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Abstract: Duchenne muscular dystrophy (DMD) is a progressive disease caused by the loss of
function of the protein dystrophin. This protein contributes to the stabilisation of striated cells during
contraction, as it anchors the cytoskeleton with components of the extracellular matrix through the
dystrophin-associated protein complex (DAPC). Moreover, absence of the functional protein affects
the expression and function of proteins within the DAPC, leading to molecular events responsible for
myofibre damage, muscle weakening, disability and, eventually, premature death. Presently, there is
no cure for DMD, but different treatments help manage some of the symptoms. Advances in genetic
and exon-skipping therapies are the most promising intervention, the safety and efficiency of which
are tested in animal models. In addition to in vivo functional tests, ex vivo molecular evaluation aids
assess to what extent the therapy has contributed to the regenerative process. In this regard, the later
advances in microscopy and image acquisition systems and the current expansion of antibodies for
immunohistological evaluation together with the development of different spectrum fluorescent dyes
have made histology a crucial tool. Nevertheless, the complexity of the molecular events that take
place in dystrophic muscles, together with the rise of a multitude of markers for each of the phases of
the process, makes the histological assessment a challenging task. Therefore, here, we summarise
and explain the rationale behind different histological techniques used in the literature to assess
degeneration and regeneration in the field of dystrophinopathies, focusing especially on those related
to DMD.

Keywords: dystrophin; histology; Duchenne muscular dystrophy; skeletal muscle; myofibre; animal
model; regeneration; degeneration; immunofluorescence; immunohistology

1. Introduction

Duchenne muscular dystrophy (DMD) is a severe X-linked inherited myopathy char-
acterised by the mutation of the dystrophin encoding gene named DMD [1]. Dystrophin
is a key scaffolding protein providing structural stability and integrity to muscle fibre
membranes. The lack of this protein produces higher susceptibility to injury during contrac-
tion, thereby resulting in endless cycles of myofibre necrosis and regeneration, ultimately
leading to fibrosis, adipogenesis and weakness [2,3].

Besides dystrophin mutations which represent the primary cause of DMD, persistent
inflammation and impaired regeneration are likely to be other events that exacerbate the
disease progression [4]. The inflammatory process typically starts with a mechanical stress
occurring on dystrophin-deficient fibres. Intracellular Ca2+ levels increase first, to the
malfunction of a great variety of proteins and channels responsible for the correct storage
and release of the ion, the so-called Ca2+ toolkit [5], and secondly, as a consequence of
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the structural breakdown of the sarcolemma [6]. Ca2+ toolkit proteins are present not
only in the plasma membrane, but also in storing organelles such as the sarcoplasmic
reticulum (SR) and, to a lesser extent, the mitochondria. Abnormal Ca2+ homeostasis
ultimately leads to protein degradation, mitochondrial dysfunction and necrosis [7,8]. The
presence of necrotising myofibres will then attract M1 macrophages, among other cells,
which are responsible for the clearance of debris and necrotic myofibres. These immune
cells secrete proinflammatory cytokines leading to the extension of the inflammatory
process [4]. After several rounds of muscle degeneration, inflammation becomes chronic
and the continuous process of satellite cell (SC) activation exhausts the muscle intrinsic
regenerative capacity, provoking the replacement of muscle fibres by fibrotic and adipose
tissue, resulting in muscle weakness and dysfunction [9]. Although this is the most widely
accepted hypothesis describing the molecular events in muscular dystrophies, additional
explanations such as increased sarcolemma permeability [10], the loss of control over the
mechanisms that regulate SC activation [11], defective vasodilatation [12] or general loss in
Ca2+ homeostasis [5] cannot be ruled out (Figure S1).

The constant development of new pharmacological, cell and gene-based strategies [1]
to treat and cure Duchenne patients urges the establishment of reliable methods and stan-
dardised protocols to objectively evaluate the benefits of these experimental approaches [13].
While in vivo behavioural tests are an essential source of information to assess general
motor functioning [14–17], in vitro histopathological examination provides the researcher
a much more accurate tool to quantify the expression levels and subcellular localisation
of diverse proteins related to the disease progression in individual muscle groups [18].
Classical histochemical dyes such as haemotoxylin and eosin (H&E), Picrosirius red (PR),
Masson’s trichrome (M’sT) or oil red O (ORO) have been extensively used to assess fibre
size distribution, nuclear location, immune cell infiltration, fibrosis or fat accumulation.
Nevertheless, immunohistochemistry (IHC), and, in particular, immunofluorescence (IF),
has permitted the spatial localisation of multiple degenerative or regenerative markers si-
multaneously, thus contributing to the comprehension of the cellular and molecular events
leading to fibre deterioration and death in Duchenne models [19]. Having such a myriad
of possible markers, each of which providing different purposes, with distinct rationale
and specific staining protocols, could be puzzling for the researcher. Hence, the aim of
this review is to summarise and explain the principles behind some of the most valuable
histological techniques available to investigators to quantitatively evaluate the degree of
degeneration or regeneration on dystrophic muscles either from patients’ biopsies or sam-
ples from animal models. Throughout the article, the reader will find references to articles
describing the methods applied for each of these techniques, therefore, the step-by-step
protocols are out of the scope of this review.

2. Animal Models

As human muscle biopsy is invasive and difficult to reiterate during the disease evolu-
tion, there is a need for animal models to better understand the disease physiopathology
and to test possible therapies. Thus, throughout the years different models were developed,
each of them having their own advantages and drawbacks.

In terms of mammalian models, mdx mice are probably the most frequently used [20].
This mouse line (C57BL/10ScSn) has a spontaneous nonsense point mutation (C to T
transition) in exon 23 of the Dmd gene, which leads to the absence of the full-length dys-
trophin [21]. However, their phenotype is different from humans, as they only display
moderate muscle weakness of the extremities. This difference could be explained by an
apparent sustained capacity for muscle regeneration partially due to the increased ex-
pression of another extracellular matrix (ECM) anchoring protein named utrophin, which
is similar in structure and function to dystrophin. This compensating strategy is only
present in mice, as utrophin expression in humans remains insufficient [22]. Similarly,
the enhanced expression of the laminin receptor α7β1 integrin observed specifically in
mdx mice, and to a lesser extent in patients with DMD [23], may partially compensate for
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the absence of the dystrophin glycoprotein complex in the animal model [24]. Moreover,
young mdx mice show an adaptation of the bioenergetic apparatus that masks the course of
the disease. This is manifested in an increase in the efficiency of Ca2+ accumulation and
transport in mitochondria [25–27], overactivation of respiration and the functioning of the
OXPHOS system [28]. As a result, in mdx mice, severe dystrophic phenotypes, such as
muscle wasting, scoliosis and heart failure, do not appear until the age of 15 months as
their lifespan is only reduced by 25% [29]. To worsen the phenotype, double knockout dys-
trophin/utrophin (mdx/Utrn−/−) [30] or α7-integrin/dystrophin [23] mice were developed.
Both models are more severe than mdx mice [30], as the double knockout mice usually die
from respiratory insufficiency at the age of 20 weeks [31]. Alternatively, to study exon 2
duplication, accounting for approximately 11% of DMD causative mutations, the dup2 mice
were specifically developed [32]. This mouse model is similar to mdx in terms of disease
time evolution, pathological findings and phenotype severity and could be used to study
duplicated exon-skipping therapies [32].

Among the non-rodent mammals, the most studied model is the golden retriever
muscular dystrophy dog. This model reproduces the human disease better than the mdx
mice, as cardiomyopathy and respiratory failure are the main causes of death, usually at the
age of 3 years old, indicating a 75% reduction of normal life expectancy (reviewed by [33]).
However, dog models have important disadvantages such as the cost, breeding difficulties
and the small number of specimens available, limiting statistically reliable results.

Currently, the perfect animal model does not exist, so the search for optimal and more
rigorous models for research continues. In this sense, the use of genome editing methods,
such as CRISPR-Cas9, will certainly lead to new animal models becoming increasingly
close to humans [34]. For a review on DMD animal models, see [35].

3. Histological Methods to Assess Degeneration/Regeneration in Dystrophic Muscles

Histopathological examination of dystrophic muscles should start with an evaluation
of the general appearance of the muscle with a simple staining such as H&E (Section 3.1,
Figure 1), from which a lot of information can be inferred. This staining and other more
sophisticated IF markers can be useful tools to study myofibre size distribution (Section 3.2,
Figure 1) and the percentage of centrally nucleated fibres (CNFs) (Section 3.3, Figure 1),
both parameters providing information about the regenerative process in that muscle.
Thereafter, more specific histological techniques can be used to quantify myofibre damage
(Section 3.4, Figure 1) and to study the inflammatory process (Section 3.5, Figure 1) through
quantification of immune cell infiltration and the presence of inflammatory cytokines
(Sections 3.5.1 and 3.5.2, respectively). In dystrophic muscles, sarcolemmal rupture and
increased permeability produce loss of Ca2+ homeostasis, mitochondrial dysfunction and
oxidative stress. These damaging events can also be evaluated following histochemical
and immunohistological (IH) protocols (Section 3.6, Figure 1). In parallel, some cytokines
released by immune cells contribute to the activation of SCs, yielding new myofibres, and
fibro/adipogenic progenitors (FAPs), which upon differentiation reconstruct the ECM.
The progress of SC activation, proliferation, differentiation and myofibre maturation can
be followed due to the expression of different markers characteristic of each of these
phases (Section 3.7, Figure 1). In dystrophic muscles, after several cycles of degenera-
tion/regeneration/maturation, the initial inflammatory response becomes chronic, FAP
proliferation and differentiation are not well regulated, regeneration fails and muscle tissue
is substituted by fibrotic, fat and calcified connective tissue (Sections 3.8 and 3.9, Figure 1).
In contrast, in healthy muscles or in dystrophic muscles under certain promising therapeu-
tic interventions, the regenerative phase is culminated with the myofibres’ full maturation
due to neuromuscular junction (NMJ) re-establishment and capillaries’ functional reorgan-
isation (Sections 3.10 and 3.11, respectively, Figure 1). Each of these later events can be
studied with different histological tests explained in detail below.
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- Myofibre damage (section 3.4)

- Inflammation (section 3.5)

- Mitochondrial function (section 3.6.1)

- Oxidative stress (section 3.6.2)

Degeneration

Regeneration

Maturation

General appearance 
of the muscle with H&E

(section 3.1.)

