
Can Agent Oriented Software Engineering Be Used to
Build MASs Product Lines?

Joaquı́n Peña

Dpto. de Lenguajes y Sistemas Informáticos
Avda. de la Reina Mercedes, s/n. Sevilla 41.012, Spain

joaquinp@us.es
www.tdg-seville.info

Abstract. On the one hand, the Software Product Lines (SPL) field is devoted to
build a core architecture for a family of products from which concrete products
can be derived rapidly by means of reuse. On the other hand, Agent-Oriented
Software Engineering (AOSE) is a software engineering paradigms dedicated to
build software applications composed of organizations of agents. Bringing AOSE
to the industrial world may prettily benefit from SPL advantages. Using SPL phi-
losophy, a company will be able to define a core MAS from which concrete prod-
ucts will be derived for each customer. This can reduce time-to-market, costs,
etcetera. In this paper, we expose the similarities between AOSE and SPL con-
cluding the viability of future research in Multi-Agent Systems Product Lines
(MAS-PL).

1 Introduction

Agent-Oriented Software Engineering (AOSE) is a new software engineering paradigm
that promises to enable the development of more complex systems than with current
Object-Oriented approaches using agents and organizations of agents as the main ab-
stractions [14]. In this field, agents are used as the main implementation artifact and
organizations as the main artifact in modelling the system.

A software agent is a piece of software which exhibits the characteristics firstly de-
scribed by Wooldridge in Ref. [26], namely: autonomy, reactivity, pro-activity and so-
cial ability. Autonomy means that an agent operates without the direct intervention of
other agents or humans and has control over its actions and its internal state. Reac-
tivity means that an agent perceives its environment and responds in a timely fashion
to changes that occur in it. Pro-activity means that an agent does not simply react to
changes in the environment, but exhibits goal-directed behaviour and takes the initia-
tive when it considers it appropriate. Social ability means that an agent interacts with
other agents (if it is needed) to complete its tasks and helps or contends with others to
achieve its goals. Many researchers are in agreement with the vision of software agents
as a characterization; and they, depending on their community, attach new attributes to
software agents as mobility in distributed systems or adaptability in machine learning.

Since agents are limited to a specific environment and have limited abilities, complex
problems are usually solved by a group of agents [4,5,24], that is to say, by a Multi-agent
System (MAS hereafter).

A Software Product Line (SPL) is a set of software-intensive systems sharing a com-
mon, managed set of features that satisfy the specific needs of a particular market seg-
ment or mission and that are developed from a common set of core assets in a prescribed
way, according to the definition used by the Software Engineering Institute (SEI) [6].
This engineering paradigm is focused in bringing reuse until its final outcomes. It is
devoted to create software products, which are said to belong to a family of prod-
ucts, which present similar features, from a set of reusable software artifacts and a core
architecture.

Both fields present many similarities. In this paper, we expose these similarities and
we argue for the viability of integrating both approaches to enable the development of
MAS Product Lines.

This paper is structured as follows: Section 2 shows the case study we use; Section 3
shows the features of AOSE that are important for our purpose; Section 4 shows the
features of SPLs that are important in the AOSE field; Section 5 shows the main sim-
ilarities between both and the deficiencies of AOSE to enable MAS-PLs; and finally,
Section 6 shows our main conclusions.

2 A Case Study

The case study we have chosen has been proposed in the Modelling TC of FIPA with
the purpose of evaluating how AOSE methodologies model the interaction aspect.

This case study is used along this document. Following, we present the original ver-
sion of the problem1. The case study represents the UN Security Council’s Procedure to
Issue Resolutions. We use some parts of this example to show the similarities between
both fields.

In addition, notice that, although it does not represent a product line, we will take
some of the requirements as optional to obtain a product line where each product
presents a subset of the requirements presented following.

Assumptions
(1) The following procedure is defined for a case study of agent-oriented modelling.

