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 Sankhya : The Indian Journal of Statistics
 1995, Volume 57, Series A, Pt. 3, pp. 393-409

 A NEW APPROACH TO INFLUENCE ANALYSIS
 IN LINEAR MODELS

 By J. MU?OZ-PICHARDO
 J. MU?OZ-GARC?A

 J.L. MORENO-REBOLLO
 and

 R. PINO-MEJIAS
 Universidad de Sevilla

 SUMMARY. We propose a new approach to the study of influence in the General Linear Model

 based on conditional bias. This approach enables us to apply such an analysis to all particular cases

 of this model. The theoretical foundation, on which this approach is based, does not presuppose

 a particular hypothesis on the distribution of the variables. Applying the results obtained to the

 Multiple Linear Regression Model, measures of influence are obtained as already proposed by other

 authors. Finally we carry out an application of the results on the analysis of covariance.

 1. Introduction

 Influence Analysis arises when one is faced with the need to analyze the
 sensitivity of the results of a statistical analysis. This need is due to the fact
 that the conclusions of any analysis are drawn from methods based on sample
 observations and on asumptions on the underlying models of an experimenta
 tion.

 On the whole, in order to measure the influence that one or a set of obser
 vations has on the statistical analysis, slight disturbances are introduced into
 the model and the changes produced are quantified. In the literature, the most
 common disturbance pattern is that of the omission of the observations whose
 influence is to be studied.

 Cook (1987) tried to unify the problem under a general formulation which
 is valid for the different approaches and methods carried out on it. In this
 formulation, the key questions are the choice of the perturbation pattern and the
 choice of the model of comparison of the results obtained under the postulated
 model and the disturbed model.

 Paper received. August 1993; revised February 1994.

 AMS (1980) (revised 1985) subject classification. 62J99.
 Key words and phrases. Conditional bias, general linear model, influence observations.
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 On the other hand, Influence Analysis has developed mainly in the Multiple
 Linear Regression Model (Belsley, Kuh, Welsch, 1980; Cook and Weisberg, 1982;
 Cook 1986, 1987; Chatterjee and Hadi, 1986, 1988) and, by extension, in the
 Multivariate Regression Model (Caroni, 1987; Barret and Ling, 1992).

 In this paper, we propose a new approach to study the influence on the
 General Linear Model (Kshirsagar, 1983) based on conditional bias. This
 approach permits us to apply such an analysis to all particular cases of this
 model. The theoretical foundation, on which this approach is based, does not
 presuppose a particular hypothesis on the distribution of the variables.

 As a particular case, by moving the results obtained from the General Linear
 Model to the Multiple Linear Regression Model, we obtain measures of influence
 that have been already proposed by other authors (Belsley et al. (1980); Atkin
 son (1982); Cook and Weisberg (1982);). Finally we carry out an application of
 the results on the analysis of covariance.

 2. Conditional bias in the general linear model

 2.1 The general linear model : Notation. The study of the General Linear
 Model is of great importance within statistics mainly due to its wide range of
 applications. It is used as a model for the development of other models, such as
 the multiple regression, experimental designs, analysis of covariance, etc.

 The general linear model is defined by

 Y = Xj3 + <:, E[e] = 0, Var(e) = a2In (GLM)

 where Y is a random n-vector; X is a known n x p matrix with rank r (r < p <
 n); ? is a p-vector of unknown parameters and e is an n-vector which represents
 the non-observable random perturbations.

 The fitted values vector is denoted by Y = VY, with V = XS~X' =
 ((u?))??=i,...,n *he prediction matrix, which is symmetric, idempotent, with rank
 r and unique for any S~ generalized inverse of S = X'X (Kshirsagar, 1983). The
 residuals vector is represented by e = Y ? Y = Me, where M = In ? V, and the
 least squares estimators of ? and a2 are denoted by ? and a2, respectively. On
 the other hand, the estimable linear parametric functions of ? and A/3, where
 A is a q x p matrix, with rank (A) = q, so that A/3 is the BLUE vector of the
 components of A?.

 Finally, given a collection of subindexes / = {?i,..., im} C {1,... ,n}, the
 m-vector composed of the components of Y subindicated by J is denoted by Y/.
 Similarly, the matrix formed by the rows of X corresponding to the collection
 / is denoted by X/, and the submatrix corresponding to V is represented by
 V/ = X/S~X'7. Likewise, the omission of the observations indexed by / is
 indicated by the subindex (/).