- Myofibre size variability (section 3.2)

- Central nucleation (section 3.3)

- SCs function (section 3.7)

- Myofibre maturation (section 3.7)

- Fibrosis and fat deposition (section 3.8)

- Calcification (section 3.9)

- NMJs structure (section 3.10)

- Capillaries organisation (section 3.11)

LACK OF 
DYSTROPHIN

Figure 1. Histopathological examination in dystrophic muscles. Main events and processes that can be
assessed through histological tests in muscles lacking dystrophin. These muscles go through multiple
rounds of degeneration/regeneration/maturation, ultimately leading to impaired regeneration,
chronic inflammation and replacement of muscle fibres with connective tissue, thus producing
fibrosis, fat deposition and muscle wasting. Each of these events will be explained in the sections
indicated in the figure.

It is worth mentioning that for some muscle histological tests, such as morphological
studies, the use of fresh frozen sections is strongly recommended [36]. Whole-muscle
fixation with formalin or paraformaldehyde and paraffin embedding, although required
for certain histopathological analyses [37,38], needs handling of toxic chemicals, and
could be the source of staining artefacts, fibre length deterioration and physicochemical
modifications that lead to masking of some tissue antigens [39,40]. On the other hand,
preparing and freezing muscle samples require knowledge and practice, as when the
freezing procedure is not carried out correctly, the presence of ice crystals inside the
myofibres will yield suboptimal muscle cryosections for histological studies. For detailed
protocols, the reader is referred to the following articles: [36,39,41].

3.1. Evaluation of the General Appearance of the Muscle with Haematoxylin and Eosin

H&E are the gold standard stain for muscle samples due to the large amount of
information the researcher can obtain with this routinely used dye. For a full description of
the H&E protocol and later image acquisition, the reader is referred to [39] or [42]. H&E
reveal the overall appearance of the tissue in which the fibres (pink), their contour, size,
location of the nuclei (purple) and, in some cases, their condition (necrotic vs. healthy) can
also be distinguished. This dyeing method also highlights the presence of inflammatory
cells, blood vessels, nerves bundles, muscle spindles and connective and adipose tissue
(Figure 2).
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Figure 2. Pathological changes seen in the rectus femoris muscle of mdx mice stained with haemo-
toxylin and eosin. (A) General appearance of muscle fibres in a 3-month-old wild type (WT) animal.
Fibres (pink) show similar sizes and little connective tissue within the perimysium (white arrows)
and the endomysium (white arrowheads). Nuclei (dark purple) are located at the periphery of
the muscle fibre (black arrows) and capillaries are evident (light pink) within the endomysium
(black arrowheads). (B) Clusters of necrotic fibres with basophilic inflammatory cells inside (dark
purple) and fragmented sarcoplasm (*) surrounded by regular fibres and regenerative fibres (+) in
an age-matched mdx mouse. (C) Mild and (D) severe inflammatory cell infiltration, respectively,
phagocytising necrotic fibres (black dashed line), surrounded by fibrotic tissue ($). (E) Clusters of
small rounded centrally nucleated fibres in similar, early, stage of regeneration or immaturity (black
dashed line) adjacent to a group of medium-sized regenerating fibres in later stages of maturation (+).
(F) In some areas of the muscle, non-centrally nucleated hypertrophic fibres (x), larger than the fibres
seen in WT muscles, can be observed. Scales: 100 µm.
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Fibre size variation is one of the most prominent features of dystrophic muscles [43].
While in healthy muscles, fibres have roughly similar size, peripherally located nuclei and
almost no connective tissue in the perimysium and endomysium (Figure 2A), muscles from
patients with DMD and animal models of the disease show highly variable diameters of
their myofibres. Depending on the age and degree of physical activity of the individual,
some or all of the following features are evident in these muscles: clusters of necrotic fibres
with basophilic inflammatory cells inside and fragmented sarcoplasm (Figure 2B), densely
stained hypercontracted fibres (Figure 2B), mild or severe cell infiltration (Figure 2C,D,
respectively), groups of small rounded muscle fibres in an early stage of regeneration
or immaturity (Figure 2E), normally scattered with medium-sized healthy fibres and
hypertrophic ones (Figure 2F) [19]. Since early regenerating fibres or myotubes are formed
by the fusion of several activated myoblasts, fibres that have undergone necrosis and
regeneration, but are still not fully mature, are centrally nucleated (see Section 3.3) [44].
The presence of fibrotic and adipose tissue within fibres is also evident with this stain
(Figure 2D), especially in aged individuals. However, for the evaluation of the latter, more
specific dyes must be used (see Section 3.8).

With image analysis software, H&E images can be used to evaluate and quantify the
area of the muscle cross section covered by critical histological features such as cell infiltra-
tion, fibrosis, necrosis or regenerating fibres [42,45]. However, the correct identification of
some of these characteristics in H&E images is tedious and requires practice. Therefore,
specific IHC or IF stainings (see below) are recommended to accurately evaluate each of
these features.

3.2. Evaluation of the Morphometric Features of the Myofibre

The analysis of myofibre size distribution across the entire transversal area of the
selected muscle is a critical parameter to assess muscle health and regenerative capacity.
While in healthy muscles, the majority of fibres within one muscle present roughly the
same size, in dystrophic muscles, having newly regenerated fibres intermingled with
hypertrophic fibres that have never degenerated produces a great variability in myofibre
size [43]. Quantifying the cross sectional area (CSA) of several hundreds of myofibres
within a muscle is the standardised method to assess size distribution. Nevertheless, to
overcome possible errors in area estimation when muscles are not perfectly sectioned
perpendicular to the fibres’ length, calculating the minimal Feret’s diameter (MF’sD) of
these same myofibres is strongly advised [46,47]. These parameters, CSA and MF’sD,
can be manually estimated tracing the boundaries of fibres in H&E-stained images with
programs such as ImageJ [48]. However, this method is arduous and time-consuming.
Furthermore, it is less precise than machine learning-based automatic detection because
the number of fibres sampled is usually lower and, generally, only a few images, not
always representative of the whole muscle, are quantified. Moreover, manual estimation
introduces the possibility of user-to-user variability, reducing the replicability and reliability
of the study. Hence, in the last 20 years, dozens of automated or semi-automated machine
learning-based programs have been developed for the accurate and efficient study of the
myofibres’ morphometric parameters (see Table S1). Although some programs have been
designed to analyse H&E-stained images [49,50], the great majority of them are intended
for the analysis of fluorescence-based images with markers that outline the contour of
individual myofibres. This method permits an intensity-based, automatic and unbiased
segmentation of hundreds of fibres simultaneously. Commonly, membrane border is
identified by IF staining with antibodies detecting basal lamina or sarcolemmal membrane
proteins (Figure 3 and Table 1). Undoubtedly, the gold standard marker in skeletal muscle
studies is the basal lamina protein laminin [51], however, other proteins have also been
used in the literature (see Table 1).

In the context of DMD, as dystrophin is the mutation-affected protein, immunohis-
tology against this marker should only be intended to assess the presence of sporadic or
therapy-induced dystrophin-positive revertant fibres (RFs, Section 3.12) [52]. Moreover,
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as the mutation on the dystrophin gene also alters the expression of the proteins of DAPC
and produces its destabilisation [53], immunodetection of dystroglycans, sarcoglycans,
decorin or biglycan as markers of the myofibres’ boundaries should be avoided when
assessing morphometric parameters of dystrophic myofibres. Moreover, since collagen
expression also changes as the disease progresses, this marker is not suitable either. Non-IH
procedures are also possible, such as the use of fluorescence-tagged wheat germ agglutinin
(WGA), a lectin that binds plasma membrane glycoproteins, thus delimiting the myofibre
sarcolemma [54]. For complete protocols on the use of periphery markers for skeletal
myofibres, see Table 1.

Table 1. Muscle fibre peripheral markers.