It is inspired from the procedure of UN Security Council to pass a resolution. However,
it does NOT necessary represents the reality.

(2) There are also some unspecified issues and ambiguity in the specification that
models in different notations and languages may resolve by themselves in the process
of modelling.

Description
The UN Security Council (UN-SC) consists of a number of members, where some of
them are permanent members. Members become the Chair of the Security Council in
turn monthly.

To pass a UN-SC resolution, the following procedure would be followed:

1. At least one member of UN-SC submits a proposal to the current Chair;
2. The Chair distributes the proposal to all members of UN-SC and set a date for a

vote on the proposal.

1 http://www.auml.org/auml/documents/UN-Case-Study-030322.doc

3. At a given date that the Chair set, a vote from the members is made;
4. Each member of the security council can vote either FOR or AGAINST or

SUSTAIN;
5. The proposal becomes a UN-SC resolution, if the majority of the members voted

FOR, and no permanent member voted AGAINST.
6. The members vote one at a time.
7. The Chair calls the order to vote, and it is always the last one to vote.
8. The vote is open (in other words, when one votes, all the other members know the

vote)
9. The proposing member(s) can withdraw the proposal before the vote starts and in

that case no vote on the proposal will take place.
10. All representatives vote on the same day, one after another, so the chair cannot

change within the vote call; but it is possible for the chair to change between a
proposal is submitted until it goes into vote, in this case the earlier chair has to
forward the proposal to the new one.

11. A vote is always finished in one day and no chair change happens on that day. The
chair sets the date of the vote.

3 Agent Oriented Software Engineering (AOSE)

In addition to the commonly used division in requirements, analysis, design and imple-
mentation, the software process of AOSE methodologies can be also divided into two
phases, each of them used to describe the organization of the system from a different
point of view [27]. In this section, we first show each kind of organization, to later
discuss on the software process and models used in AOSE.

An organization represents a group of agents formed in the system in order to obtain
benefits from one another in a collaborative or competitive manner [15,20,26]. There-
fore, a multi-agent organization emerges when there exists some kind of interaction
between its participants, either through direct communication or through the environ-
ment. As recognized in the field of economics [19], and other authors have recognized
in the agent field, e.g. [3,11,27], an organization can be observed from two different
points of views:

The interaction point of view: It describes the organization from the set of interac-
tions between the roles played by agents in the system. The interaction view corre-
sponds to the functional point of view in the field of economics.

The structural point of view: It describes the agents of the system and their distri-
bution over sub-organizations, groups, and teams. In this view, agents are also
presented in hierarchical structures showing the social architecture of the system.

In agency, the former is called Acquaintance Organization, and the latter is called
Structural Organization [27]. Both views are intimately related, but they show the or-
ganization from radically different points of view.

Fig. 1. Acquaintance vs. structural organization

Since any structural organization must include interactions between its agents in or-
der to function, it is safe to say that the acquaintance organization is always contained
in the structural organization. Therefore, if we determine first the acquaintance organi-
zation, and we define the constraints required for the structural organization, a natural
map is formed between the acquaintance organization and the correspondent structural
organization. This is the process of assigning roles to agents [27]. Thus, we can con-
clude that any acquaintance organization can be modelled orthogonally to its structural
organization [18].

In Figure 1, we present a conceptual model of the case study presented in Section 2.
Here we are representing only the procedure required to send, vote, withdraw and accept
or reject resolutions not representing the possibility of changing the Chair, that is to
say, an acquaintance sub-organization of our problem. Notice that for representing an
acquaintance sub-organization we should have represented also the dynamic part of the
system, that is to say, the behaviour of the roles in the sub-organization. However, we
have not done that in order to simplify.

In the acquaintance organization, it implies a set of roles and interactions between
them. In the structural organization, these roles can be mapped onto a certain group of
agents to form several organizational structures. For example, as shown in Figure 1, we
can map the acquaintance organization into a plain structure, a hierarchical structure,
and so on. Thus, this exemplifies the fact that the structural organization of the UN
Security Council is different and independent from its structural organization.