 2.2. Conditional bias. The Decomposition Lemma from Efron and Stein
 (1981) expresses a statistic T defined on a simple random sample Yi,.. ., Yn as
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 INFLUENCE ANALYSIS IN LINEAR MODELS  395

 a finite sum, whose terms are given according to the conditional expectations
 of the statistic T given the sample observations, which can be considered either
 individually or together. Taking this lemma as a reference, the following defini
 tions are given.

 Definition 2.1. Let Y\)..., Yn be a random sample of the random variable
 Y, let T ? T(Y\,..., Yn) be a statistic defined on the sample, and let y\,... yn
 be a realization of the sample. The conditional bias of T given the i-th
 observations is defined as

 J[yy,T) = E[T\Yl=yl]-E[T)  .(2.1)

 The conditional bias J[yt;T] can be interpreted as the average effect that
 the realization of the i-th sample observation has on the statistic T. Therefore,
 it can be considered as a measure of the influence that such a sample realization
 has on T.

 By generalizing this, we can define the conditional bias given a set of obser
 vations.

 Definition 2.2. Under the conditions of Defintion 2.1, the conditional bias
 of T given the set of observations {yn,..., yim } is defined as

 J[y,l,...,ytm,T} = E[T\y,?=yl?,...,y,m=y,J-E[T}  ...(2.2)

 Therefore, it is considered to be a measure of the joint influence of observa
 tions {yin...,y?m} on T.

 2.3. Conditional bias of the general linear model estimators. We shall
 now calculate the conditional bias for the BLUE of an estimate linear function
 of the parameter vector and for the estimator a2.

 For Y/, the conditional bias is denoted by

 J\yil,...,yim:T\ = J[yr,T\ = E[T\Y, = yl]-E[T\  .(2.3)

 Without loss of generality, we assume that these m observations are the last
 observations. Thus, the following decompositions are obtained

 X = X(/)
 X/  ;Y =  Y/  ;V:  V(/) v0

 V0 V/  ;In-V = M(/) Mo
 M?, M,

 ...(2.4)
 where V0 = X(/)S-X'/, M(/) = In_m - V(/), M/ = Im - V, and M0 = -V0. We
 assume that V/ and M/ are non-singular and that n > r + m.

 In the following theorem, we obtain the conditional bias for the BLUE of an
 estimable linear function.
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 Theorem 2.3. Let A? be an estimable linear function, with A being a
 q x p matrix with rank (A) = q. Then

 J y/;A3]=AS-X'/[y/-Xi/3]  ...(2.5)

 = AS

 = AS"

 Proof. E [A3 I Y7 = y/] - E [a/?]
 [e [X'7Y, I \j = y/] + E [x'(/)Y(/) | Y, - y,]} - A?
 x?y/+X'(/)X(/)/j]-A/3

 = AS" [X'X? + X'I(y? - X,/?)] - A? = AS'X^y; - Xj?) ?7
 Corollary 2.4. For m = 1 and I = {i},

 J[y,;A?] = AS-x'i[yi-xi?} ...(2.6)
 where x? is the i-th row of X.

 The next lemma is useful to obtain the conditional bias for a2.

 Lemma 2.5. Given the partitioned matrices (2.4), we obtain

 MiX(/) = -[Im-V/]X/ ...(2.7)
 Proof. As V X = X, then M X = 0, with ? being the null matrix.

 Therefore Mi)X(/) = -M7X; = -[Im - V/]X/  Z7

 Theorem 2.6. The conditional bias of d2 given the set of sample obser
 vations indexed by I is

 J [yi\?2] = ? {[y/ - X//3)' [Im - V/] [y7 - X,?) - ahr[lm - V,]} n ? r

 ;..(2.8)'
 Proof. The unbiased estimator of o2 can be expressed in the following way

 a2 =  1
 n ? r Y'(;)M(/)Y(/) + 2Y/M^Y(/) + Y/M/Y, ...(2.9)

 Besides
 E [Y'/M/Y/ | Y, = y/] = y, [I - V,] y?,
 E [Y'/M^Y^ | Y, = y/] = y'/M()X(/)l3 = -y',[Im - V/JX//3

 and

 E [y'(/)M(/)Y(/) | Y/ = y,j = ?? [y'(/)M(/)Y(/)]
 = Ea - noctli] - EE ?*.^my.] = *2

 Hi Hi "tiki*
 Et1-***)

