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Abstract. In this work we analyze the behavior of the solutions to nonlocal evolution
equations of the form ut(x, t) =

∫
J(x− y)u(y, t) dy− hε(x)u(x, t) + f(x, u(x, t)) with x in a

perturbed domain Ωε ⊂ Ω which is thought as a fixed set Ω from where we remove a subset
Aε called the holes. We choose an appropriated families of functions hε ∈ L∞ in order to
deal with both Neumann and Dirichlet conditions in the holes setting a Dirichlet condition
outside Ω. Moreover, we take J as a non-singular kernel and f as a nonlocal nonlinearity.
Under the assumption that the characteristic functions of Ωε have a weak limit, we study
the limit of the solutions providing a nonlocal homogenized equation.

1. Introduction and main results

Let Ωε ⊂ RN be a family of open bounded sets satisfying Ωε ⊂ Ω for some fixed open
bounded domain Ω ⊂ RN and a positive parameter ε. Denoting χε ∈ L∞(RN ) by the
characteristic function of Ωε, we assume that there exists a function X ∈ L∞(RN ), strictly
positive inside Ω such that χε ⇀ X weakly∗ in L∞(Ω). More precisely, we suppose

(1.1)

∫
Ω
χε(x)ϕ(x) dx→

∫
Ω
X (x)ϕ(x) dx, as ε→ 0,

for all ϕ ∈ L1(Ω), and there exists a positive constant c > 0 such that

(1.2) X (x) ≥ c > 0 for all x ∈ Ω.

Notice that we also have X (x) ≤ 1 in Ω with X (x) ≡ 0 in RN \ Ω since the family of
characteristic functions χε satisfy the same conditions for all ε > 0.

Here, we see the family of open sets Ωε as a family of perforated domains where the set

Aε = Ω \ Ωε

can be thought as the holes inside Ω. Our main goal is to analyze the asymptotic behavior
of the solutions of a semilinear nonlocal evolution problem with nonlocal reaction and non-
singular kernel in perforated domains as ε→ 0.

We consider problems of the form

(1.3)
ut(x, t) =

∫
RN\Aε

J(x− y)u(y, t) dy − hε(x)u(x, t) + f(x, u(x, t)),

u(x, 0) = u0(x),
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for x ∈ Ωε and t in bounded intervals taking nonlinearities f : Ωε × L1(Ωε) 7→ R which are
nonlocal reaction terms defined by

f(x, u) = (g ◦mΩε)(x, u)

under the following conditions:

(Hf ) We assume g : R 7→ R is a smooth function, globally Lipschitz, and

mΩε : Ωε × L1(Ωε) 7→ R
is given by

mΩε(x, u) =
1

|Bδ(x) ∩ Ωε|

∫
Bδ(x)∩Ωε

u(y) dy

where Bδ(x) is the ball of radius δ > 0 centered at x ∈ Ωε.

Here, and along the whole paper, the function J is a smooth non-singular kernel satisfying

(HJ)

J ∈ C(RN ,R) is non-negative with J(0) > 0, J(−x) = J(x) for every x ∈ RN and∫
RN

J(x) dx = 1.

We consider both Dirichlet and Neumann nonlocal problems. For the Dirichlet case we
impose hε(x) ≡ 1 with u vanishing in RN \ Ωε while in the Neumann case we consider

hε(x) =

∫
RN\Aε

J(x− y) dy, x ∈ Ωε,

only assuming that u vanishes in RN \ Ω. Note that for the former we have considered
nonlocal Neumann boundary conditions in the holes Aε and a Dirichlet boundary condition
in the exterior of the set Ω.

It is not difficult to see that there are positive constants ε0 and C0 such that

(1.4) |Bδ(x) ∩ Ωε| =
∫
Bδ(x)∩Ωε

χε(y) dy ≥ C0

for all x ∈ Ω and 0 < ε < ε0. In particular, we have
∫
Bδ(x)X (y) dy ≥ C0 for all x ∈ Ω. Indeed,

inequality (1.4) follows from (1.1) and (1.2) since Ω ⊂ RN is a bounded open set.

See also that the map mΩε transforms (x, u) into mΩε(x, u), the average of function u in
a set given by the intersection between the ball Bδ(x) with the perforated domain Ωε setting
the nonlocal nonlinear effect in our model.

According to [18], equation (1.3) can be seen as a continuous model for a single species
in a finite N -dimensional habitat where the density of the population at position x and
time t is given by a function u(x, t). Hostile surroundings are modeled by the Dirichlet
conditions whereas the Neumann condition is the standard approach to modeling species in
geographically isolated regions. The nonlocal effect under reaction terms is discussed for
instance in [13]. It is used to model situations where the total biomass plays a role and the
model incorporates group defense or visual communications. See also [9, 14, 20].

In fact, there exists a big interest in the study of nonlocal diffusion equations to model
different problems from different areas. We still mention [1, 2, 10, 12, 21, 22] and references
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therein where population dynamical processes and chemical reaction-diffusion models are
treated. In [15], an economic model to fluctuation of stock market is presented.

The paper is organized as follows: in Section 2, we introduce the main results of the paper
discussing the classic situation known as periodic perforated domains. In Section 3, we study
existence and uniqueness of the solutions to (1.3) obtaining uniform estimates on parameters
ε and δ > 0. The proofs of our main results Theorem 2.1 and Theorem 2.2 are given in
Section 4.

In Section 5, we discuss the asymptotic behavior of the limit equations, when parameter
δ goes to zero obtaining a nonlocal problem with local nonlinearity. In this way, we give
a scenario taking first ε → 0, and next δ → 0. In a forthcoming paper, we will study the
reversed limit. As noticed in [25, 27], a double limit commuting it is not expected.

Finally, we emphasize that the results obtained here are also in agreement with the previous
works [26, 27, 28] where nonlocal linear equations have been considered. Therefore, this work
is a natural continuation for nonlocal and nonlinear equations in perforated domains.