Most AOSE methodologies recognize this separation what derives in that some
methodologies have proposed a software process where one phase appear for devel-
oping each kind of organization: acquaintance analysis and structural analysis2. This
fact is ratified by the importance that the role concept, crucial for modelling the ac-
quaintance organization, has reached in this field where most important methodologies

2 Notice that these phases present a different name in each methodology, for example, in GAIA
they are called analysis and architectural design respectively.

Observer Chair

Voter

Guard:
(not (IChair.lm-
>includes(IVoter.id))
) and (currentDate =
IChair.date) and
(not (prop =
FINISHED))

IVoter

prop: Proposal
id: Member
vote: Vote
decideVote(Proposal)::Vote

Role Goal: Vote for/against a
proposal
Vote Goal: Vote for/against a
proposal

Chair

Observer

1..n

Guard:
(prop =
FINISHED)

Observer
Chair

Submitter

1..n

Guard:
ISubmitter .decideAbor
t(prop)

Observer Chair

Submitter

1..n

IChair

prop: Proposal
date:Date
lm: ListOfMembers
currentVote: Vote
lv: ListOfVotes
date: Date

calcRes(ListOfVotes)::Proposal

Role Goal: Manage Resolutions
Submit Proposal Goal : Manage
proposal submission
Withdraw Proposal Goal : Manage
proposal withdrawal
Vote Goal: Manage voting process
Accept/Reject Proposal Goal:
Resolve and inform of new
resolutions

ISubmitter

prop:Proposal
id:Member
proposedDate:Date

decideAbort(Proposal)::bool

Role Goal: Add a new resolution
Submit Proposal Goal : Submit a
new proposal
Withdraw Proposal Goal : Withdraw
a proposal

IObserver

prop:Proposal
lv: ListOfVotes

Role Goal: Observe Resolution
Management
Submit Proposal Goal : Be
informed of new proposals
Withdraw Proposal Goal : Be
informed of proposal withdrawal
Vote Goal: Be informed of a vote
Accept/Reject Proposal Goal:
Be informed of new resolutions

Accept/Reject Proposal
Goal: Accept or reject a proposal
Pattern: collaboration

Data: Out:
IChair.prop

In:
IChair.lv

Postcondition:
(IChair.prop = IObserver.prop) and
IChair.prop = {RESOLUTION| DENIED}

Instantiation Rule:
(IChair.allInstances -> forAll (c |
UN.members.includes(c)) and
(IObserver.allInstances -> forAll (o |
UN.members.includes(o))

Post:
IChair.lv->includes(IVoter.vote) and
IObserver.lv->includes(IVoter.vote)
and numVotes = numVotes@pre++
If (numVotes = UN->count())
IChair.prop = FINISHED

 Vote

Goal: Manage voting process

Pattern: collaboration

In:
IVoter.prop

Data:
numVotes:
int

Out:
IObserver.lv
IChair.lv

Instantiation Rule:
(IVoter.allInstances -> forAll (v | UN.members.includes(v))
and (IChair.allInstances -> forAll (c |
UN.members.includes(c)) and (IObserver.allInstances ->
forAll (o | UN.members.includes(o))

Withdraw Proposal
Goal: withdraw a proposal
Pattern: collaboration

Data:In:
ISubmitter.propToQuit

Instantiation Rule:
(IChair.allInstances -> forAll (c |
UN.members.includes(c)) and (ISubmitter.allInstances -
> forAll (s | UN.members.includes(s)) and
(IObserver.allInstances -> forAll (o |
UN.members.includes(o))

Submit proposal

Goal: Submit a new proposal for resolution

Pattern: colaboration

In:
ISubmitter.prop

Out:
 IObserver.prop
 IChair.date
 IChair.prop

Data:

Instantiation Rule:
(IChair.allInstances -> forAll (c | UN.members .includes(c))
and (ISubmitter .allInstances -> forAll (s |
UN.members.includes(s)) and (IObserver.allInstances ->
forAll (o | UN.members .includes(o))

Postcondition:
(IChair.prop = ISubmitter.prop)
and (IObserver.prop =
IChair.prop)

1..n Out:
IChair.lp

Fig. 2. Role Model for the Issue Resolution system goal

use it. Good examples are GAIA [27], INGENIAS [21], MASE [9], PASSI [2] and
TROPOS [1].