 +E(1-^))x^)2-E
 k$i

 ^2 vks(xs?)
 k$I ls?Is?k

 (xfc/9)
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 a2{n-r-tr [lm - V,}} + ?(1 - vkk)(xk?)2
 k<$l

 (l-vuXx^-J^Vkfafl
 Hi

 = <r2{n-r-tr[lm-V!]} + Y,

 je/
 (x*/3)

 jel

 = <r2{n_r_tr[Im_V/]} + ^
 J6/

 J] vjk(xk?)
 H'

 (x>/9)

 (1 - %)(Xj/3) 4- 52 M*/3)

 = a2 {n - r - tr [lm - V,]} + [X//9]' [Im - V,] [X,?}

 Therefore, the following is obtained

 E [a2 | Y, - y/] = a2 il - -^ir [Im - V,]}

 (x>0)

 +
 n ? r [yz-X/flX-V/Hyz-X,/?]

 from which we can deduce the proposed result.

 Corollary 2.7. For m = 1 arad J = {?},

 J [yr,?2] = -i- [i _ v. ] J[2/l _ Xl/?f _ ff2} n ? r l J

 Z7

 ,..(2.10)

 2.4. An estimation of the conditional BIAS. In the results previously ob
 tained we observe that the conditional bias depends on the unknown parameter
 ? and a2. The following theorem offers an estimation of the conditional bias of
 an estimator V = V(Y?,..., Yn) of a vector 0 of parameters.

 Theorem 2.8. Let Y\,..., Yn be a random sample of the random variable
 Y, whose distribution depends on an unknown parameter 0 G ft ? $tp. Let
 V = V(Yi,..., Yn) be an unbiased estimator of 0 and let V(i\,... , ?m) be
 the unbiased estimator obtained from the sample with the omission of the
 observations {Y?t | k G {i\,... , ?m}}- Then

 E[v-V(il.im)\Yil=lHl,---,Yim=yim
 J y?!>  ,mm-M ...(2.11)

 The result follows directly from the fact that V(?lv..,?m) is unbiased and does

 not depend on Yh,..., Yim. Hence, we denote V- V(tl ...lm) by J \yiL,..., yim; VI.
 In order to estimate the conditional bias either of the BLUE of an estimable

 linear parametric function for the model (GLM), or of a2, we must obtain the
 estimators corresponding to the model in which the observations indicated by
 / are omitted.
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 The resulting linear model with such observations omitted is

 Y(/)=X(/)/3 + e(/) [GLM(/)J

 where Y(/), X(/), (/) are the corresponding subvectors or submatrices associated
 with the set of subindexes /. For the model, the least squares estimators are
 expressed as

 0(0 = S(/)X(/)Y(/) + I1* ~~ Hi/)]^' ue^? arbitrary  ...(2.12)

 with S(7) = X/7vX(/) and H,  (/)  s(/)s(/),
 Theorem 2.9. If A? is an estimable linear function for (GLM), it is also

 for the model [GLM(J)]

 Proof. We consider the following decomposition

 X/
 x </>

 v =
 v{, v(/)J

 As VX = X, then we obtain V/X/ + V0X(/) = X/. Likewise, if A? is
 estimable for the model (GLM), there exists a q x n matrix A, such that

 A = A M7!V0
 Im  X/A => A = BX/A where B = A Hi)  (0  Im

 MJ1V0

 Then A? is an estimable linear function for the model [GLM(I)].
 Z7

 As a consequence, if A/3 is an estimable linear function for (GLM), then the

 BLUE for [GLM(J)] is A?yy The following results, Lemma 2.10 and Theorem
 2.11, allow us to obtain the estimation of the conditional bias of A?.

 Lemma 2.10. Let A be a p x q matrix and L be a m x p matrix (m < p),
 such that L belongs to the row space generated by the matrix A, and the
 inverse of the matrix [I - L A~L'] exists. Therefore, the matrices

 { A~ - A~L'[I - LA-L'l^LA" }

 are generalized inverses of [A - L I/].
 Proof. It suffices to base the proof on Pringle and Rayner (1971), where the

 equalities LA~ A = L and AA'L; = L' verify if L belongs to the row space of
 A.

 Theorem 2.11. The least squares estimators of ? in [GLM(I)] can be
 expressed as

 ?(I) = S~X'Y - S^X'/M71e/ + (Ijk - H)i/, ueW arbitrary.