Marker Myofibre/
ECM Location Technique Subunits or Types

Morphometry
Measurements on

DMD

Reference for
Full Protocol

Laminin-211 BL IHC, IF α, β, γ + [55]

Spectrin SM IHC, IF - + [52]

Perlecan BL IHC, IF - + [56,57]

Dystroglycans SM/BL IHC, IF α, β - [58]

Sarcoglycans SM IHC, IF α, β, δ, γ - [58]

Dystrophin SM IHC, IF - - [52,58]

Collagens ECM IHC, IF I, IV, VI - [59,60]

Decorin ECM IF - - [60]

Biglycan ECM IF - - [60]

WGA SM HC - + [54,61]

Different proteins and lectins used to mark the periphery of myofibres for morphometric studies. Some of these
molecules are located in the sarcolemma and others are components of the extracellular matrix. Note that not all
these markers are suitable for studies on dystrophic muscles, as the expression or location of the proteins may
be altered when the dystrophin is absent. Abbreviations: SM: Sarcolemmal membrane. BL: Basal lamina. ECM:
Extracellular matrix. IHC: Immunohistochemistry, HC: Histochemistry, IF: Immunofluorescence.

3.3. Evaluation of Centrally Nucleated Fibres

As mentioned above, another important parameter to assess the degree of regeneration
in a muscle is the analysis of the percentage of CNFs. In healthy adult muscle, nuclei are po-
sitioned maximising the distance to each other at the periphery of the myofibre, permitting
the transcriptional and translational nuclear products to be uniformly distributed all along
the myofibre length. Moreover, this location could protect the nuclei from the contracting
forces exerted by the sarcomeres and could prevent these organelles from acting as physical
obstacles impeding muscle contraction and function (reviewed by [62]). Several myopathies
are characterised by mispositioned nuclei and among them are dystrophinopathies.

Noteworthily, although most of the programs described in Table S1 are freely available,
they are all highly variable in terms of their requirements, possibility of visual inspection
and later correction, output results and, finally, but not less important, user-friendly inter-
face, ease of use and existence of written or video tutorials that facilitate the comprehension
of the analysis process. Therefore, Table S1 intends to help the researcher determine which
program to use depending on the needs and previous computational skills.
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Figure 3. Morphological analysis of the muscle fibres of a wild type vs. an mdx mouse. (A) Repre-
sentative image of the quadriceps of a wild type (WT) C57BL/10SCSNJ mouse. The periphery of
the myofibres was labelled using an antibody against laminin (red) and nuclei were stained with
DAPI (blue) as in [63]. (B) Representative image of the same muscle of a C57BL/10SCSN-Dmdmdx
J mouse with the same staining. Below both images, the corresponding fibre cross sectional area
(CSA) cartography automatically obtained after the analysis of the images shown in A and B with the
program MuscleJ ([55], see Table S1). The green-scale colour code indicates the myofibre CSA in µm2.
This program also quantifies centrally nucleated fibres (CNFs) and the number of nuclei per fibre. At
the bottom of the figure, the automatically obtained cartography shows a colour code depending on
the number of central nuclei quantified in each fibre (white for 0, yellow for 1, orange for 2 and red
for 3 or more nuclei). Note that mdx muscle samples are characterised by an irregular distribution of
fibre CSA and high numbers of CNFs. Scales: 100 µm.

The most accepted hypothesis explaining the existence of CNFs states that these
are fibres going through the regenerative process. During development, multinucleated
skeletal muscle fibres are the result of the fusion of mononucleated single myoblasts that
only after a maturation phase spatially distribute and extrude the nuclei to the normal
sarcolemmal position [64]. In adults, the regenerative process takes place through a similar
mechanism, and activated SCs fuse to a pre-existent myofibre that will also become centrally
nucleated [44,65]. The movement of these nuclei to the periphery of the regenerated fibre
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is a complex process that will depend upon the correct functioning and interaction of
microtubules and associated proteins, the cytoskeleton, the nucleoskeleton and the linker
of the nucleoskeleton and cytoskeleton complex [62].

In the field of DMD, assessing the percentage of CNFs within a muscle has become a
standard protocol to quantify and compare the regenerative potential of a novel drug or
genetic therapies in dystrophic animal models [47]. As mentioned before, this can be easily
achieved in fluorescent cross section samples co-stained with a nucleus-specific dye, such
as 4′,6-diamidino-2-phenylindole (DAPI) or Hoechst 33342, and a marker of the periphery
of the myofibre (Figure 3). Most of the automated and semi-automated programs explained
in Table S1 are also designed to easily quantify the number of CNFs. Alternatively, this
parameter can also be assessed manually in H&E-stained muscle cross sections, although
the task is labour-intensive.

The percentage of CNFs after an intervention should be carefully interpreted and
in parallel with other markers of regeneration/degeneration [66], as lower percentages
of CNFs could also be understood as a good prognosis of the disease [67,68]. Moreover,
translational studies must acknowledge that this parameter is different in patients with
DMD when compared with animal models of the disease [31] and it evolves differently in
distinct muscles [45] and with age [69].

3.4. Myofibre Damage and Cell Death

In contrast to other myopathies, apoptosis does not seem to have a relevant contribu-
tion to muscle wasting in DMD [70]. In patients with DMD, according to the sarcolemma
or “microtear” hypothesis [6] (Figure S1), muscle damage is induced by mechanical stress
on the already fragilised cell membrane of myofibres due to the lack of dystrophin. This
impairment leads to the continuous leakage of molecules such as damage-associated molec-
ular patterns (DAMPs) from damaged myofibres and prolongs the activation of the innate
immune response, resulting in chronic inflammation. DAMPs are key factors regulating the
priming step that will thereafter activate the NLRP3 inflammasome pathway, will induce
the release of proinflammatory cytokines and, ultimately, will cause a highly inflammatory
form of programmed cell death called pyroptosis [71]. In addition to pyroptosis, other cell
death mechanisms could also contribute to overall muscle wasting in DMD. In this regard,
the study by Morgan et al. [7] demonstrated that the molecular pathway responsible for a
type of inflammation-induced necrosis, named necroptosis, is activated upon sustained
elevation of intracellular Ca2+ concentration, supporting the hypothesis of “Ca2+ overload”
(Figure S1) as another major factor contributing to Duchenne physiopathology [72].

Several histological methods are available to precisely quantify muscle fibre membrane
rupture and subsequent cell death. Among them, H&E staining (Figure 2) and Evan’s
blue dye (EBD) were the most frequently used techniques in the past [73,74]. Evan’s
blue is a membrane-impermeant salt that has been used to assess loss of sarcolemmal
integrity due to plasma membrane disruptions [74]. The rationale behind EBD labelling
damaged myofibres was based on its ability to form tight complexes with the serum protein
albumin, a protein that is taken up by muscle fibres when their sarcolemma is damaged [75].
More recently, however, demonstration that cell staining with EBD results from dye influx
via hemichannels formed by connexins [76] and a Ca2+-induced increase in membrane
permeability [10], and not only from sarcolemmal tears as interpreted before, has triggered
the use of different methods such as the staining of serum proteins with molecular sizes
above the exclusion limit of hemichannels.

Thus, only cells having large sarcolemmal disruptions will show deposition in their
cytoplasm of high molecular weight serum proteins such as albumin or immunoglobulins
(Ig) (Figure 4). Hence, a simple IHC or IF of albumin could reveal the presence of those
damaged fibres [77]. Similarly, the myofibres with membrane disruptions can be easily
recognised using an antibody to the same species IgG/IgM tagged with a fluorescent
molecule [78] (Figure 4).
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Interestingly, some of the programs described in Table S1 can quantify these Ig-positive
fibres with the same method used to evaluate fibre type proportions (see Section 3.7). The
expression of these results varies from group to group, but most frequently they are
expressed as the area of the muscle section occupied by immunopositive damaged fibres [7]
or the percentage of Ig-positive fibres [79].

Mouse dystrophic 
muscle

Serum proteins

Albumin, IgG/IgM

IgM

Albumin IgG

Damaged fibre with 
sarcolemma pores

Leaky myofibre

Fluorescent antibodies 
that recognise mouse IgG

1 hour

Cross section of the 
mouse dystrophic muscle

Damaged fibres labelled

Damaged fibres 
with IgG inside

Damaged fibres 
with IgG inside

A

B

Capillary

Figure 4. Molecular mechanism explaining the staining of degenerating fibres with IF of IgG.
(A) Dystrophic muscles have damaged myofibres with sarcolemmal ruptures or pores due to the lack
of functional dystrophin. The size of these pores is big enough for serum proteins such as albumin or
immunoglobulins (Igs) to enter the leaky membrane and stay in the cytoplasm. (B) To recognise these
degenerating fibres, incubation of dystrophic mouse muscle cross sections with a solution containing
a fluorescently tagged antibody recognising mouse IgG will yield labelling of the myofibres that
contain those Igs in their cytoplasm.
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3.5. Inflammation

As mentioned earlier, the continuous release of cytoplasmic contents from the dys-
trophic muscle cells produces the activation of the innate immune system. Once released
into the extracellular space, DAMPs bind specific receptors that in turn influence the re-
cruitment and function of immune cells at the site of damage in dystrophic muscle [80]. In
healthy muscle, local activation of the innate immune response is essential for necrotic fibre
clearance, SC activation, ECM remodelling and complete regeneration [81]. However, in
the dystrophic muscle, the continuous focal bouts of myofibre degeneration prolong the
inflammatory process (Figure S1) and this chronic state ultimately leads to myofibre death,
fibrosis, fat deposition and muscle wasting [2,3].