2. Main results

We have the following result for the Dirichlet problem:

Theorem 2.1. Let {uε}ε>0 be the family of solutions given by problem (1.3) under conditions

(2.5)

uε(x, t) ≡ 0 for all x ∈ RN \ Ωε and t > 0

uε(x, 0) = u0(x) in L2(Ω)

and

hε(x) ≡ 1 in RN .

Then, there exists u∗ : R×RN 7→ R with u∗(x, t) ≡ 0 in RN \Ω and u∗ ∈ C1([a, b], L2(RN ))
for any closed interval [a, b] ⊂ R, such that, as ε→ 0,

uε ⇀ u∗ weakly∗ in L∞([a, b];L2(Ω)).

Furthermore, we have that limit function u∗ satisfies the following nonlocal equation in Ω

ut(x, t) = X (x)

∫
RN

J(x− y) (u(y, t)− u(x, t)) dy

+X (x) fX (x, u(x, t)) + (X (x)− 1)u(x, t)

with

u(x, t) ≡ 0 in x ∈ RN \ Ω and t > 0

u(x, 0) = X (x)u0(x)

where

(2.8) fX (x, u) = (g ◦mX )(x, u)
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and

(2.9) mX (x, u) =
1∫

Bδ(x)X (y) dy

∫
Bδ(x)

u(y) dy.

Concerning to Neumann conditions on the holes Aε we have:

Theorem 2.2. Let {uε}ε>0 be the family of solutions given by (1.3) with

(2.10)

uε(x, t) ≡ 0 for all x ∈ RN \ Ω and t > 0

uε(x, 0) = u0(x) in L2(Ω)

and

hε(x) =

∫
RN\Aε

J(x− y) dy for x ∈ RN .

Then, there exists u∗ : R×RN 7→ R with u∗(x, t) ≡ 0 in RN \Ω and u∗ ∈ C1([a, b], L2(RN ))
for any closed interval [a, b] ⊂ R, such that, as ε→ 0,

ũε ⇀ u∗ weakly∗ in L∞([a, b];L2(Ω))

where ·̃ denotes the extension by zero of functions defined on subsets of RN .

Furthermore, we have the limit function u∗ satisfies the following nonlocal equation in Ω

(2.11)
ut(x, t) = X (x)

∫
RN

J(x− y) (u(y, t)− u(x, t)) dy

+X (x) fX (x, u(x, t))− Λ(x)u(x, t)

with

u(x, t) ≡ 0 for x ∈ RN \ Ω and t > 0

u(0, x) = X (x)u0(x)

where the coefficient Λ ∈ L∞(RN ) is given by

Λ(x) =

∫
RN

J(x− y) (1− χΩ(y) + X (y)) dy −X (x)

and fX = g ◦mX with mX defined by (2.9).

We point out the dependence of both limit equations on the term X . They establish the
effect of the holes in the original equation (1.3). Indeed, a kind of friction or drag coefficient
is obtained, as well as, a new reaction nonlinearity, both caused by the perforations. Also, if
we rewrite the more involved term Λ appearing in Theorem 2.2 as

Λ(x) =

∫
RN\Ω

J(x− y) dy +

∫
RN

J(x− y) (X (y)−X (x)) dy, x ∈ Ω,

we see that the kernel J explicitly affects the limit equation for the Neumann problem. As
we can see, such dependence on the kernel J does not occur in the Dirichlet problem where
the coefficient only depends on the perturbations via X .
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Concerning to the extreme case X (x) ≡ 1 in Ω, we can argue as in [28, Corollary 3.1] to see
that, if X (x) ≡ 1 in Ω, then the limit equation for both conditions is the nonlocal Dirichlet
problem in Ω, namely

ut(t, x) =

∫
RN

J(x− y)(u(t, y)− u(t, x))dy + f̂(x, u(x, t)),

u(0, x) = u0(x),

x ∈ Ω, t ∈ R,

with u(t, x) ≡ 0 in x ∈ RN \ Ω and f̂ : Ω× L1(RN ) 7→ R defined by

f̂(x, u) = (g ◦mBδ)(x, u)

where mBδ is the average of u on the ball Bδ(x)

(2.12) mBδ(x, u) =
1

|Bδ(x)|

∫
Bδ(x)

u(y) dy.

Hence, we can say that small holes do not make any effect on the limit process.

Finally, we notice the degenerated case X (x) ≡ 0 in RN is not considered here, since we
work under condition (1.2). It is a subject of a forthcoming paper.

See that the solutions of the limit problems given by Theorems 2.1 and 2.2 depend on the
parameter δ > 0 which sets the average function mX defined at (2.9). Here, we also analyse
the asymptotic behavior of these equations as δ → 0 under the additional conditions J , X
and u0 of class C1 and g of class C2. It is necessary to guarantee strong convergence in L2(Ω)
since we do not have regularizing effect for these nonlocal equations.

Theorem 2.3. Let {uδ}δ>0 be the family of solutions given by

(2.13)

uδt (x, t) = X (x)

∫
RN

J(x− y)uδ(y, t) dy − h0(x)uδ(x, t) + X (x) fX (x, uδ(x, t)),

uδ(x, t) ≡ 0 for x ∈ RN \ Ω

uδ(0, x) = X (x)u0(x)

under conditions J , X and u0 of class C1, g of class C2,

(2.14)

uδ(x, t) ≡ 0 for all x ∈ RN \ Ω and t > 0

uδ(x, 0) = X (x)u0(x) in L2(Ω)

with

h0(x) ≡ 1 in RN for the Dirichlet problem

and

h0(x) =

∫
RN

J(x− y)(1− χΩ(y) + X (y)) dy for the Neumann problem.

Then, there exists ū : R × RN 7→ R with ū(x, t) ≡ 0 in RN \ Ω and ū ∈ C1([a, b], L2(RN ))
for any closed interval [a, b] ⊂ R, such that,

uδ ⇀ ū weakly∗ in L∞([a, b];L2(Ω)) as δ → 0.
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Furthermore, we have the limit function ū satisfies the following nonlocal equation in Ω

ut(x, t) = X (x)

∫
RN

J(x− y)u(y, t)dy − h0(x)u(x, t) + X (x) g

(
1

X (x)
u(x, t)

)
with u(x, t) ≡ 0 in x ∈ RN \ Ω and u(x, 0) = X (x)u0(x).