 Proof. From Lemma 2.10, we obtain

 ...(2.13)

 '(/)  (s - x'jXiy = s- + s-xjMj^/S
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 INFLUENCE ANALYSIS IN LINEAR MODELS  399

 on the other hand

 H(/) = H - S-X'7X/ + S"XJM71X/ - S'X'jMJ1 V/X/ = H

 Therefore, based on (2.12), we obtain
 fl{1) = (S" 4- S-X'jM^X/S-XX'Y - X'7Y/) 4- (h - H)i/

 = S-X'Y - S~X,/M71(Y/ - X/S-X'Y) 4- (I* - H)?>
 = S-X'Y - S~X'IMjleI 4- (Ifc - H>

 ?7

 The estimation of the conditional bias of A? is obtained in the following.
 Corollary 2.12.

 J\yi;A?] = AS-X,/M71e/ ... (2.14)
 In relation to the unbiased estimator of the parameter a2, we obtain

 ^2 a(0
 1

 Y(/) - X(/)3(/) Y(/) - X(/)/J(/) n ? r ? m

 The relation between (2.9) and (2.15) is stated below,

 Theorem 2.13. In the model [GLM(I)]

 1

 ...(2.15)

 '(/>

 Proof.

 n ? r ? m

 ^ -i !

 [(n - r)a2 - e',M^e,} ...(2.16)

 |Y(/) - X(/)/3(/)j |Y(/) - X(/)/3(/)J = Y'(/)Y(/) - Y'(/)X(/)0(/)
 = [Y'Y - Y'jYi) - [Y'X - Y'7X/] [S"X'Y - S-X'/M7Ie/ + (I - H>]
 = Y'(I - V)Y - Y^Y/ + ?X'jMjlei + Y',Xi? - YJ V/M^e/
 = Y'(I - V)Y - Y^e, + /3X'/M71e/ - Y',\?M.]le,
 = Y'(I - V)Y - [Y',[I + V/M/1] - /3X'/M71] e7.
 = Y'(I - V)Y - [Y'/M71 - /3X'/M71] e7 = Y'(I - V)Y - e/M71e/

 (n ? r)d2 - e'/M71e/
 from which we can deduce what was previously stated.

 ?7

 Consequently, we obtain the estimation of the conditional bias of a2.

 Corollary 2.14.

 J[y,;?2) =
 1
 m e'?M^ef  n ? r ? m  ...(2.17)

This content downloaded from 
������������150.214.182.24 on Thu, 30 Jun 2022 07:41:56 UTC������������� 

All use subject to https://about.jstor.org/terms



 400mu?oz pichardo, munoz-garcia, moreno-rebollo and pino-mejias

 3. Influence measures

 Corollary 2.12 and 2.14 enable us to propose the following influence measures
 for the estimators A? and a2 in the (GLM).

 3.1 Influence measures on A?. Based on Corollary 2.12,

 J[yi]A?] = AS-X,/M71e/ G SP

 can be interpreted as a measure of the influence that the set of observations,
 subindicated by J, has on A?. And,

 can be interpreted as a measure of the influence that the i-th observation has
 on A?.

 These influence measures on the BLUE of an estimable linear function be
 long to the ?-dimensional real space. So, in order to characterize the influence,
 a metric of generalized distance type will be applied, according to the charac
 terization given by Barnett (1976).

 Hence, given a symmetric, positive definite matrix Q and a positive scalar
 c, we define the (Q, c)-norm of a vector X as

 ll*ll(Q,0 = (Uc)X'QX

 Considering the matrix Q = (AS~A')_1, with Aagxp matrix such that A?
 is linearly estimable, and an adequate choice of the scalar c, we can establish
 the following norms.

 (I) For c\ = qa2,

 DJ [A/3] = \\J[y? : A/3]||(Qfi), called ?^-DISTANCE associated with the set
 of observations yj.

 Dj[A?] = \\J[y? : A?}\\(QCi), called D/-DISTANCE associated with the set
 of observations y?.

 Easily, we obtain the following expressions for DJ [A/3] and Dj[A?] :

 D}[A?] = 4? [y/ - X//3]'X/S-A' [AS"A']"1 AS"X'7 [yi - X//3] ... (3.1)

 D/[Aj8) = ^e//M71X/X-A' [AS-A;]_1 AS-X'/M71e/ ... (3.2)
 In particular, in the study of the influence of a single observation, that is to

 say I = {i}, the D*-distance and ?),-distance associated with ?/j are, respectively,

 D\[A?) = -^XiS-A' [AS'A7]"1 AS-x; [yt - xt/3]2 ... (3.3)
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 INFLUENCE ANALYSIS IN LINEAR MODELS 401

 and

 Di[A?] = -^i?^S-A' [AS-AT^S-xJrf .-.(3.4)
 where rf = e2/[a2(l ? vt?)]