3.5.1. Immune System Cell Infiltration

Upon damage, muscle regeneration depends on the orchestrated infiltration of differ-
ent immune cells among which neutrophils, macrophages and T cells play a crucial role
in DMD pathogenesis [80]. When sorting and identifying immune cells, the researcher
must acknowledge that cell-identifying specific antigens may vary between species, thus
appropriate antibodies must be chosen depending on the cell type to be identified and the
source of the muscle tissue.

• Neutrophils:

Neutrophils are one of the first granulocytic myeloid cells recruited after muscle
injury. In healthy individuals, neutrophils clear up cell debris and are the first line of
defence against invading microorganisms. Moreover, they aid in the recruitment of other
immune cells such as macrophages. In DMD, DAMPs released from damaged myofibres
promote degranulation of mature neutrophils, releasing several antimicrobial enzymes
from azurophilic granules. These granules contain neutrophil elastase, that induces chro-
matin decondensation, myeloperoxidase (MPO), that catalyses the production of reactive
oxygen species (ROS) including hypochlorous acid, and neutrophil extracellular traps, that
are released outside the cell and further promote inflammation [2,3]. Therefore, neutrophils
contribute to prolonging inflammation in Duchenne pathology by releasing proinflamma-
tory cytokines and other compounds that lead to oxidative stress.

Although Ly-6G, an anchored surface protein implicated in tissue neutrophil extrava-
sation, is the most widely used marker to recognise mouse neutrophils by immunohistol-
ogy [82], both mouse and human neutrophils have also been identified in the literature with
antibodies against Ly-6B2 or enzymes contained in their granules, such as MPO (Table 2),
albeit never in dystrophic muscles.

• Macrophages:

Macrophages are probably one of the most important players in innate immunity. In
muscle, they have several roles such as defence against potentially damaging molecules,
tissue repair and regeneration [83]. By oversimplifying, macrophages could be divided into
two different subtypes: the proinflammatory M1 macrophages involved in the responses
against pathogens and tissue injury and the anti-inflammatory (M2) types being involved
in wound healing and tissue repair. This binomial denomination represents the two ends
of a wide spectrum [84]. This heterogeneity of macrophages poses a serious challenge for
quantitative and qualitative analyses in muscle tissue. In addition, there is a wide variety
of macrophage markers for IHC and IF (see Table 2); the choice of which will depend on
the subset of macrophage, and the tissue targeted. Moreover, there are very few unique
macrophage markers and normally a co-staining will be required to identify the specific
population of macrophage required.

If the objective is to determine the absolute number of macrophages, a pan-macrophage
marker is preferred. CD11b, CD11c, F4/80 and CD68 are commonly used in IHC and/or
IF [85]. Both CD11b and CD68 staining have been shown to be equally efficient as pan-
macrophage markers in human skeletal muscles [86] and can also be used in mouse muscles
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(Table 2). However, they are also expressed in other cell populations, thereby limiting their
specificity and overestimating the macrophage population [87].

F4/80, to the contrary, is a glycoprotein which specifically marks murine macro-
phages [88]. Interestingly, the antibodies to F4/80 do not recognise fibroblasts, polymor-
phonuclear cells or lymphocytes, which usually share the same receptors and surface anti-
gens as macrophages [89]. However, it does mark Langerhans cells [90] and eosinophils [91],
making it less specific. Nevertheless, the utility of F4/80 as a marker for tissue macrophages
has been confirmed in various organs, including mouse muscles (Table 2).

The advance in terms of IH techniques has allowed scientists to identify specific
macrophage subpopulations. Besides the functional definition of M1 and M2, cell surface
markers have been identified to distinguish these two populations. In IF, co-staining of
a pan-macrophage marker with inducible nitric oxide synthase (iNOS) has shown good
results for identifying M1 macrophages, while CCR2, CCR7, CD80 or COX-2 are also good
M1 markers that may be used alone (Table 2). M2 macrophages (Table 2), on the other
hand, have been shown to express high levels of CD163, CD206 and Arg-1 [92]. CD206,
the mannose receptor, is a well-accepted M2 macrophage marker in skeletal muscle [92],
although its staining might also be present on other cell types such as SCs [93].

Finally, it is important to keep in mind that results from studies of skeletal muscle
macrophages in animal models are informative. The macrophage markers that are used
in mice either do not exist or identify different populations in humans, complicating the
extrapolation of findings from mouse models to human studies [94].

• Lymphocytes:

The inflammatory infiltrates found in dystrophic muscle are heterogeneous. Besides
neutrophils and macrophages, T cells are also present. Indeed, CD4+ (helper) T cells and
CD8+ (cytotoxic) T cells increase in the blood of patients with DMD [95] (Table 2). A
recent theory even suspects that interferon gamma (IFNγ) in dystrophic muscles is mainly
produced by CD4+ effector T cells and not by macrophages, thereby highlighting the main
contribution of lymphocytes in DMD pathophysiology [96].

Another type of T cell are the regulatory T cells (Tregs) which maintain immune
homeostasis [97] via the secretion regulatory cytokines such as interleukin 10 (IL-10), being
thereby able to control T effector, B and antigen presenting cell (APC) activation and
proliferation [98]. While T cells are usually detected by the CD4, CD8 and CD3 markers
(see Table 2), Tregs can be identified by the co-expression of CD4, with CD25, or Forkhead
box protein 3 (FOXP3) (Table 2).

3.5.2. Cytokines

Although cytokine levels are normally measured by RT-qPCR or Western blotting
(WB) in tissue homogenates, histological location of the source of those cytokines and
quantification of their expression in muscle cross sections are also possible. Currently, a
wide range of antibodies targeting inflammatory cytokines are available on the market
either for IF or IHC (Table 2).

• Proinflammatory Cytokines:

In DMD, degenerating dystrophin-absent fibres secrete proinflammatory cytokines
and chemokines, implying the continuous recruitment of the above-mentioned immune
cells which in turn activate M1 macrophages, leading to a chronic inflammatory state
producing high concentrations of proinflammatory cytokines such as IFNγ, tumour necrosis
factor alpha (TNFα), interleukin 1 beta (IL-1β), interleukin 18 (IL-18) and interleukin 6
(IL-6) (Table 2) [98,99]. IL-1β and TNFα are key proinflammatory cytokines involved in
initiation and perpetuation of muscle pathology in DMD. In mdx mice, IL-1β mRNA levels
have been shown to be higher than in controls [100], while TNFα significantly increased
with age in the diaphragm muscle [101] and in sera of most patients with DMD [102]. IL-6,
on the other hand, is a pleiotropic cytokine having several roles encompassing immune
response, haematopoiesis, and inflammation regulation [103]. This cytokine increases in
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patients with DMD compared with healthy subjects [104]. Interestingly, inducing IL-6
expression in mdx mice exacerbates the dystrophic muscle phenotype, resembling the
severity observed in humans [105]. Thus, IL-6 blockade exerts a positive effect on muscle
regeneration in dystrophic mice [106]. This same group observed with IF against IL-6 an
increase in its expression in muscle biopsies from patients with DMD when compared with
healthy subjects, a result that was later confirmed by RT-qPCR [105].

Table 2. Markers of the inflammatory process in rodent muscles.

Cell/Cytokine Type Antigen/
Marker IH Method Tissue Animal References

for Protocol

Macrophages

Pan-marker

CD11b IHC/IF

Skeletal muscle

mdx mice

[107,108]
CD11c IHC [107]
CD68 IHC/IF [109]
F4/80 IHC/IF [110]

M1

CCR2 IHC/IF [109,111]

CCR7
IHC CCL19KL mice [112]
IF Rat [113]

CD80 IHC Rat [114]
iNOS IHC/IF

mdx mice

[110]
COX-2 IHC [115]

M2
Arginase-1 IF [116]

CD206 IHC/IF [109]
CD163 IHC/IF [109,117]

T cells

Pan-marker CD3 IHC/IF

Skeletal muscle mdx mice

[118,119]
T cell helper CD4 IHC/IF [109,120]

T cell cytotoxic CD8 IHC/IF [107,120]

Treg FOXP3 IHC/IF [121]
CD25 IF [120]

Neutrophils /
Ly6B2 IHC

Skeletal muscle mdx mice
[109]

Ly6G IHC/IF [110,119]
MPO IF SOD mice [122]

Cytokines

Proinflammatory

TNFα IHC/IF

Skeletal muscle
mdx mice

[118,123]
IL-6 IF [106]

IFNγ IHC [110]
IL-18 IHC [124]
IL-1β IHC/IF [124,125]

Anti-inflammatory IL-10 IF Peripheral
nerve [126]

IL-4 IHC Skeletal muscle [110]

Different antigens and markers used to identify immune cells and cytokines released upon inflammation in
skeletal muscles of rodents. Abbreviations appearing in this table are explained in the Abbreviations section.