For example, the MaCMAS methodology fragment [22], represents role models
as it is shown in Figure 2. This model uses an extension of UML collaborations to
represent the acquaintance organization. We can find two main types of elements in
the model: (1) roles, represented as boxes; and (2) interactions, represented using
ellipses. Roles show which are their general goals and their particular goals when
participating in a certain interaction with other roles or with some part of the en-
vironment. Roles also represent the knowledge they manage, middle compartment,
and the services they offer, bottom compartment. For example, the goal of the Chair
role is ”Manage resolutions”, while its goal when participating in the Withdraw pro-
posal interaction is to manage the process of withdrawing a proposal. In addition to

Keep Peace
and Security

Issue
Resolution

Change
Chair

Proposal
Submittion

Set Date

Carry
Vote out

Accept/Reject
Proposal

Withdraw
Proposal

Fig. 3. Example of Goal Hierarchy using TROPOS

roles, interactions show us also some important information. They also must show the
system-goal they achieve when executed, the kind of coordination is carried out when
executed, the knowledge used as input to achieve the goal and the knowledge pro-
duced. For example, the goal of the interaction Submit Proposal is to ”Submit a new
proposal for a resolution”. It is done by taking as input the knowledge of the Submit-
ter about the proposal and producing as output the date of the proposal in the Chair,
and the proposal in the Chair and in the Observer. Notice that as shown in Figure 1,
these roles will be mapped onto agents in the phase devoted to build the structural
organization.

In addition, many authors recommend the use of goal-oriented requirement appro-
aches for this kind of systems. Goal-oriented requirements techniques analyse system
goals producing a hierarchical diagram where each system goal is related with the sys-
tem goals that decompose it [1,8,9,17,27]. Since agents are designed to fulfill goals,
and organizations are designed to fulfill those goals that are sufficiently complex for
requiring more than one agent to be satisfied, this information is also used to deter-
mine decomposition of the acquaintance organization into sub-organizations by some
methodologies, for example, MASE, GAIA and MaCMAS.

In Figure 3, we show the hierarchical goal diagram of our case study using TRO-
POS. As can be observed, the general system goal of our case study is Keep Peace and
Security. It shows also that to fulfill this goal the diagram we have to fulfill two finer
grain system goals since they are related using an AND decomposition: the system goal
Issue Resolutions and Change Chair. Notice that also OR relationships are allowed.

Keep Peace
and Security

Keep Peace
and Security

Change
Chair

Proposal
Submittion

Carry
Vote out

Accept/
Reject

Proposal

Withdraw
Proposal

Set Date

Fig. 4. Example of Feature Model

4 Software Product Lines (SPL)

The software process of SPLs approaches is usually divided in two main stages: Domain
Engineering and Application Engineering. The former is in charge of providing the
reusable core assets that are exploited during application engineering when assembling
or customizing individual applications [12].

Domain engineering and application engineering phases are usually further divided
into analysis, design, and implementation. From all these phases, we only detail those
that can be applied in AOSE.

The analysis phase of domain engineering is applied to analyse the problem domain
of a family of applications. It main purpose is identifying the common set of features
that can be reused across all the applications that can be built under the domain at hand.
Following, we show the most relevant stages for our purpose:

Domain scoping is devoted to describe the boundaries of the domain, which is crucial
to determine the scope and needs of the product family. Another important stage is
the Commonality analysis. It specifies the commonalities and points of variation in
the domain that represents the first step towards a description of the family and the
differences that each product may present.