 Thus, we propose Di[A?] and Di[A?] as an influence measure of y? and t/t on
 A/3, respectively. In the multiple Regression Model, Dj[?] coincides with Cook's
 distance (Cook and Weisberg (1982)).

 (II)Forc2 = <7(27),

 W*[A?] = \\J[yi\A?]\\{QC2V called ^/-DISTANCE associated with the set
 of observations y?.

 Wi[A?] = \\J\yi\^?\\\[Q^y called W/-DISTANCE associated with the set
 of observations y?.

 Easily, we obtain the following expressions for these norms :

 Wi [Aj?) = 4- [y? - Xi?f X/S- A' [AS"A']_1 AS"XJ [yi - Xj?] ... (3.5) a(i)

 W[[A?] = 4-e/M71X/S~ A' [AS-A']_1 AS^M/1^ ... (3.6) a(i)
 In particular, if / = {i} the W* and Wi distances associated with the single

 observation are, respectively.

 W* [A?] = 4-*S-A'[AS-A']"1 Ax^ [Vi - x^]2 ... (3.7) a(i)

 Wi[A?} = ?i-.x.S-A'tAS-A'l^Ax;*2 ... (3.8) (1 - vu)

 where t2 = e2/[?20(l-</*)]
 Likewise, we propose W/[A/?] and W?[A/3] as an influence measure of y? and

 yi on A/3, respectively. In the Multiple Regression Model, Wj\?] coincides with
 the squared Welsch-Kuh's distance (Belsley et ai (1980)).

 (III)Forc3 = [r/(n-r)]a27),
 C}[A?] = \\J[yi;A?]\\{QC3)) called C7*-DISTANCE associated with the set

 of observations y?.

 Cr[A?] = II J[yi;A?]\\{Q,C3) is called CJ-DISTANCE associated with the set
 of observations y?.

 The expressions of these norms are given by

 C? [A?] = -??- [y? - Xi?]' X/S"A' [AS"A']_1 AS"X'7 [y? - Xj?] ... (3.9)
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 CAW] = r \ eJfr^X/S-A' [AS"A'] * AS'^MJ^r ... (3.10) ^ra(i)
 In particular, in the study of the influence of a single observation, the C*

 distance and Cj-distance associated with y, are, respectively,

 Cl\A?] = -j^^S'A' [AS"A']~l AS-xJ[yt- - x,/3]2 ... (3.11) n-ra(I)

 C,[A/3] = ?-, l xxtS~A' [AS"A']-1 AS-a?.t? ... (3.12) "r (1 -*>?)

 Likewise, we propose C/[A/3] and C?[A/3] as influence measure of y? and y?
 on A/3, respectively. In the Multiple Regression Model, Cj[?] coincides with the
 square modified Cook's distance (Atkinson (1982)).

 3.2. Influence measures on a2. Based on Corollary 2.14 we obtain the
 following influence measures on the unbiased estimator of the variance a2.

 1. Measure of influence that the set of observations, indexed by J, has on a2

 SMEDi =---e'M^e/-a2 5ft n ? r ? m n ? r ? m

 2. Measure of influence that the ?-th observation has on a2

 .2
 SMED,  \ =-l--S-?-a2 =-X--a2 [r2 - l] G ?. n ? r ? \ \ ? va n ? r ? 1 n ? r ? 1 L

 4. Application to the analysis of covariance

 In this section the results previously obtained are applied to the analysis
 of Covariance model with one factor and two covariates using a data set taken
 from BMDP STATISTICAL SOFTWARE in the file EXERCISE.DAT (Frane,
 Jennrich and Sampson (1988)). The data are measurements corresponding to 40
 people whose pulses were taken before and after running a mile. The following
 variables are measured :

 ID (Identification number); SEX (Male, Female); SMOKER (Yes, No)
 AGE (Subject's age in years); PULSE-1 (Pre-exercise pulse rate)
 PULSE-2 (Post-exercise pulse rate)
 The Analysis of Covariance of the variable PULSE-2 regarding the SEX

 factor and the covariates AGE and PULSE-1 can be formulated by the following
 linear model
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 influence analysis in linear models  403

 PULSE2i] =/! + <*+ liAGEij + l2PULSEhj + etj.etj = AT(0, a2)

 where the subindex ?j represents the value of the corresponding variable on the
 j-th individual of the ?-th group (SEX). We obtain that the BLUE's vector of
 the estimate linear function

 0 0 0 10
 0 0 0 0 1

 where ?' = [/iaia27i72] is [7172]' = [-0.2639 0.9977]'. The influence analysis of
 each observation, taken individually, on the BLUE's vector applying the influ
 ence measures obtained from the conditional bias concept leads to the results
 recorded in Table 1, which are represented in Figures 1-3.