As expected, a local reaction term is obtained at the limit. The effect of the perforations
can be seen, and a nontrivial term is captured. As in the previous results, under small
perforations, that is, assuming X (x) ≡ 1 in Ω, a nonlocal Dirichlet equations in Ω is obtained
for both Dirichlet and Neumann problems with a local reaction just set by function g. Under
this additional condition Theorem 2.3 implies the following limit equation

ut(t, x) =

∫
RN

J(x− y)(u(t, y)− u(t, x))dy + g(u(x, t)),

u(0, x) = u0(x),

x ∈ Ω, t ∈ R,

with u(t, x) ≡ 0 in x ∈ RN \ Ω.

Purely periodic perforations. The study of solutions in periodic perforated domains has
attracted much interest. For local operators, from pioneering works to recent ones, we may
mention [3, 4, 5, 6, 7, 16, 23, 29, 32] and references therein that are concerned with elliptic
and parabolic equations, nonlinear operators, as well as Stokes and Navier-Stokes equations
from fluid mechanics. For instance, in the classical paper [8], the authors analyze the Dirichlet
problem for the Laplacian in a bounded domain from where a big number of periodic small
balls are removed. They consider

Ωε = Ω \ ∪iBrε(xi)

where Brε(xi) is a ball centered in xi ∈ Ω of the form xi ∈ 2εZN with radius 0 < rε < ε ≤ 1.
Figure 1 bellow ilustrates a periodic perforated domain Ωε.

Ωϵ

Figure 1. A periodic perforated domain Ωε = (0, 1)2 \ ∪Brε(xi).

In this periodic case, it is known, see for instance [27, Section 4], that

χε ⇀ X = |Q \B|/|Q| as ε→ 0
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where here, Q denotes the unit cube and B is a ball inside the cube. See that X is a positive
constant. Thus, due to Theorems 2.1 and 2.2, we have that the homogenized equations
associated to (1.3) under Dirichlet and Neumann conditions are respectively:

ρut(x, t) =

∫
RN

J(x− y) (u(y, t)− u(x, t)) dy + (1− ρ)u(x, t) + g (ρmBδ(x, u(·, t)))

and

ρut(x, t) =

∫
RN

J(x− y) (u(y, t)− u(x, t)) dy

−
∫
RN\Ω

J(x− y)dy + g (ρmBδ(x, u(·, t)))

for x ∈ Ω, t ∈ R with u(x, t) ≡ 0 in RN \ Ω where

ρ = X−1 = |Q|/|Q \B|

is a strictly positive constant larger than one since |B| > 0 and mBδ is the average (2.12).

Notice that even in this classic and standard situation, the nonlinear term of (1.3) is
perturbed in a non trivial way. Indeed, we have fX (·, u) = g(ρmBδ(·, u)). It is due to the
fact that the integral operators considered here do not regularize, and hence solutions uε with
initial conditions in L2 are expected to be bounded in L2 but nothing better.

We can still assume appropriated conditions on J , X and u0 to use Theorem 2.3 and pass
to the limit in the previous equations as δ → 0 obtaining a local reaction term, also depending
on ρ and given by

g(ρ u(·, t)).

3. Existence and uniform boundedness

In this section, we mainly prove existence and uniqueness of the solutions to problem (1.3)
giving uniform bounds with respect to parameters ε and δ > 0. We also introduce a technical
result concerning to the convergence of integral expressions under sequence of functions.

Let us consider here B = RN \ Aε and u(x) ≡ 0 in x ∈ RN \ Ω for the Neumann problem
and B = RN and u(x) ≡ 0 in x ∈ RN \ Ωε for the Dirichlet problem. Since we are assuming
J ∈ C(RN ,R), we have that the operator

(3.16) Ku(x) =

∫
B
J(x− y)u(y)dy.

satisfies K : L2(Ω)→ L2(Ω). On the other hand, it follows from (1.4) that

aε(x) =
1

|Bδ(x) ∩ Ωε|

is uniformly bounded in ε. Indeed, aε ∈ L∞(Ω) and satisfies

(3.17) 0 ≤ aε(x) ≤ 1

C0
, ∀x∈Ω and ε ∈ (0, ε0).
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We are first interested in the Nemitcky operator associated to f , given by

F : L2(Ωε)→ L2(Ωε) with F (u)(x) = f(x, u) = g(mΩε(x, u)).

To study the properties of F , we first see Mu(x) = mΩε(x, u). In the following lemma we
state that the Nemitcky operator M associated to mΩε is continuous, globally Lipschitz and
compact. For a proof, see [19].

Lemma 3.1. Let (Ω, µ, d) be a metric measure space with µ(Ω) <∞, and set the operator

M(u)(x) = aε(x)

∫
Bδ(x)∩Ωε

u(y)dy.

Since the function aε ∈ L∞(Ω) satisfies (3.17), we have that M ∈ L(L1(Ω), L∞(Ω)) with
M : L2(Ω)→ L2(Ω) being a compact operator.

Remark 3.1. In particular, if the nonlinear function g : R → R is globally Lipschitz, then
the Nemitcky operator associated to g and set by G : L2(Ω)→ L2(Ω) is also globally Lipschitz.
Hence, since M is a bounded operator by Lemma 3.1, we get F = G ◦M : L2(Ω) → L2(Ω)
globally Lipschitz. Then, there exists a constant C > 0, independent of ε > 0 such that

‖F (u)− F (v)‖L2(Ω) ≤ C‖u− v‖L2(Ω).

In the following Proposition, we prove the existence and uniqueness of the solutions to (1.3)
and we give a uniform bound of uε with respect to ε > 0.