• Anti-inflammatory cytokines:

IL-10 is an anti-inflammatory cytokine regulating the production of proinflammatory
cytokines and the activation of M1 macrophages to reduce further cytokine production [127].
More specifically, IL-10 inhibits the expression of two important proinflammatory cytokines,
namely IFNγ and TNFα. In addition, IL-10 specifically inhibits the expression of iNOS
by M1 macrophages [117] and activates M2 macrophages [128], which are predominantly
represented in mdx muscle areas during the regenerative stage of the disease, suggesting
its involvement in muscle regeneration [110,117]. While the expression of IL-10 in skeletal
muscle has been extensively studied by WB or RT-qPCR [117], to our knowledge, no
histological techniques have been used to identify it in muscle tissue. However, IF methods
to identify IL-10 exist, as they are used in the peripheral nerve by Mietto et al. [126] (Table 2).

Other anti-inflammatory cytokines such as IL-4 or transforming growth factor-beta
(TGF-β) are commented on in Section 3.8.
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3.6. Mitochondrial and Sarcoplasmic Reticulum Function and Oxidative Stress
3.6.1. Mitochondrial Function

Being a highly metabolically active tissue, skeletal muscle is rich in mitochondria.
These organelles are not only responsible for the synthesis of ATP by oxidative phosphory-
lation but are also essential for Ca2+ homeostasis and Ca2+-dependent signalling. In DMD,
ruptures in the sarcolemmal membrane, increased permeability and, more importantly,
deficiencies in the machinery regulating Ca2+ stores and Ca2+-dependent signals produced
by the dystrophin deficiency [5] induce Ca2+ overload, mitochondrial swelling [10] and
ROS production, leading to mitochondrion-dependent cell necrosis [129,130]. Hence, Ca2+

overload and malfunction of muscle mitochondria [131,132] also contribute to chronic
inflammation and progressive cell death in DMD physiopathology (Figure S1). Notably,
therapeutic interventions directly or indirectly improving mitochondrial function led to re-
duced inflammation and improved respiration, among other positive physiological effects,
but most importantly, they ameliorated in vivo muscle function [133–136].

Complementary to other recommended techniques such as mitochondrial enzymatic
activity assay, bioenergetic assessments, WB, RT-qPCR or mitochondrial respirometry [137],
assessing the quantity, appearance and functionality of mitochondria with histological
procedures is also possible. For quantification and assessment of morphological abnor-
malities, transmission electron microscopy (TEM) is recommended [138,139], as general
quantification by IHC or IF with antibodies to mitochondrial proteins such as cytochrome
C oxidase (COX) or TOM20, although possible [140–142], is less precise due to the size of
these organelles.

To study mitochondrial function in frozen muscle sections, observing the activity
of two respiratory enzymes such as complex IV or COX and complex II or succinate
dehydrogenase (SDH) is a widely used approach in different tissues [143]. Since COX
catalytic subunits are codified by mitochondrial DNA (mtDNA), assembly and function
of the complex depend on mtDNA integrity. To the contrary, the activity of SDH is
independent of impaired mtDNA because it is entirely encoded by nuclear DNA. The
accumulation of mutations in mtDNA or nuclear DNA due to mitochondrial impairment,
disease or ageing leads to the presence of fibres with low or absent COX and SDH activity,
respectively. Thus, analysis of this stain is based on the presence of fibres with low, medium
or high density of brown/blue products depending on the COX/SDH enzymatic activity,
respectively. Consequently, the results are usually presented as the percentage of fibres
corresponding to each group within the studied muscle cross section. Using this and
other complementary techniques, Moore et al. [137] was the first to show evidence of
mitochondrial complex II and IV impairment occurring prior to muscle fibre damage in
11-week-old mdx mice.

Additionally, mitochondrial abnormalities can be studied with a modified version
of Gömöri trichrome (GT) stain [144]. This protocol permits the visualisation under the
microscope of characteristic ragged red fibres due to the accumulation of abnormal mito-
chondria below the sarcolemma of the myofibre. Moreover, mitochondrial function has
also been assessed with the nicotinamide adenine dinucleotide tetrazolium reductase stain
(NADH-TR). This method provides a measure of the muscle respiratory capacity because
the tetrazolium colourless salt is used as an electron acceptor reduced by the NADH enzyme
to an insoluble purple-coloured product wherever this enzyme is active [19]. Contrary to
COX/SDH stainings that are specific for mitochondria, GT and NADH-TR stain results
should be interpreted cautiously since both dyes also reveal SR. For complete protocols of
the latter dyes on mouse muscle samples, please see [145].

3.6.2. Oxidative Stress

As a result of mitochondrial malfunction, dystrophic muscles show an increase in
enzymes and markers related to oxidative stress (Figure S1) that can be evaluated with
different histological techniques [3]. In frozen sections, quantification of the number aut-
ofluorescent ceroid and lipofuscin granules generated due to chronic oxidative stress [146]
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can be assessed easily and give some important information concerning oxidative stress
status [147,148]. Similarly, the fluorescent staining dihydroethidium (DHE), a superoxide
indicator, is also representative of the levels of ROS [148,149].

Moreover, several IH protocols have been used in the literature to assess the level of
oxidative stress in skeletal muscle sections. Antibodies to 4-hydroxynonenal (HNE), a lipid
peroxidation by-product [150], to peroxiredoxin 3, a mitochondrial hydrogen peroxide
scavenger enzyme [151], to 8-hydroxy-2′-deoxyguanosine, an antioxidative enzyme [152],
or to nitrotyrosine, which is the result of tyrosine nitration occurring only when tyrosine
interacts with increased levels of ROS and nitrogen species [153], are all well-known
witnesses of oxidative stress. Furthermore, all these markers increase in mdx mice and,
interestingly, retinol, tempol or adiponectin act as potent antioxidant agents [118,148,154].
For protocols, see the latter references.

3.6.3. Sarcoplasmic Reticulum

Mislocation and dysfunction of the sarcoplasmic reticulum (SR) and its Ca2+-regulating
proteins also contribute to the loss of Ca2+ homeostasis and play an important role in the
progression of the disease in dystrophin-lacking muscles [155–158]. Surprisingly, although
SR function has been studied with multiple other techniques [155,158–160], histological
tests to study the SR are not routinely performed in dystrophin-deficient muscles. Never-
theless, as mentioned earlier, GT, besides staining mitochondria, may also reveal the SR.
In fact, this stain has been used in the literature to show the presence of tubular aggre-
gates. These SR-derived morphological abnormalities [161] are characteristic of several
myopathies [162,163]. Additionally, assessing the expression and location of SR-specific
proteins such as the SERCA pump or ryanodine receptors has also proven to be a useful
method to indirectly study SR function and structural abnormalities. This can be easily per-
formed in muscle cryosections [164] or isolated fibres [165,166] and could be an interesting
method to study the SR in dystrophic-deficient muscles [164]. As with other organelles such
as mitochondria, confirmation of possible structural and locational abnormalities with TEM
or with revolutionising new techniques such as dSTROM super-resolution imaging [167] is
also advised.

3.7. Myofibre Regeneration and Maturation

Skeletal muscle regeneration is a highly coordinated process with sequential but over-
lapping steps from the inflammatory reaction and macrophage invasion, later activation,
differentiation and fusion of SCs and, finally, maturation of the newly formed myofi-
bres [168]. Once the regeneration of new muscle fibres takes place, it is possible to follow
the sequential process of fibre regeneration–maturation characterised by the expression of
phase specific markers. In healthy muscles, muscle regeneration is a highly ordered pro-
cess [168], however, in dystrophic muscles the process is not completely synchronised and
there are therefore regional differences in the progression of the degenerative/regenerative
process within the same muscle.

3.7.1. Satellite Cells and Early Regeneration

Regeneration of damaged dystrophic myofibres depends upon the activation of other-
wise quiescent SCs located in close apposition to the fibre sarcolemma and underneath the
basal lamina [65]. SC commitment to myogenesis requires the activation of the transcription
factor PAX7 and, later, several myogenic regulatory factors, including MYOD, MYF5, MRF4
and MYOGENIN. Upon activation, satellite stem cells undergo either symmetric or asym-
metric cell division, contributing either to the maintenance of the stem cell pool or to the
proliferation and differentiation of SCs to form regenerative myoblasts, respectively [169].

Historically, the depletion of the regenerative muscle capabilities with age in dys-
trophic muscles was attributed to the functional exhaustion of the pool of quiescent SCs
(“satellite cell exhaustion hypothesis”) [170]. Recently, however, results demonstrating
high expression of the protein dystrophin in SCs and its important role regulating SC
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behaviour [171] have led to an emerging model suggesting that the lack of dystrophin ren-
ders dysfunctional SCs unable to contribute efficiently to the myofibre regeneration [169].
Moreover, in dystrophic muscles the unrestrained continuous activation of SCs is known to
be the source of weak and fragile branched fibres especially sensitive to eccentric muscle
contractions [172,173] (Figure S1).