 Table 1. INFLUENCE MEASURES ft73]'

 ID D-DIST W-D?ST C-DIST ID D-DIST W-DIST C-DIST
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

 0.003
 0.000
 0.001
 0.031
 0.000
 1.552
 0.003
 0.002
 0.000
 0.004
 0.008
 0.000
 0.072
 0.000
 0.082
 0.024
 0.005
 0.007
 0.002
 0.003

 0.003
 0.000
 0.001
 0.031
 0.000
 8.013
 0.003
 0.001
 0.000
 0.003
 0.008
 0.000
 0.071
 0.000
 0.082
 0.023
 0.006
 0.007
 0.002
 0.003

 0.053
 0.003
 0.023
 0.553
 0.007

 144.235
 0.045
 0.027
 0.002
 0.063
 0.139
 0.000
 1.279
 0.001
 1.473
 0.421
 0.099
 0.127
 0.029
 0.052

 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40

 0.001
 0.001
 0.000
 0.000
 0.009
 0.001
 0.002
 0.002
 0.000
 0.011
 0.009
 0.000
 0.013
 0.001
 0.007
 0.016
 0.016
 0.029
 0.017
 0.000

 0.001
 0.001
 0.000
 0.000
 0.008
 0.000
 0.002
 0.002
 0.000
 0.011
 0.009
 0.000
 0.013
 0.001
 0.007
 0.016
 0.016
 0.028
 0.017
 0.000

 0.023
 0.014
 0.001
 0.002
 0.152
 0.009
 0.040
 0.035
 0.001
 0.204
 0.168
 0.000
 0.237
 0.013
 0.129
 0.289
 0.283
 0.509
 0.307
 0.004

 We can use that the observation number 6 has a considerable influence on
 the BLUE's vector of the estimable linear function under consideration, which
 could mask the behaviour of the other observations. For this reason, Fig. 4,
 Fig. 5 and Fig. 6 represent the data from Table 1, omitting observation number
 5.

 In these plots we can see that observations number 13 and 15 has greater
 influence than the rest of the observations, and for this reason, along with
 number 6, they should undergo a more detailed study.
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 The influence measures, SMED?, on the unbiased estimator of the variance
 a2, Table 2, are represented in FIG. 7 and FIG. 8. From these we can draw the
 conclusion that observation number 6 has a considerable greater influence on
 this estimator than the rest of the observations. However, observations 13 and
 15 have very little effect on this estimation, as opposed to that obtained for the
 influence analysis on [7172]'.

 Table 2. INFLUENCE MEASURE ON ?2

 ? -9.164 T? T864 2? -10.394 31 -2.843
 2 -10.605 12 -10.693 22 -10.252 32 -10.163
 3 -9.511 13 -3.650 23 -10.661 33 0.514
 4 -5.167 14 -10.699 24 -10.454 34 -10.391
 5 -10.527 15 -0.535 25 -7.676 35 -4.702
 6 302.158 16 -7.076 26 -10.130 36 -4.653
 7 -8.926 17 5.536 27 -8.400 37 -4.614
 8 -10.505 18 -4.695 28 -8.062 38 -6.174
 9 -10.623 19 -9.614 29 -10.653 39 -2.303
 10 -10.231 20 -9.519 30 -4.703 40 -10.016

 5. Conclusion

 In conclusion, in this paper, we propose :
 A new theoretical approach to the study of influence, that it can be ex

 tended to different statistical models. This approach is based on conditional
 bias of a given statistic T and does not presuppose hypothesis on the underlying
 distribution.

 Influence measures for the statistics of interest in the general linear model.
 So, we propose D/-distance W/-distance and C/-distance to quantify the in
 fluence of observations indexed by I on A?. For the linear regression model,
 the distances coincides with Cook's distance, squared Welseh-Kuh distance and

 modified Cook's distance, respectively. Nevertheless, these distances can be ap
 plied to all particular cases of (GLM). Finally, we propose a measure of the
 influence on a2, SMEDj.
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