Proposition 3.1. The problem (1.3), under the assumptions

uε(x, t) ≡ 0 for all x ∈ RN \ Ω and t > 0 and

hε(x) =

∫
RN\Aε

J(x− y) dy for x ∈ RN ,

for the Neumann problem, or

uε(x, t) ≡ 0 for all x ∈ RN \ Ωε and t > 0 and

hε(x) ≡ 1 in RN ,
for the Dirichlet problem, has a unique global solution uε : Ω× R→ R with

uε ∈ C1([a, b], L2(Ωε))

for every u0 ∈ L2(Ω) and any bounded interval [a, b] ⊂ R, with

(3.18) uε(·, t) = e−hε(x)tu0 +

∫ t

0
e−hε(x)(t−s)[Ku+ F (uε)](·, s) ds ∀t ∈ R.

Moreover, there exists constants α and D, with D > 0, independent of ε and t, such that

(3.19) ‖uε(·, t)‖L2(Ωε) ≤ eαt
[
‖u0‖L2(Ω) +Dt

]
.

Proof. The existence and uniqueness result is proved using a fixed point argument with the
variations of constants formula on the right of (3.18) in C([−T, T ], L2(Ω)) for some T > 0
independent of the initial data, and with a prolongation argument. Considering the formula
on the right of (3.18) as an operator defined from L1([−T, T ], L2(Ω)) into C([−T, T ], L2(Ω)),
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we have the uniqueness in both spaces and applying Theorem in [24, p. 109] we obtain that
u is a strong solution of (1.3) in C1([−T, T ], L2(Ω)).

To prove the uniform bound, we consider B = RN \ Aε for the Neumann problem and
B = RN for the Dirichlet problem.

d

dt

1

2
‖uε(·, t)‖2L2(Ωε) =

d

dt

1

2

∫
B

(uε(x, t))2dx =

∫
B
uε(x, t)uεt (x, t)dx

=

∫
B
uε(x, t)

[∫
B
J(x− y)uε(y, t) dy − hε(x)uε(x, t) + f(x, uε(x, t))

]
dx

= −1

2

∫
B

∫
B
J(x− y)(uε(y, t)− uε(x, t))2 dy dx+

∫
B
uε(x, t)f(x, uε(x, t)) dx

Considering

λε1 = inf
u∈W

1

2

∫
B

∫
B
J(x− y)(uε(y, t)− uε(x, t))2 dy dx∫

B
(uε(x, t))2 dx

where W = {u ∈ L2(RN \Aε) : u(x) ≡ 0 ∀x ∈ RN \ Ω} for the Neumann problem, and
W = {u ∈ L2(RN ) : u(x) ≡ 0 ∀x ∈ RN \ Ωε} for the Dirichlet problem. Thanks to Young’s
inequality and Remark 3.1, since g is globally Lipschitz, we have that

d

dt

1

2
‖uε(·, t)‖2L2(Ωε) ≤ (η2 − λε1)

∫
B

(uε(x, t))2 dx+ η−2‖f(·, uε(·, t))‖2L2(B)

≤ (η2 − λε1 + η−2C)‖uε(·, t)‖2L2(Ωε) + |Ω||g(0)|

for any η > 0. Therefore integrating in [0, t], we conclude

‖uε(·, t)‖L2(Ωε) ≤ e2(η2−λε1+η−2C)t
[
‖u0‖L2(Ω) + |Ω||g(0)|t

]
finishing the proof. �

Remark 3.2. The term λε1 is the first eigenvalue of∫
B
J(x− y)uε(y)dy − hε(x)uε(x)− λε1uε(x) = 0.

From [27], we know that the family λε1 is lower bounded for both the Dirichlet and Neumann
problems. For the Neumann problem, it is obtained under the additional condition:

There exists finite family of sets B0, B1, . . . , BL ⊂ RN \Aε
such that B0 = RN \ Ω,

RN \Aε ⊂
L⋃
i=0

Bi and αj =
1

4
min
x∈Bj

∫
BJ−1

J(x− y)dy > 0.

Now let us study the uniform boundness with respect to δ of the solutions of the limit
problems introduced by Theorems 2.1 and 2.2.

Proposition 3.2. Let K ∈ L(L2(Ω), L2(Ω)) as in (3.16), g : R → R globally Lipchitz and
consider the map FX : L2(Ω) 7→ L2(Ω) set by FX (u)(x) = fX (x, u(x, t)) = g(mX (x, u)) where
the functions fX and mX are given by (2.8) and (2.9).
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Then FX is globally Lipschitz, and the problem (2.13) has a unique global solution uδ :
Ω× R→ R with

uδ ∈ C1([a, b], L2(Ω))

for every u0 ∈ L2(Ω), and any bounded interval [a, b] ⊂ R, with

(3.20)

uδ(x, t) = e−h0(x)tX (x)u0(x) +

∫ t

0
e−h0(x)(t−s)X (x) fX (x, uδ(x, s)) ds

+

∫ t

0
e−h0(x)(t−s)X (x)

∫
RN

J(x− y)uδ(y, s) dy ds.

Moreover, there exist constants α and D, with D > 0, independent of δ and t, such that

(3.21) ‖uδ(·, t)‖L2(Ω) ≤ eαt
[
‖u0‖L2(Ω) +Dt

]
.

Proof. Analogously to Proposition 3.1, one can prove existence and uniqueness by fixed point
arguments with variations of constants formula on the right of (3.20) in C([−T, T ], L2(Ω)) for
any T > 0 with a prolongation argument.

To prove the boundness, we consider the problem re-scaling t with t = X−1(x) τ and setting

wδ(x, τ) = uδ(x,X (x)−1τ).