Accordingly, promoting the ability of dystrophic SCs to correctly enter the myogenic
programme and optimising strategies to ensure functional SC delivery are possible thera-
pies for the treatment of DMD [174]. To achieve this, validation with in vitro tests on cell
cultures must be complemented with in vivo muscle histological studies. Therefore, to
correctly identify quiescent or recently activated SCs in muscle cross sections, recognition
of Pax7+/Ki67- or Pax7+/Ki67+ cells, respectively, below the basal lamina by IHC or IF is
the gold standard procedure [175,176]. Similarly, the identification of highly proliferative
activated SCs, also called myoblasts, is based on the recognition of MyoD [177]. Finally,
differentiated myoblasts or myocytes can be labelled with antibodies recognising myo-
genin [177]. Importantly, the expression of each of these transcription factors and proteins is
not an all or nothing process. There is some degree of overlap between different factors and
cell stages (reviewed by [178]). Thus, to better distinguish between quiescent or activated
SCs, myoblasts, myocytes and myotubes, simultaneous co-staining with different markers
is recommended [176,177]. For a full protocol, see the methodological paper of [179].

Finally, the last step of the early-regenerative process depends upon the degree of
damage. Myocytes may either bind to a pre-existing myofibre or to other myocytes to form
immature myotubes. At this stage, myogenin promotes the expression of immature forms
of myosin heavy chains (MyHCs) [180] in the newly regenerated myofibres.

3.7.2. Early Maturation of Muscle Fibres

There are reportedly multiple isoforms of MyHCs, which are expressed in different
phases of the skeletal muscle fibre regeneration/maturation process [181]. Consequently,
histological identification of these isoforms can be used to characterise the maturity stage of
the muscle. During early muscle maturation, the new regenerated fibre is characterised by
the re-expression of neonatal (neo-) and embryonic (emb-)MyHCs encoded by the MYH3
and MYH8 genes, respectively. Many studies have shown the re-expression of these pro-
teins in the adult following injury or in neuromuscular disorders such as DMD [182,183].
In the pathological context of DMD, IF and IHC studies showed high levels of neo- and
emb-MyHCs in different animal models [184–186] as well as in patients with DMD [187].
Thus, these proteins have been reported to be a biomarker of muscle damage and DMD
severity [187]. Moreover, since muscle regeneration in dystrophic muscles is muscle- and
age-dependent [185], emb-MyHC represents a robust specific marker of the degenera-
tive/regenerative process in the DMD context.

Although most commonly used to identify capillary and connective tissue injury
in immune myopathies such as dermatomyositis [188], the alkaline phosphatase (ALP)
reaction is also used to identify regenerating myofibres in muscle biopsies. This histochem-
ical stain produces a black reaction product due to the activity of the ALP enzyme on an
exogenous substrate that reacts with a diazonium salt precipitating at the site of the enzyme
activity. The ALP enzyme is primarily found in cell membranes where active transport
processes occur. Thus, while in healthy skeletal muscle this enzyme is only present in the
endothelium of arterioles but never in capillaries, myofibres or connective tissue [189],
different pathological conditions yield distinctive patterns of staining [190]. Hence, the
stain highlights darkly stained myofibres scattered among pale yellow ones, and/or a focal
black staining in perimysial connective tissue and/or in endomysial capillary, the latter
two typically observed in dermatomyositis [191] or antisynthetase syndrome [190], but not
in patients with DMD [189]. Importantly, especially for these patients, stained myofibres
have been interpreted in the literature either as regenerating or necrotic myofibres, forcing
a more specific staining to distinguish between the two.
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Alternatively, utrophin, an autosomal paralogue of dystrophin, is also considered
as a regeneration-associated protein. The expression of this protein, normally limited
to the neuromuscular and myotendinous junctions in the adult, increases upon regen-
eration in dystrophic muscles from DMD and BMD patients as well as in animal mod-
els [192]. This could be a compensatory mechanism capable of improving the membrane
stability of dystrophic myofibres, as it suppresses the functional signs of dystrophinopa-
thy [193–195]. Moreover, recently, staining studies demonstrated a positive correlation
between the expression of utrophin and emb-MyHC levels in dystrophic muscles of mdx
and dystrophin/utrophin-deficient double knockout (dko) mice, supporting the use of
utrophin staining as regenerative marker in dystrophic muscles [185]. However, this corre-
lation is animal model-dependent, as an inverse correlation between these two parameters
has been demonstrated in mdx-Fiona mice [185], a model in which over-expression of
utrophin provides a significant functional rescue of the dystrophic phenotype and corrects
a large majority of the mdx serological biomarkers [196]. In conclusion, and, as mentioned
before, when assessing regeneration in dystrophic muscles, the researcher must consider
other complementary indices such as CNFs, fibre size distribution, levels of regeneration-
associated genes and secreted factors released during muscle repair responsible for guiding
muscle regeneration [197].

3.7.3. Late Maturation of Muscle Fibres

After the transient upregulation of the above-mentioned regeneration markers, their
expression decreases as maturation progresses. Among the mature healthy fibre markers,
the analysis of dystrophin re-expression in an individual fibre allows an accurate assessment
of myofibre maturity [198]. However, in the case of DMD where dystrophin is not expressed,
other markers of muscle fibre maturity, such as myozenin 1, a Z-disk-associated protein, are
needed [199,200]. This protein expression disappears after injury but gradually reappears
during muscle regeneration as demonstrated by IF analysis in the study by Yoshimito and
colleagues on D2-mdx mice [198].

Although skeletal muscle tissue is composed of thousands of muscle fibres, it is
important to note that the metabolic and contractile properties of the muscle depend
on their fibre type composition [181]. While type 1 fibres (slow oxidative) are abundant
in red muscle, type 2 (fast glycolytic) are typical in white muscles. Fibre types can be
distinguished by their MyHC ATPase activity as shown by the histochemical method
developed by Engel [201]. However, this method is not able to distinguish between 2X and
2B fibres. Thus, an improved method called metachromic ATP staining was developed [202].
Additionally, two other histochemical methods (both explained in Section 3.6) resulting
in similar results can be used: NADH-TR or SDH staining [203,204]. Nevertheless, there
appears to be a discrepancy between the classification of muscle fibre types based on their
myosin ATPase activity and their metabolic properties [205], thus, attempts to combine the
two histochemical techniques have generally failed.

Currently, IF or IHC with specific antibodies to each isoform of MyHC is more com-
monly used since it permits the simultaneous identification of all muscle fibre types in a
single muscle cross section. The generation of specific anti-MyHC antibodies has provided
a powerful tool not only to define the fibre types present in skeletal muscles, but also their
functional properties, their response to conditions that affect muscle plasticity and their
changes in muscle disorders [181]. Indeed, many antibodies that specifically recognise
MyHC isoforms are already readily available, facilitating the experimental procedure and
yielding accurate results that are easier to analyse. For a complete step-by-step protocol
for muscle fibre staining and analysis, consult Bloemberg and Quadrilatero, 2012 [206].
Interestingly, the analysis of the percentage of fibre types in a muscle can be carried out
manually [63] or semi-automatically with some of the programs summarised in Table S1.

Surprisingly, only some studies have investigated fibre type changes under the dystrophic
phenotype and contradictory results have been reported [6,207–209]. Nevertheless, in general,
fast-twitch fibres seem to be more susceptible to contraction-mediated damage than slow-
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twitch fibres [209–211]. Although the mechanisms that confer higher resistance to type 1 fibres
remain speculative [173,212,213], clear higher resistance of slow-twitch fibres in dystrophic
muscles have triggered the search for factors and mechanisms to promote a fast-to-slow
switch in muscles as a therapy to ameliorate the effects of DMD [214,215]. To demonstrate the
efficiency of these treatments, histological assessment of distribution and relative percentages
of fibre types in severely affected muscles, such as the diaphragm or the EDL, is necessary.

3.8. Fibrosis and Fat Deposition
3.8.1. Fibrosis

Fibrosis due to unregulated deposition of ECM components in muscles of patients with
DMD is one of the multiple secondary effects of this devastating disease [216] (Figure S1).
Under physiological conditions, ECM forms up to 10% of the skeletal muscle weight and
it plays a principal role in force transmission, maintenance and repair of muscle fibres
following injury [217]. ECM is mainly synthetised by specific cells called (myo)fibroblasts
mostly derived from mesenchymal progenitors named FAP cells [218].

Understanding the mechanism of muscle fibrosis is essential to further develop novel
therapeutics against this process [216]. Thus, tight regulation of FAP proliferation and
differentiation into myofibroblasts or adipocytes is key to control excessive ECM deposition
and fat accumulation, respectively (Figure 5A). In dystrophic muscles, chronic inflammation
and dysregulation of M1 to M2 polarisation induce a latent increase in profibrotic signals,
leading to dysregulation of FAP proliferation and differentiation, constant ECM component
deposition and fibrosis [80] (Figure 5B). Nevertheless, contrary to what happens in patients
with DMD, aged mdx mouse fibrosis is only developed in the diaphragm and scarcely in
limb muscles [219]. Thus, the latter muscles of the mdx model are not recommended for
evaluation of the effectiveness of fibrosis treatments.

The extent of fibrosis in skeletal muscle is typically quantified using classic dyes such as
Picrosirius red (PR) or Masson’s trichrome (M’sT) that define the fractional area of a muscle
cross section that is occupied by the ECM [220–222]. Both PR and M’sT are technically
simple and quick to perform and provide images suitable for automated quantification
(see [221] for detailed M’sT analysis explanation). Additionally, IHC or IF techniques can
also identify the degree of fibrosis in the tissue by targeting different elements involved in
the process such as profibrotic factors (1), FAPs and myofibroblast markers (2) and ECM
proteins (3), which are three sequential steps in the development of fibrosis.

