, these
times can serve as a reference to show the viability of cloud computing.

Table 3 Average delay measures for Gigabit Ethernet in the case of 1024 × 768 resolution frames

Delay times (s)

to tp tc Total

Gigabit 0.0704 0.389 0.317 0.7764

WiFi 11n 0.676 2.377 3.442

WiFi 11ac 0.4740 1.61 2.473

Erratic alone 0.0670 0.966 0.166 1.199

Erratic alone means that the Erratic robot is working alone, that is, working as a local stereo vision
system



In order to calculate the delay, the average times taken to perform each of the stages
explained in Sect. 5.2 (to, tp and tc) are measured using time stamps at the beginning
of every process. The average latencies are calculated by adding the mean runtime of
all these stages. In the case of using the cloud, the difference between technologies
can be found in the transfer times to and tc, whereas tp remains unaffected (Fig. 2
clarifies this statement).

As it can be seen, for lower resolutions the robot can outperform the Cloud if wire-
less technologies are used. However, when increasing the stereo frame resolution,
there is a point where the limitations of the embedded hardware start to arise. There-
fore, it is worth considering Cloud offloading when bigger resolutions are required.

6.4 Interference Analysis with WiFi AC

The performance of the Cloud itself is not crucial, as we have the premise of “infinite
resources”. However, as wireless technology is the best choice for mobile robots, an
in-depth analysis of interference when increasing the number of robots must be done.
It is highly likely that not only one robot, but several are using the cloud at the same
time. Hence it is extremely important to study the possible communication quality
degradation.

The aim of this experiment is to analyze how WiFi 11ac manages the interferences,
and to prove that it is the most suitable technology for mobile robots operation. We
will focus only in the transmission of stereo frame pairs (resolution of 320 × 240)
to the Cloud, what renders enough information about interference problems. We are
interested in two elements:

• The average transfer time needed to send a stereo frame pair to the Cloud. As we
are working with a real-time system, the meeting of certain deadlines is vital. For
example, if the robot is transmitting stereo frames at 5 Hz, transfer times lower
than 1/5 Hz = 0.2 s are desired in order to meet deadlines.

• The message success rate. When more robots are added, there is the risk that some
of the packets that form the message (containing a stereo frame pair) collide and get
corrupted. Even though transport-level protocols like TCP allow packet resending,
the following scenario could occur: while the Cloud waits for the missing packet
(which corresponds to a stereo frame message with timestamp t) to be resent, the
same robot had already begun sending packets of a new stereo frame message (that
is, a frame with timestamp t + 1). Should a packet from a frame with timestamp
t + 1 arrive, then all the packets from messages with a timestamp lower than t + 1
would be automatically discarded (because of its obsolescence). This necessary
implies a lower message success ratio.

Table 4 compares the average latency and message success ratio when the number
of robots and the message frequency increase. To begin with, note that the packet
success rate works exactly as expected. When more robots are added, the number of



Table 4 Performance comparison when adding more robots in the case of 320 × 240 when no
3DPC extraction is done and only delays in stereo frame transmissions are considered

# Robots Mean transfer time (s) Average message success (%)

5 Hz 1 0.117 100.00

2 0.124 100.00

4 0.157 94.99

6 0.147 87.88

10 Hz 1 0.063 100.00

2 0.086 99.86

4 0.082 94.99

6 0.084 87.79

The wireless technology is that of 802.11ac

packet collisions increases, and therefore more messages are lost. Thus, there is a
trade-off between number of robots and system stability (e.g., missing environment
information can result in a robot crash, in the context of robot navigation). The
average transfer time deteriorates until a point where the percentage of message
success is low enough. This phenomenon is understood because the mean transfer
times are calculated only with those packets that have arrived successfully. That is,
those “lucky” packets last little time to complete. Hence, it is not that messages are
faster now, but that more packets do never arrive to the Cloud (and therefore their
transfer time cannot be properly measured). Therefore, we can assure that there is
another trade-off between message success ratio and average transfer time.