We have that wδ satisfies the equation

wδt (x, t) =

∫
RN

J(x− y)wδ(y, t)dy − h0(x)

X (x)
wδ(x, t) + fX (x,wδ(x, t)) x ∈ Ω

wδ(x, t) ≡ 0 x ∈ RN \ Ω

with h0(·)
X (·) ∈ L

∞(Ω). Let us prove the uniform bound for wδ.

d

dt

1

2
‖wδ(·, t)‖2L2(Ω) =

d

dt

1

2

∫
Ω

(wδ(x, t))2dx =

∫
Ω
wδ(x, t)wδt (x, t)dx

=

∫
Ω
wδ(x, t)

[∫
Ω
J(x− y)wδ(y, t) dy − h0(x)

X (x)
wδ(x, t) + fX (x,wδ(x, t))

]
dx

= −1

2

∫
Ω

∫
Ω
J(x− y)(wδ(y, t)−wδ(x, t))2 dy dx

+

∫
Ω
wδ(x, t)

(
fX (x,wδ(x, t))+

(̃
h(x)−h0(x)

X (x)

)
wδ(x, t)

)
dx

where h̃(·) =
∫

Ω J(· − y)dy ∈ L∞(Ω). Take

(3.22) λ1 = inf
w∈W

1

2

∫
Ω

∫
Ω
J(x− y)(w(y, t)− w(x, t))2 dy dx∫

Ω
(w(x, t))2 dx
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where W = {w ∈ L2(Ω) : w(x) ≡ 0 ∀x ∈ RN \ Ω}. Thanks to Young’s inequality and since g
is globally Lipschitz, we have that

d

dt

1

2
‖wδ(·, t)‖2L2(Ω)

≤(η2−λ1)

∫
Ω
(wε(x, t))2dx+η−2

∥∥∥∥fX (·, wδ(·, t))+

(̃
h(·)−h0(·)

X (·)

)
wδ(·, t)

∥∥∥∥2

L2(Ω)

≤(η2 − λ1 + η−2C)‖wδ(·, t)‖2L2(Ω) + |Ω||g(0)|.

Therefore integrating in [0, t], we conclude

‖wδ(·, t)‖L2(Ωε) ≤ e2(η2−λδ1+η−2C)t
[
‖Xu0‖L2(Ω) + |Ω||g(0)|t

]
finishing the proof. �

Remark 3.3. The term λ1 introduced in (3.22) is known as the first eigenvalue of∫
Ω
J(x− y)(u(y)− u(x)) dy − λ1u(x) = 0.

See [2] for more details.

Remark 3.4. Notice that the results of existence and uniqueness stated in Propositions 3.1
and 3.2 are also valid for the problem

(3.23)
ωt(x, t) =

∫
RN

J(x− y)(ω(y, t)− ω(x, t))dy − h0(x)ω(x, t) + fX (x, ω(x, t)) x ∈ Ω

ω(x, t) ≡ 0 x ∈ RN \ Ω

for any h0 ∈ L∞(Ω) and fX given as in Theorems 2.1 and 2.2.

Corollary 3.1. Let us assume under hypotheses of Proposition 3.2 the additional conditions:
J , X and u0 of class C1 and g of class C2 in RN . Then the family of solutions uδ(·, t) of the
problem (2.13) given by (3.20) belongs to L2([a, b], H1(Ω)) and satisfies

(3.24) ‖uδ(·, t)‖H1(Ω) ≤ Ceαt‖u0‖H1(Ω) ∀t ∈ [a, b],

for constants α and D, with D > 0, independent of δ and t.

Proof. First we notice that under the additional conditions the function uδ(·, t) defined by
(3.20) belongs to H1(Ω). In fact, since J is a function of class C1, we have that h0 is also C1.

Consequently, we get e−h0tX u0 and
∫ t

0 e
−h0(t−s)X

∫
RN J(· − y)uδ(y, s) dy ds in H1(Ω) for all

t since X and u0 are also of class C1. It remains to show that

Φt(x) =

∫ t

0
e−h0(x)(t−s)X (x) fX (x, uδ(x, s)) ds, x ∈ Ω,

belongs to H1(Ω) to conclude that uδ(·, t) ∈ H1(Ω) for all t ∈ R. Indeed, we have that Φt ∈
H1(Ω) if and only if fX (·, uδ(·, t)) ∈ H1(Ω), which is in H1(Ω) if and only if, mX (·, uδ(·, t)) ∈
H1(Ω) since g is a Lipschitz function. Then, let us see that mX (·, uδ(·, t)) ∈ H1(Ω). But, we
notice that, this is a direct consequence from [31, Lebesgue-Radon-Nikodym Theorem]. Since

mX (x, uδ) =
1∫

Bδ(x)X (y) dy

∫
Bδ(x)

uδ(y) dy,
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with uδ ∈ L2(RN ) and X ∈ L∞(RN ) satisfying X (x) ≥ c > 0 for all x ∈ Ω, we have that
mX (·, uδ(·, t)) is an absolute continuous function, and then, it belongs to H1(Ω).

Next, let us see which is the expression of the partial derivative uδxi taking into account

that uδ is given by (3.20). By (6.35) in the appendix, and performing the appropriate com-
putations, we get

uδxi(x, t) = −∂h0

∂xi
(x)te−h0(x)tX (x)u0(x) +

∂X
∂xi

(x)e−h0(x)t u0(x) +
∂u0

∂xi
(x)e−h0(x)tX (x)

+

∫ t

0

(
−∂h0

∂xi
(x)(t− s)X (x) +

∂X
∂xi

(x)

)
e−h0(x)(t−s)

(
fX (x, uδ(x, s)) +

∫
RN
J(x− y)uδ(y, s)dy

)
ds

+

∫ t

0
e−h0(x)(t−s)X (x)

∫
RN

∂J

∂xi
(x− y)uδ(y, s)dy ds

+

∫ t

0
e−h0(x)(t−s)X (x)g′(mX (x, uδ(x, s))

− ∫Bδ(x)
∂X
∂xi

(y)dy(∫
Bδ(x)X (y)dy

)2

∫
Bδ(x)

uδ(y, s)dy

 ds

+

∫ t

0
e−h0(x)(t−s)X (x)g′(mX (x, uδ(x, s))

(
1∫

Bδ(x)X (y)dy

∫
Bδ(x)

∂uδ

∂xi
(y, s)dy

)
ds.