Domain modelling is dedicated to produce documents where common and variable
requirements are showed and the analysis models for these requirements. Thus, these
documents specify which set of requirements are valid and may produce a valid applica-
tion and which do not. One of the most accepted techniques to perform these documents
are feature models [7]. A feature is a characteristic of the system that is observable by
the end user [16].

Object
SPAIN

Object
IRLAND

Object
USA

…

Collaboration
Submit

Collaboration
Vote

Collaboration
Accept/Reject

Collaboration
Withdraw

Role
Submitter

Role
Chair

Role
Voter

Role
Chair

Role
Chair

Role
Submitter

Role
Chair

Role
Observer

Role
Observer

Role
Observer

Role
Observer

Object Classes

C
ol

la
bo

ra
tio

ns
 la

ye
rs

Fig. 5. Conceptual diagram of our case study using MIXIN layers

Feature models represent features hierarchically and its relationships. For example,
in FODA, features in the model can be mandatory, optional, or alternative. In figure 4,
we show an example of feature model representing our case study with some modifi-
cations. Filled circle indicate that the feature is mandatory, that is to say, if the parent
feature is present in the product, it must be also present in the product. White circles in-
dicates that feature is optional as it happens with the Change Chair feature. This means
that we can have a product where the chair is changed and another product where there
is no possibility of changing the chair. Although not showed in the example, we can also
have filled arc indicating that for the final products we must have at least one of the fea-
tures linked, and white arcs indicating that we can only have one of the features linked.

Finally, in the domain modelling stage, we can have also analysis models that show
the interface(s) required in the system for including each feature. As we discuss below.

The design phase of domain engineering is devoted to model the core architecture.
It consists in producing a core architecture by means of combinations of models that
represent features that are common. Many approaches have appeared in the literature.
From all of them, we are interested on those that are nearer to the AOSE field. In these
approaches, role models are used to represent the interfaces and interactions that com-
ponents of the system should provide to cover certain functionality (a feature in the
features model). Later, role models are composed to produce the core architecture, the
most representative are [13,25], but similar approaches has appeared in the OO field,
for example [10,23].

Figure 5 shows a conceptual diagram of our case study extracted from [13]. There,
authors show the mapping of domain models, collaborations, over the core architecture
needed to build a certain product using OO programming. In this paper, authors use col-
laborations to represent features of the system. Collaborations are interaction-centered
diagrams that show the interaction in a subsystem and the roles, sub-set of objects,

involved in these interactions. Later they propose to map them onto certain objects for
building a concrete product, as shown in the figure using our case study.

Finally, notice that we do not discuss on the implementation phase of domain engi-
neering since it does not correlate with agent implementations. We neither detail appli-
cation engineering due to AOSE methodologies are not prepared to produce a family of
MASs.

5 SPL/AOSE Correlation

The main points of correlation between both fields are three: (i) the correlation in the
phases; (ii) the correlation in models used at requirements; (iii) and the approach fol-
lowed to design a concrete MAS and to design a certain product. The main difference is
that AOSE does not manage in the requirement phase the existence of several products.
Following, we discuss first on similarities, to finish showing the main deficiencies of
AOSE to enable a MAS-PL approach.

The first similarity is probably the most significant. This can be found in the phases
of both approaches. On the one hand, the analysis phase of domain engineering in SPL
is dedicated to define an architectural independent document describing the features of
the system and the acquaintance analysis in AOSE is dedicated to define a set of ac-
quaintance sub-organizations independently from the structural organization. Thus, as
shown in previous sections, in both cases role models/collaborations are used to rep-
resent these independent models. However, SPL approaches finalize this phases imple-
menting a core architecture, while AOSE approaches do not implement these models.