First, regarding profibrotic factors, once muscle is injured, different cell types secrete
TGF-β isoforms, a multifunctional cytokine involved in a variety of cellular processes,
including myofibre repair and the regulation of connective tissue formation (Figure 5).
Corroborating the excess fibrosis in dystrophic muscles, studies based on IHC analysis
demonstrated that the expression of TGF-β1 is specifically upregulated in the muscle cell
sarcoplasm and myenteric interstitium of patients with DMD compared to controls, and its
expression correlated with their degree of severity [223,224]. Similar results were obtained
by IF in muscle sections of mdx mice [225]. Moreover, since the activation of the TGF-β
signalling pathway produces fibrosis in skeletal muscles, recognition of the phosphorylated
form of SMAD2/3 (p-smad2/3), a downstream TGF-β target, has been studied by IF in
muscle biopsies of patients with DMD [226], as well as in skeletal muscle of mdx mice [227],
demonstrating in both cases its correlation with fibrosis. In addition, the effect of TGF-β
may be associated with the expression of its target genes such as connective tissue growth
factor (CTGF), also considered as profibrotic factor able to reproduce and amplify TGF-β’s
effect on fibrosis [228]. Indeed, like TGF-β, IHC analyses have demonstrated that the level
of CTGF is specifically upregulated and significantly correlated with the degree of severity
of patients with DMD [224,229] and in mdx mice [227].

With respect to the cells producing the ECM components in skeletal muscle, FAPs
expressing cell-surface platelet-derived growth factor receptor-α (PDGFR-α) and tran-
scription factor 4 (TCF4) seem to be responsible for connective tissue synthesis and are
thought to be the origin of myofibroblasts [230]. Thus, this cell population can be tracked
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in muscle cryosections by IF with antibodies against PDGFR-α or TCF4 [231]. Using these
same markers, it has been shown that skeletal muscle resident mesenchymal progenitors
expressing PDGFR-α can differentiate into fibroblasts in vitro [232] and that constitutively
active PDGFR-α knockin mice show induced fibrosis in skeletal muscle [233]. However,
PDGFR-α is not only an excellent marker of FAPs, but also a key functional molecule in
the progression of muscle fibrosis. Indeed, a ligand of PDGFR-α, PDGF-AA, promoted
the proliferation of PDGFR-α+ cells to the same degree as TGF-β [218], supporting the
use of PDGF-AA as another fibrosis marker in muscle sections [234]. Finally, although
less studied, the PDGFR-β isoform and its ligand also represent a marker of fibrosis as
demonstrated by IF and IHC analysis in muscle biopsies from patients with DMD [235].
As mentioned before, IF analysis of TCF4 has also been used to evaluate fibrosis in skeletal
muscles. While Contreras and colleagues [231] showed a direct correlation between the
number of positive cells, total amount of TCF4 and the degree of fibrosis in different mdx
muscles, Pessina and colleagues demonstrated higher TCF4 immunoreactivity in muscle
biopsies from patients with DMD when compared with healthy patients [226].
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Figure 5. Regulation of connective tissue regeneration in healthy and dystrophic muscles. (A) Pro-
liferation and differentiation of FAPs into myofibroblasts or adipocytes (markers in grey cursive
letters) are regulated by pro- and antifibrotic signals released mainly by immune cells. While TNFα
released by M1 macrophages induces FAP apoptosis [236], anti-inflammatory cytokines such as TGF-
β and connective tissue growth factor (CTGF) promote their proliferation and differentiation into
ECM-producing fibroblasts [237]. Moreover, eosinophil-produced interleukin 4 (IL-4) also contributes
to FAP differentiation, and while activation of the IL-4 signalling cascade promotes mouse FAP
differentiation into fibroblasts and contributes to normal connective tissue remodelling, its inhibition
produces their differentiation into adipocytes and is associated with increased intramuscular fat,
glucose dysregulation and muscle weakening [238,239]. (B) In healthy muscle, upon injury, tight
regulation of the innate immune response with balanced release of profibrotic and antifibrotic factors
produces the correct regeneration and maturation of damaged myofibres and parallel reconstruc-
tion of the extracellular matrix (ECM). However, in patients with DMD and animal models of the
disease, continuous cycles of degeneration and regeneration contribute to chronic inflammation,
constant release of profibrotic TGF-β and dysregulation of the ECM component deposition, leading
to substitution of muscle fibres with fibrotic and adipose tissues.
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Myofibroblasts, on the other hand, have been identified in the literature by their
expression of alpha smooth muscle actin (α-SMA). However, the contribution of this subset
of myofibroblasts to fibrogenesis varies among different tissues [240]. Although this marker
has been generally used to identify fibroblasts in mdx mice skeletal muscles, sometimes
as a single marker [154], other times in conjunction with a reporter GFP transgene co-
expressed in collagen type 1 expressing cells [234], a recent study shows that α-SMA is not
a good functional marker of fibrogenic cells in the fibrosis process associated with muscular
dystrophy [241]. Moreover, the protein α-SMA is also expressed by smooth muscle cells
surrounding blood vessels [12].

Finally, IF analysis targeting proteins expressed in the ECM, such as collagen (type
I and type III) and fibronectin, also suggests good indicators of fibrosis and is very often
used [220]. Many studies have shown increased expression of fibronectin and collagen type
I and type III in fibrotic muscle from mdx mice by IF methods [218,234,242,243]. In addition,
although less studied, Sabatelli and colleagues have demonstrated an upregulation of
collagen type IVα6 chain in the ECM of muscle biopsies of patients affected by DMD using
IF methods [244].

3.8.2. Fat Deposition

The process of adipogenesis during chronic muscle disease is still not well understood.
As mentioned earlier, canonical FAPs (PDGFR-α+/Sca-1+) seem to be the main players, but
other cell populations and factors released within the muscle niche regulate the process
of ectopic fat accumulation [245]. Intramuscular fat is constituted by adipocytes, located
between individual myofibres and intramyocellular lipids, stored inside the fibres as lipid
droplets. The study of adipocytes has been hampered because the snap-freezing protocol
generally used for skeletal muscle samples completely disrupts this cell morphology. Hence,
while cryosectioning is key to preserve lipid droplets (lost in paraffin sections), the study of
adipocytes must be carried out in previously fixed samples [38]. Consequently, to have an
overall estimation of the lipid content of a muscle, the use of a classic lipophilic dye such as
ORO in cryosections [246] is fast and the most generalised method [247]. This technique
has been applied to understand the process of fat deposition in the context of muscle
injuries and different dystrophies [221,248,249] and to test the efficiency of treatments in
mdx mice [250]. Additionally, fluorescent dyes such as Bodipy are also useful tools to
precisely quantify lipid droplets in a fibre type-specific manner [63]. Complementarily, to
precisely recognise the adipocytes in prefixed samples, H&E staining or the use of specific
antibodies to perilipin-1, the protein that coats lipid droplets in these cells is widely used.
For full protocols, see: [38,249].

3.9. Calcification

Progression of the disease in patients with DMD is accompanied by an increase in
ectopic calcification, especially in the heart and skeletal muscle fibres [251,252], a feature
also found in different animal models [253–256].

As it has been shown that the development of these Ca2+ deposits also contributes to
loss of force in skeletal and cardiac fibres [254], understanding the factors leading to their
apparition and expansion is key to develop preventive therapies. Some lines of evidence
suggest there is a link between the apparition of Ca2+ deposits and the general loss of
Ca2+ homeostasis observed in dystrophic individuals [5,255,257]. In fact, calcification of
dystrophic muscles is produced by the accumulation of hydroxyapatite (calcium phosphate)
crystals [253,255] and increased concentrations of phosphorus in vivo [254] or in vitro [257]
produces a parallel increase in Ca2+ deposits.

Although the molecular mechanisms leading to muscle calcification in muscles lacking
dystrophin are still not clear, the process could be similar to the so-called “dystrophic
calcification”, that is, the deposition of hydroxyapatite in soft tissues associated with
previous damage/inflammation [258]. Importantly, even in healthy individuals, circulating
levels of Ca2+ and phosphate are close to their solubility coefficient, so collagen or small
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Ca2+ deposits can act as nucleating factors that induce the deposition of crystals [259]. In
patients with DMD and dystrophic animal models, increased ECM component deposition
could act as a nucleating factor that, together with higher serum concentrations of Ca2+ [257]
and phosphate [253], leads to skeletal muscle and heart calcification.

In line with this, levels of the profibrosis factor TGF-β and FAP cells directly corre-
late with extended calcification and higher severity of muscle pathogenesis in different
mdx mice [260], linking fibrosis and the calcification process. Moreover, mdx mice fed a
low-phosphorus diet showed no signs of calcification, and minimal muscle necrosis and
inflammation in muscles of the lower limbs [254]. Finally, re-establishing Ca2+ homeostasis
by targeting different Ca2+ handling proteins has been shown to ameliorate the DMD phe-
notype and improve muscle function (reviewed by [72]), demonstrating the contribution of
Ca2+ overload to the process of mineralisation in dystrophic muscles.