Now, considering L2(Ω) norm on the previous expression, since h0, X , 1
X and h0

X ∈W
1,∞(Ω),

X and u satisfy (1.2) and (3.21) respectively, with Ω ⊂ RN bounded, we obtain from Hölder
inequality and Hardy-Littlewood maximal inequality that

‖uδxi(·, t)‖L2(Ω) ≤

(∥∥∥∥∂h0

∂xi

∥∥∥∥
L∞(Ω)

‖X‖L∞(Ω)t+

∥∥∥∥∂X∂xi
∥∥∥∥
L∞(Ω)

+ ‖X‖L∞(Ω)

)
‖u0‖H1(Ω)e

α̃t

+

∫ t

0

(∥∥∥∥∂h0

∂xi

∥∥∥∥
L∞(Ω)

‖X‖L∞(Ω)(t− s) +

∥∥∥∥∂X∂xi
∥∥∥∥
L∞(Ω)

)
eα̃(t−s)((Lg + 1)eαs(‖u0‖L2(Ω) +Ds)

)
ds

+

∫ t

0
eα̃(t−s)‖X‖L∞(Ω)

∥∥∥∥ ∂J∂xi
∥∥∥∥
L2(Ω)

eαs
(
‖u0‖L2(Ω) +Ds

)
ds

+

∫ t

0
eα̃(t−s)‖X‖L∞(Ω)

(
Lg′e

αs(‖u0‖L2 +Ds) + |g′(0)||Ω|1/2
)(C2,N

c2

∥∥∥∥∂X∂xi
∥∥∥∥
L∞(Ω)

(‖uδ(·, s)‖L2(Ω)

)
ds

+

∫ t

0
eα̃(t−s)‖X‖L∞(Ω)

(
Lg′e

αs(‖u0‖L2 +Ds) + |g′(0)||Ω|1/2
)(C2,N

c
‖uδxi(·, s)‖L2(Ω)

)
ds,

since ‖eh0(x)t‖L∞ ≤ eα̃t for some constant α̃, |
∫

Ω J(x− y)u(y)dy| ≤ ‖J‖Lp′‖u‖Lp in RN , and

‖g′(mX (·, uδ(·, s))‖L2 ≤ Lg′‖uδ(·, s)‖L2 + |g′(0)||Ω|1/2

≤ Lg′eαs(‖u0‖L2 +Ds) + |g′(0)||Ω|1/2.
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Then, for any T > 0, we have

‖uδxi(·, t)‖L2(Ω) ≤ C1(h0,X , J, g, T,D,Ω)‖u0‖H1(Ω)

+C2(h0,X , u0, g,D,Ω, N, 2, c)

∫ t

0
‖uδxi(·, s)‖L2(Ω)ds, ∀t ∈ [0, T ].

Thanks to Grönwall’s inequality, we obtain

‖uδxi(·, t)‖L2(Ω) ≤ C1(h0,X , J, g, b,D,Ω)‖u0‖H1(Ω)e
C2(h0,X ,u0,g,D,Ω,N,2,c)t.

Thus, we can conclude the proof. �

Finally, we would like to present a basic fact that will be need in the sequel. The proof
may be seen in [28].

Proposition 3.3. Let ϕε be a sequence in Lp(RN ) with 1 < p ≤ ∞ which vanishes in RN \Ω.
Suppose that, as ε→ 0,

ϕε ⇀ ϕ weakly in Lp(Ω), as 1 < p <∞,
or ϕε ⇀ ϕ weakly∗ in L∞(Ω), as p =∞,

for some ϕ in Lp(RN ) also satisfying ϕ(x) ≡ 0 in RN \Ω. Then, if J holds hypothesis (HJ),

Φε(x) =

∫
RN

J(x− y)ϕε(y) dy → Φ0(x) =

∫
RN

J(x− y)ϕ(y) dy, as ε→ 0,

strongly in Lp(O) for any compact set O ⊂ RN .

4. The limit equations

In this section we prove Theorems 2.1 and 2.2.

First we notice that the existence of the family of solutions uε of (1.3) under conditions
(2.14) and (2.10) are guaranteed by Proposition 3.1. Also, there exists a positive constant C,
independent of ε > 0, such that, for any bounded interval [a, b] ⊂ R,

sup
t∈[a,b]

‖uε(·, t)‖L2(Ωε) ≤ C.

Hence, if ·̃ denotes the extension by zero to the whole space RN , we also get that

(4.25) sup
t∈[a,b]

‖ũε(·, t)‖L2(Ω) ≤ C,

and then, ũε sets a uniformly bounded family in L∞
(
[a, b];L2(Ω)

)
.

Moreover, if χε is the characteristic function of Ωε, then ũε(x) = χε(x)uε(x). Notice that
in the Dirichlet case we have ũε = uε by condition (2.14). We keep the notation just to
simplify the proof.

Also, since L1
(
[a, b];L2(Ω)

)
is separable, we can extract a subsequence, still denoted by

ũε, such that

(4.26) ũε ⇀ u∗ weakly∗ in L∞([a, b];L2(Ω)),
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for some u∗ ∈ L∞
(
[a, b];L2(Ω)

)
. Notice that u∗(x, t) ≡ 0 in RN \ Ω.

Proof of Theorems 2.1 and 2.2. From now on, we assume, without loss of generality, that
[a, b] = [0, T ] for some T > 0. We pass to the limit in the variational formulation of the
expression (3.18). That is, for any ϕ ∈ L2(Ω), we pass to the limit in the following form

(4.27)

∫
Ω
ϕ(x) ũε(x, t) dx =

∫
Ω
ϕ(x) e−hε(x)t χε(x)u0(x) dx

+

∫
Ω
ϕ(x)χε(x)

∫ t

0
e−hε(x)(t−s) f(x, ũε(x, s)) dsdx

+

∫
Ω
ϕ(x)χε(x)

∫ t

0
e−hε(x)(t−s)

∫
RN

J(x− y) ũε(y, s) dydsdx

= Iε1 + Iε2 + Iε3 .