The second similarity consists in that requirement documents used for this phase in
both fields present the same structure. Given that system goals in MASs are functional
requirement observable by the end user, system-goals represent the same concept than
features. Feature models, used in SPL, and goal-oriented requirement documents, used
in AOSE, are both hierarchical where each feature/system-goal is decomposed in lower
levels of the hierarchy indicating in both cases when they are mandatory, optional or
alternative. Notice only some AOSE methodologies allow having mandatory, alternative
or optional goals, but this feature is present in AOSE.

Third, the design phase of domain engineering in SPL is dedicated to produce the core
architecture for the family of products and structural analysis is also devoted to define
the structure of the organization of the MAS. In both field, role models/collaborations
are used for defining architecture/structure independent models, and in both fields this
process consists in composing models. If we concentrate on the SPL approaches that
represent features using role models/collaborations, and given that in AOSE this phase
consists in composing roles and the also use role models, both fields follows a quite
similar procedure and models.

However, there exist some important differences between both fields mainly moti-
vated by that AOSE is concentrated on developing a unique MAS and not a family of
them. While in SPL the features that are composed to build the core architecture are
those that are common for all products and composition is done guided by the com-
monality analysis, in AOSE roles are composed when they pursue similar goals or they
provide a similar functionality.

As can be observed, current AOSE approaches align with SPL in their phases and
models, but lacking from the artillery necessary to develop a general architecture instead
of a unique product, namely, commonality analysis and domain scoping.

6 Conclusions

In this paper, we have shown the similarities and differences between SPL and AOSE.
Given that AOSE methodologies follows a similar approach to SPL, where phases and
models are quite similar, we can conclude that they may be extended to enable the
development of MAS Product Lines (MAS-PL).

The main research lines that should be explored for enabling this kind of develop-
ments reside in: (i) adding commonality analysis and domain scoping to AOSE method-
ologies; and (ii); integrating the results of these activities to modify the process of
assigning roles to agents and thus building a structural organization able to produce
a family of MASs. In addition, the application engineering phase of SPL should also be
included in AOSE methodologies to establish the procedures needed to derive a MAS
from a MAS-PL.

References

1. P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Tropos: an agent-
oriented software development methodology. Journal of Autonomous agents and Multiagent
Systems, 8(3), 2004.

2. P. Burrafato and M. Cossentino. Designing a multi-agent solution for a bookstore with the
passi methodology. In Fourth International Bi-Conference Workshop on Agent-Oriented
Information Systems (AOIS-2002). CAiSE’02, Toronto, Ontario, May 2002.

3. G. Caire, F. Leal, P. Chainho, R. Evans, F. Garijo, J. Gomez, J. Pavon, P. Kearney, J. Stark,
and P. Massonet. Agent oriented analysis using MESSAGE/UML. In Proceedings of Agent-
Oriented Software Engineering (AOSE’01), pages 101–108, Montreal, 2001.

4. C. Castelfranchi. Founding agent’s “autonomy” on dependence theory. In 14th European
Conference on Artificial Intelligence, pages 353–357. IOSPress, 2000.

5. C. Castelfranchi, M. Miceli, and A. Cesta. Dependence relations among autonomous agents.
In In Y. Demazeau and E. Werner, editors, Third European Workshop on Modeling Au-
tonomous Agents in a Multi-Agent World. Decentralized AI 3. Elsevier, 1992.

6. P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. SEI Series in
Software Engineering. Addison–Wesley, August 2001.

7. K. Czarnecki and U Eisenecker. Generative Programming: Methods, Tools, and Applica-
tions. Addison–Wesley, 2000.

8. A. Dardenne, A. van Lamsweerde, and S.Fickas. Goal-directed requirements acquisition.
Science of Computer Programming, 20:3–50, 1993.

9. S. A. DeLoach, M. F. Wood, and C. H. Sparkman. Multiagent systems engineering. The
International Journal of Software Engineering and Knowledge Engineering, 11(3):231–258,
2001. World Scientific Publishing Company.