With respect to the meeting of deadlines, Fig. 6 shows the Empirical Cumulative
Distribution Frequency (ECDF) of delays for the experiment above shown. As it can
be seen, adding more robots make it more difficult to meet deadlines (vertical gray
dashed line in the figures) because of network interference. This is especially evident
in the case of 10 Hz. Therefore, because of the trade-offs previously explained, we
can conclude that current wireless technologies are (at the moment) not enough
developed for very critical real-time applications when more than one robot in the
same wireless cell. Should this be the scenario, then it would be necessary to allow
less strict deadlines. The high variability of total latency times that occurs in our
experiments can be mitigated by a predictive timing correction of actuation signals
[13]. There will be necessary further improvements in 802.11ac MAC layer like
TDMA protocols to reduce this latency variance (as mentioned in Sect. 5.2). The
use of the Contention Free Period with fixed size packets is an alternative to TDMA
protocols. This could guarantee a minimum bandwidth reservation, and therefore we
could address the issues explained in this experiment.

6.5 Application Case: Navigation Assistant

This last test summarizes the results for a real task for our cloud vision platform:
a navigation assistant for mobile robots. While a teleoperator is driving a mobile
robot, the information processed by the 3DPC Extraction Platform helps him/her
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Fig. 6 Empirical cumulative distribution frequency of delays with 5 and 10 Hz

to avoid collisions. Numerous questions arise, as in any real experiment: are really
high quality stereo frames necessary to assist in the navigation?, are cloud solution
more effective than the on-board one?, do packet latency variability suppose a prob-
lem when navigating? If on-board navigation were successful enough for 320 × 240
stereo frames (which have an adequate 3DPC frequency rate, see Table 2), then Cloud
offloading would not be necessary at all. In order to answer these questions, a test-
ing circuit was prepared (see Fig. 7). The Erratic robot was equipped with a stereo
camera built from two PSEye cameras and the circuit was completed several times.
The ratio of collisions by maneuvers was used as a success magnitude.

The results obtained in Sects. 6.3 show that most of the delays come from tc, that
is, the time required to transfer the 3DPC back to the robot. Thus, we got rid of this
communication overhead by moving the navigation assistant to the Cloud as well.
Figure 8 shows the diagram of the resulting architecture.
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Fig. 7 Testing circuit used in the experiments

Fig. 8 Overview of the platform applied to the navigation use case

Thanks to this change in the offloading model, we obtained the following results,
which solve most of previous questions. First of all, collisions were very frequent
(about 50 %) when using 320 × 240 images (for any computing option). Secondly, the
number of collisions were considerably reduced (less than 10 %) with higher resolu-
tions (640 × 480 pixels) and using the Cloud. As a conclusion, for the stereo vision
algorithm used here, low resolution images are not enough to detect the obstacle
information properly, and hence using higher resolution images is justified. More-
over, images with more than 320 × 240 are more difficult for the Erratic robot to
process on-board. A demonstration video can be found in [6] and all the details of
the experiments and the navigation assistant can be seen in [19].

7 Conclusions and Lessons Learned

The implemented platform (and its experimental results) shows that the cloud-based
offloading of heavy visual processing tasks is possible. Several conclusions can be
extracted from the experience.
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Firstly, the main bottleneck of cloud offloading is due to communication over-
heads. It is extremely important to mitigate this effect by choosing the correct
network technology. Moreover, the non-real time middleware and the inherent
non-deterministic of the TCP protocol (available in most Robotics Software Frame-
works) introduce a high variability in timing latency. Thus, this drawback should be
mitigated by using some kind of predictive correction terms in the loop controller and
more deterministic middleware and networks. However, the results obtained by WiFi
11ac are promising, and in future years it may be able to provide bandwidths close
to its theoretical 768 Mbps, which may reduce the collision problem that currently
appears even for a reduced number of robots (as it has been outlined in Sect. 6.4).

Secondly, there is an inherent trade-off between computation offloading and com-
munication overhead times. Therefore, the platform should be used finding the best
balance between those two. In that sense, depending on the use case, it may be worth
considering offloading not only the 3DPC extraction, but also other robotics tasks
(just like the case shown in Sect. 6.5).

In addition to all this, it has also been demonstrated that if a Cloud Solution is
not scalable, it is highly unlikely that good performance results can be achieved,
and therefore impossible to meet real-time requirements. As it has been shown in
Sect. 6.1, this is an indispensable element to exploit the Cloud’s true potential.

As a final conclusion, it can be assured that, despite there are challenges that need
to be addressed, the main question has been answered: using the Cloud for offloading
can imply better performance results in a robot than using on-board computation (at
least for a typical robot, whose hardware is much limited).
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