Since condition (2.10) is much more involved, we will just present the proof under this
assumption. The Dirichlet problem is simpler. First, we evaluate Iε1 . Due to (2.10), we have
for any x ∈ RN that

hε(x) =

∫
RN\Aε

J(x− y) dy =

∫
RN

J(x− y) (1− χΩ(y) + χε(y)) dy

where χΩ is the characteristic functions of the open bounded set Ω. Then, from assumption
(1.1), it follows from Proposition 3.3 that

hε → h0 strongly in L∞(Ω)

where h0 ∈ L∞(RN ) is given by

h0(x) =

∫
RN

J(x− y) (1− χΩ(y) + X (y)) dy.

Consequently, we obtain that

(4.28) ehε(x)t → eh0(x)t uniformly in (x, t) ∈ [0, T ]× Ω,

and then, Iε1 =
∫

Ω ϕ(x) e−hε(x)t χε(x)u0(x) dx satisfies

Iε1 →
∫

Ω
ϕ(x) e−h0(x)tX (x)u0(x) dx.

Notice that for the Dirichlet condition (2.14), we have hε(x) ≡ 1, and then, we get

Iε1 →
∫

Ω
ϕ(x) e−tX (x)u0(x) dx.

Next, let us pass to the limit in Iε3 as ε→ 0 under (2.10). Recall that

Iε3 =

∫
Ω
ϕ(x)χε(x)

∫ t

0
e−hε(x)(t−s)

∫
RN

J(x− y) ũε(y, s) dydsdx.

In order to do that, let us consider

Sε(x, t) =

∫ t

0
e−hε(x)(t−s)

∫
RN

J(x− y)ũε(y, s)dyds
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defined for any (x, t) ∈ R × Ω. Since the sequences ũε and e−hε(x)t satisfy (4.26) and (4.28)
respectively, we get from Proposition 3.3 that

Sε(x, t)→ S0(x, t) =

∫ t

0
e−h0(x)(t−s)

∫
RN

J(x− y)u∗(y, s)dyds

for any (x, t) ∈ R× Ω. Furthermore, for all t ∈ [0, T ], we have from (4.25) that

|Sε(x, t)| ≤
∫ t

0
‖J(x− ·)‖L2(Ω)‖uε(s, ·)‖L2(Ω) ds ≤ T K ‖J‖L∞(RN )|Ω|1/2.

Thus, it follows from Convergence Dominated Theorem that

(4.29) Sε(·, t) ⇀ S0(·, t) weakly in L2(Ω)

for each t ∈ [0, T ]. In fact, we have that

(4.30) Sε(·, t)→ S0(·, t) strongly in L2(Ω)

since

|Sε(x, t)|2 ≤ T 2K2|Ω|‖J‖2L∞(RN ),

and then, due to Convergence Dominated Theorem again, we have

(4.31) ‖Sε(·, t)‖L2(Ω) → ‖S0(·, t)‖L2(Ω)

for all t ∈ [0, T ]. The strong convergence (4.30) follows from (4.29) and (4.31) since we are
working in the Hilbert space L2(Ω).

Therefore, we can compute Iε3 for each ϕ ∈ L2(Ω). From (4.30) we have

Iε3 =

∫
Ω
ϕ(x)χε(x)Sε(x, t) dx

→
∫

Ω
ϕ(x)X (x)S0(x, t) dx

=

∫
Ω
ϕ(x)X (x)

∫ t

0
e−h0(x)(t−s)

∫
RN

J(x− y)u∗(y, s) dydxds.

Finally, let us pass to the limit in

Iε2 =

∫
Ω
ϕ(x)χε(x)

∫ t

0
e−hε(x)(t−s) f(x, ũε(x, s)) dsdx.

We first note that there exists D > 0 such that

(4.33) sup
s∈[0,T ]

‖f(·, ũε(·, s))‖L2(Ωε) ≤ D.

In fact, since f = g ◦mΩε with mΩε(x, 0) = 0, we have

‖f(·, ũε(·, s))‖2L2(Ωε) ≤ 2
[
‖f(·, ũε(·, s))− f(·, 0)‖2L2(Ωε) + ‖f(·, 0)‖2L2(Ωε)

]
≤ 2

[∫
Ω
L2
g|mΩε(x, ũ

ε(x, s))|2dx+

∫
Ω
g(0)2dx

]
where Lg is the Lipschitz constant of the function g.
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On the other hand, we get from Hardy-Littewood maximal inequality a constant Ĉ > 0
such that

1

|Bδ(x)|

∣∣∣∣∣
∫
Bδ(x)

ũε(y, s) dy

∣∣∣∣∣ ≤ Ĉ‖ũε(·, t)‖L2(Ω) a.e. Ω.

Hence, due to (1.4) and (4.25), there exists a constant C̃ > 0 such that

|m(x, ũε(x, s))| =
|Bδ(x)|

|Bδ(x) ∩ Ωε|

∣∣∣∣∣ 1

|Bδ(x)|

∫
Bδ(x)

ũε(y, s) dy

∣∣∣∣∣ ≤ C̃
for all ε ∈ (0, ε0), s ∈ [0, T ] and x ∈ Ω proving (4.33).

Moreover, we have that

(4.34) mΩε(·, ũε(·, s))→ mX (·, u∗(·, s)) strongly in L2(Ω) as ε→ 0

for all s ∈ [0, T ]. In fact, for each x ∈ RN and 0 < ε < ε0, we get from (1.4) and (4.26) that

mΩε(x, ũ
ε(x, s)) =

(∫
Bδ(x)

χε(y) dy

)−1(∫
Bδ(x)

ũε(y, s) dy

)

→

(∫
Bδ(x)

X (y) dy

)−1(∫
Bδ(x)

u∗(y, s) dy

)
= mX (x, u∗(x, s))

where mX is defined in (2.9). Hence, since mΩε(·, ũε) is uniformly bounded in Ω× [0, T ], we
can argue as in (4.30) to obtain (4.34) by Convergence Dominated Theorem.

Now, using that g is a Lipschitz continuous function, we can get from (4.33) and (4.34)
that

f(·, uε) ⇀ fX (·, u∗) weakly∗ in L∞([a, b];L2(Ω))

where fX is defined in (2.8). Consequently, we can argue as in (4.30) again, to get that∫ t

0
e−hε(x)(t−s) f(x, ũε(x, s)) ds→

∫ t

0
e−h0(x)(t−s) fX (x, u∗(x, s)) ds, as ε→ 0.