10. D.F. D’Souza and A.C. Wills. Objects, Components, and Frameworks with UML: The Catal-
ysis Approach. Addison–Wesley, Reading, Mass., 1999.

11. J. Ferber, O. Gutknecht, and F. Michel:. From agents to organizations: An organizational
view of multi-agent systems. In Paolo Giorgini, Jörg P. Müller, and James Odell, editors, IV
International Workshop on Agent-Oriented Software Engineering (AOSE’03), volume 2935
of LNCS, pages 214–230. Springer–Verlag, 2003.

12. M Harsu. A survey on domain engineering. Technical Report 31, Institute of Software
Systems, Tampere University of Technology, December 2002.

13. A. Jansen, R. Smedinga, J. Gurp, and J. Bosch. First class feature abstractions for product
derivation. IEE Proceedings - Software, 151(4):187–198, 2004.

14. N. Jennings. An agent-based approach for building complex software systems. Communica-
tions of the ACM, 44(4):35–41, 2001.

15. N. R. Jennings. Agent-Oriented Software Engineering. In Francisco J. Garijo and Magnus
Boman, editors, Proceedings of MAAMAW-99, volume 1647, pages 1–7. Springer-Verlag:
Heidelberg, Germany, 30– 2 1999.

16. K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-oriented domain analy-
sis (foda) feasibility study. Technical Report CMU/SEI-90-TR-021, Software Engineering
Institute, Carnegie-Mellon University, November 1990.

17. E. Kendall, U. Palanivelan, and S. Kalikivayi. Capturing and structuring goals: Analysis
patterns. In Proceedings of the 3rd European Conference on Pattern Languages of Program-
ming and Computing, Germany, July 1998.

18. E. A. Kendall. Role modeling for agent system analysis, design, and implementation. IEEE
Concurrency, 8(2):34–41, April/June 2000.

19. H. Mintzberg. The Structuring of Organizations. Prentice-Hall, 1978.
20. H. V.n D. Parunak, S. Brueckner, M. Fleischer, and J. Odell. A design taxonomy of multi-

agent interactions. In Paolo Giorgini, Jörg P. Müller, and James Odell, editors, IV Inter-
national Workshop on Agent-Oriented Software Engineering (AOSE’03), volume 2935 of
LNCS, pages 123–137. Springer–Verlag, 2003.

21. J. Pavón and J. Gómez-Sanz. Agent oriented software engineering with ingenias. In V. Marı́k,
J. Müller, and M. Pechoucek, editors, Multi-Agent Systems and Applications III, 3rd Interna-
tional Central and Eastern European Conference on Multi-Agent Systems, CEEMAS 2003,
Prague, Czech Republic, June 16-18, 2003, Proceedings, volume 2691 of Lecture Notes in
Computer Science, pages 394–403. Springer, 2003.

22. J. Pena. On Improving The Modelling Of Complex Acquaintance Organisations Of Agents.
A Method Fragment For The Analysis Phase. PhD thesis, University of Seville, 2005.

23. T. Reenskaug. Working with Objects: The OOram Software Engineering Method. Manning
Publications, 1996.

24. J. S. Sichman, Y. Demazeau, R. Conte, and C. Castelfranchi. A social reasoning mechanism
based on dependence networks. In Y. Demazeau and E. Werner, editors, 11th European
Conference on Artificial Intelligence, pages 416–420. John Wiley and Sons, 1994.

25. Y. Smaragdakis and D. Batory. Mixin layers: an object–oriented implementation tech-
nique for refinements and collaboration-based designs. ACM Trans. Softw. Eng. Methodol.,
11(2):215–255, 2002.

26. M. J. Wooldridge and N. R. Jennings. Intelligent Agents: Theory and Practice. Knowledge
Engineering Review, 10(2):115–152, June 1995.

27. F. Zambonelli, N. Jennings, and M. Wooldridge. Developing multiagent systems: the GAIA
methodology. ACM Transactions on Software Engineering and Methodology, to be published
2003/2004.