Consequently, we can pass to the limit in Iε2 getting

Iε2 →
∫

Ω
ϕ(x)X (x)

∫ t

0
e−h0(x)(t−s) fX (x, u∗(x, s)) dsdx, as ε→ 0.

Thus, the limit of the integral equation (4.27) is∫
Ω
ϕ(x)u∗(x, t) dx =

∫
Ω
ϕ(x)X (x)

[
e−h0(x)t u0(x) +

∫ t

0
e−h0(x)(t−s) fX (x, u∗(x, s)) ds

]
dx

+

∫
Ω
ϕ(x)X (x)

∫ t

0
e−h0(x)(t−s)

∫
RN

J(x− y)u∗(y, s) dydsdx, ∀ϕ ∈ L2(Ω),
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which implies

u∗(x, t) = e−h0(x)tX (x)u0(x) +

∫ t

0
e−h0(x)(t−s)X (x) fX (x, u∗(x, s)) ds

+

∫ t

0
e−h0(x)(t−s)X (x)

∫
RN

J(x− y)u∗(y, s) dyds

for all t ∈ [0, T ] and a.e. x in Ω. Thus, u∗ ∈ C1([0, T ];L2(Ω)) and satisfies

u∗t (x, t) = X (x)

∫
RN

J(x− y)u∗(y, t) dy − h0(x)u∗(x, t) + X (x) fX (x, u∗(x, t)),

u∗(x, t) ≡ 0 for x ∈ RN \ Ω

u∗(0, x) = X (x)u0(x)

which can be rewritten as (2.11) under assumption (2.10) with Λ ∈ L∞(RN ) given by

Λ(x) = h0(x)−X (x).

Finally, let us notice that u∗ is unique from Remark 3.4. Indeed, if we re-scale the time t
with t = X−1(x) τ and set

w(x, τ) = u∗(x,X (x)−1τ)

we have that w satisfies equation (3.23) for h(x) = X (x)−1Λ(x) ∈ L∞(Ω). Thus, u∗ is unique
which implies that the sequence uε converges weakly to u∗ as ε→ 0. In this way, we conclude
the proofs of Theorems 2.1 and 2.2. �

5. A nonlocal equation with local nonlinearity

Now, we obtain a nonlocal equation with local nonlinearity from the limit problem given
by Theorems 2.1 and 2.2. We consider the limit problem depending on the parameter δ, that
is, the equation associated to uδ ∈ C1([0, T ];L2(Ω)) which satisfies

uδt (x, t) = X (x)

∫
RN

J(x− y)uδ(y, t) dy − h0(x)uδ(x, t) + X (x) fX (x, uδ(x, t)),

uδ(x, t) ≡ 0 for x ∈ RN \ Ω

uδ(0, x) = X (x)u0(x).

The existence of the family of solutions uδ of (3.2) are guaranteed by Proposition 3.2. Also,
there exists C > 0, independent of δ > 0, such that, for any bounded interval [a, b] ⊂ R,

sup
t∈[a,b]

‖uδ(·, t)‖L2(Ω) ≤ C.

Hence, if ·̃ denotes the extension by zero to the whole space RN , we also get that

sup
t∈[a,b]

‖ũδ(·, t)‖L2(Ω) ≤ C,

and then, ũδ sets a uniformly bounded family in L∞
(
[a, b];L2(Ω)

)
.
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Since L1
(
[a, b];L2(Ω)

)
is separable, we can extract a subsequence still set by ũδ such that

ũδ ⇀ ū weakly∗ in L∞([a, b];L2(Ω)),

for some ū ∈ L∞
(
[a, b];L2(Ω)

)
. Notice that ū(x, t) ≡ 0 in RN \ Ω.

Then, we can proceed as in Section 4 to prove Theorem 2.3. Since the proof is very similar,
we will leave the details to the reader. Here we just pass to the limit in the nonlinear term∫

Ω
ϕ(x)X (x)fX (x, uδ(·, t)) dx =

∫
Ω
ϕ(x)X (x) g

(
1∫

Bδ(x)X (y)dy

∫
Bδ(x)

uδ(y, t)dy

)
dx

=

∫
Ω
ϕ(x)X (x) g

(
|Bδ(x)|∫

Bδ(x)X (y)dy

1

|Bδ(x)|

∫
Bδ(x)

uδ(y, t)dy

)
dx.

But, it is a direct consequence of Lebesgue Differentiation Theorem and the uniform estimate
given by Corollary 3.1. Indeed, from (3.24) and the compact embedding from H1 into L2,
we have uδ(·, t) → ū(·, t) strongly in L2(Ω), as δ → 0, for any t ∈ R. Thus, from Lebesgue
Differentiation Theorem, we obtain∫

Ω
ϕ(x)X (x)fX (x, uδ(·, t)) dx→

∫
Ω
ϕ(x)X (x)g

(
X−1(x) ū(x, t)

)
dx

which leads us to the limit equation (2.15).

6. Appendix

In this section we just compute the derivatives of the map Φ : RN 7→ R given by

Φ(x) =

∫
B(x)

u(y) dy

where B(x) = {y ∈ RN : |x− y| < R} is a ball of radius R > 0 and u is a smooth function.
Notice that, due to [31, Lebesgue-Radon-Nikodym Theorem], Φ is absolutely continuous
whenever u ∈ L1(RN ).

From Taylor’s formula, we have for any v ∈ RN and t ∈ R that

Φ(x+ tv)− Φ(x) =

∫
B(x)
{u(y + tv)− u(y)}dy = t

∫
B(x)
∇u(y) · vdy +O(t2).

Thus, by Green’s Identity, we get the following expression

(6.35) ∇Φ(x) · v =

∫
B(x)
∇u(y) · vdy =

∫
∂B(x)

u(y) v ·N dS

where N is the normal vector on the boundary of the ball ∂B(x). Finally, we observe that
this formula (6.35) is in agreement with [17, Theorem 1.11].
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