Traditionally, Ca2+ and phosphorus deposits have been studied by Alizarin red [261]
and von Kossa [262], respectively. These are commercially available kits that can be applied
easily to both tissue sections and cell plates [221,263]. Moreover, some protocols permit
the visualisation of calcified structures in whole-mount preparations [264]. Additionally,
several recent studies have used computed tomography X-ray microscopy to obtain 3D
images of in vivo limb muscles [254] or ex vivo whole-mount muscles [257], and assess
their mineralised volume. Finally, electron back-scatter diffraction analysis not only permits
location of mineralised areas as electron-dense spots, but also identifies the composition of
the crystals [253,255].

3.10. Changes in Neuromuscular Junction

Like other mechanisms explained above, alteration in the DAPC due to the lack of
dystrophin causes abnormalities in the presynaptic and postsynaptic regions of the NMJ.
These structural abnormalities are accompanied by functional changes in neuromuscular
transmission and nerve-evoked electromyography (reviewed by [265]).

Although there is some controversy in the literature [266–268], some studies clearly
demonstrate that NMJ fragmentation and excessive nerve sprouting seen in animal models
as well as patients with DMD are the result of continuous degeneration and regeneration
of myofibres [269–271]. Furthermore, fragmentation of postsynaptic endplates observed in
dystrophic muscle is a clear sign that the signalling cascades regulating NMJ morphology
and plasticity after degeneration are also dysregulated. Specifically, dissociation of the
DAPC alters the agrin signalling pathway, which is essential for acetylcholine receptor
clustering (reviewed by [272]) and, thus, NMJ maturation [273]. Therefore, to date, several
therapies targeting the main components of these cascades have been envisioned [274,275]
and may yield promising results in patients suffering DMD.

While the study of NMJs with TEM has contributed immensely to the comprehension
of the ultrastructural changes observed in muscle dystrophies [266,276,277], advances in
fluorescence imaging had paved the way for discoveries contributing to the understanding
of how NMJs develop, mature and change in healthy and diseased conditions [278–280].
In this regard, a methodological paper has recently been published explaining a proto-
col for the staining and subsequent analysis of NMJs in prefixed whole-mount muscle
preparations [281]. With this method, motoneuron axons and nerve terminals are labelled
with antibodies to the presynaptic neuronal marker neurofilament (NF) and synapto-
physin (Syn), respectively, while postsynaptic acetylcholine receptors are labelled with
the fluorescent-conjugated marker α-bungarotoxin (α-BTX). For fresh muscle samples,
the reader is referred to [282]. Note that in both cases, to study the morphology of the
NMJs, whole-mount preparations are recommended, as cross or longitudinal sections
result in poor morphological assessment. Moreover, to obtain a perfect 3D reconstruction
of the NMJ, Z-stacks not spaced less than 1 µm acquired with a confocal laser-scanning
microscope are needed. The analysis of NMJ structure and morphology can be carried out
manually with imaging software as explained in Pratt et al. [281], or semi-automatically
with programmes such as the ones described on Table S1 [283]. Finally, the establishment
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of a robust, standardised methodology to assess the morphometric analysis of NMJs [284]
has contributed immensely to the discovery of important species-specific differences in the
structure and plasticity of NMJs [285].

3.11. Changes in Capillarisation

Ischemia and vascular dysfunction have been suggested as other important pathogenic
mechanisms in DMD (Figure S1). Several lines of evidence show that blood perfusion
is compromised in dystrophin-mutant muscles, leading to extensive areas of necrotic
tissue [286–288]. The rationale behind the appearance of these ischemic regions is based
on the one hand on the important role played by dystrophin in anchoring the protein
neuronal nitric oxide synthase (nNOS) to the sarcolemma. This enzyme is essential for the
production and release of nitric oxide (NO) to the vasculature, nurturing the myofibres.
In healthy individuals, adequate blood perfusion during muscle contraction is ensured
by NO release and consequent vasodilatation. However, in the absence of functional
dystrophin, the enzyme nNOS is not close enough to the sarcolemma, there is not enough
NO to vasodilate and active myofibres do not receive enough perfusion [12,289]. These
events lead to functional ischemia in dystrophic muscles [290]. On the other hand, fibrotic
tissue deposition could also alter blood perfusion to muscle cells. In patients with DMD,
deposition of connective tissue increases the distance between myofibres and small-calibre
vessels, leading to impaired gas exchange, reduced communication by soluble factors and
compromised mechanical function [291]. Finally, another possible mechanism to explain
vascular dysfunction in aged mdx mice could be linked to dystrophic SCs’ reduced capacity
to promote angiogenesis during the regeneration process [292].

For all the above-mentioned reasons, to assess the benefits of therapeutic strategies
designed to re-establish normal perfusion in myofibres [293], researchers should quantify
different parameters related to capillary density and distribution within the muscle fibres
(reviewed by [294]). Unfortunately, even though some programmes have been designed
to automatically assess all these parameters (Muscle2View, Table S1), to the best of our
knowledge, none of the papers analysing the role of capillary alterations in dystrophic
muscles or possible therapies have described this mechanism in such detail.

Endothelial cells, pericytes and smooth muscle cells are the main components of
different diameter blood vessels in tissues. These cells can be precisely identified with
different well-characterised IHC and IF techniques [295]. Among them, and in the context
of dystrophic muscles, the most used are biotinylate or fluorescein-labelled lectins such
as Ulex europaeus agglutinin 1 (UEA 1, only for humans) [296] or isolectin B4 (IB4) from
Griffonia simplicifolia [297], antibodies to the cluster of differentiation 31 (CD31) [12,298]
for endothelial cells and to PDGFR-β, to neuron-glia antigen 2 (NG2) or to α-smooth
muscle actin (α-SMA), for pericytes [12]. CD31, also recognised as platelet–endothelial cell
adhesion molecule-1, is an adhesion molecule specifically expressed on endothelial cells,
platelets and several immune cells [299]. Lectins (UEA 1 and IB4) are carbohydrate-binding
proteins that bind to specific glycoproteins and glycolipids present on endothelial cells
and may be perfused into the animal before sacrifice or incubated in the ex vivo tissue
sample [10].

Finally, noteworthy capillary density and distribution play a critical role in oxygen
supply to the myofibre and it is strongly linked to fibre phenotype. Hence, the complete
assessment of changes in the capillary network of a specific muscle should be carried out in
a fibre type-dependent manner. Currently, by applying IF techniques, several groups have
successfully identified different fibre types simultaneously with capillaries and laminin.
For specific protocols, see: [140,296,298].

3.12. Revertant Fibres and Detection of Dystrophin in Gene-Editing Therapies

As mentioned above, DMD is caused by different frameshift mutations leading to
premature stop codons in the dystrophin gene, which abolish the synthesis of the functional
protein. Surprisingly, in some patients with DMD [300] and in several animal models
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of the disease [301–303], single or clustered sporadic dystrophin-positive muscle fibres,
called revertant fibres (RFs), are observed scattered among dystrophin-negative fibres. The
mechanism behind the spontaneous emergence of these fibres is still a matter of strong
debate [304]. They may arise from epigenetic alternative splicing resulting in skipping
exon(s) flanking the mutated exon, a process that would eliminate the mutation from
the dystrophin transcript, and therefore, would restore the open reading frame of the
shortened transcript [305–307]. Or alternatively, they are produced as the result of a second
spontaneous mutation that corrects the original mutation in the DNA [301,308,309].

The clustered appearance of RFs in the adult and increased number with age [306,310]
have led to the postulation of a “clonal expansion model”. According to this hypothesis,
alternative splicing or second mutations would spontaneously occur in some myogenic
progenitors early in muscle development, and later, these revertant precursors will expand
during the cycles of degeneration/regeneration occurring in dystrophic mutants. Since
these dystrophin+ RFs are more resistant to degeneration, their number will increase as the
individual ages [311]. Independently of the mechanism responsible for their appearance
and expansion, results demonstrating co-restoration of sarcolemmal DAPC proteins in
these RFs [306] suggested that these fibres are less vulnerable to damage and have opened
a window for the development of gene-editing experimental therapies [312–314].

Therefore, histological assessment of the dystrophin protein in dystrophic muscles is
key, not only to further study RFs [304], but also to quantify the long-term effect and efficacy
of exon-skipping therapies [315]. Hence, depending on the dystrophic model chosen, its
specific mutation and the exons at which the genetic therapy is directed, researchers must
carefully choose in between a broad spectrum of dystrophin monoclonal antibodies, each
of which is designed to recognise specific dystrophin epitopes [316,317].

4. Conclusions

As our understanding of the molecular mechanisms leading to DMD increases, the
search for new therapies combining drugs and genetic approaches evolves. To test these
treatments and prove their safety and efficacy before clinical implementation, their appli-
cation in animal models of the disease is critical. Moreover, objective assessment of the
benefits of these experimental approaches must rely on validated methods of administra-
tion and the establishment of standardised analytical protocols. In the context of DMD, the
degenerative/regenerative phase desynchronisation between different muscles and even
within the same muscle makes ex vivo histopathological study a reliable tool to assess the
overall condition of muscle fibres, as it yields important locational information that other
valuable techniques such as WB or RT-qPCR cannot provide.

As microscopy technology progresses and pharmacological companies expand their
catalogues with innumerable primary antibodies for IH evaluation, the researcher needs
clear, standardised and reliable protocols to objectively evaluate the beneficial effects a
therapy could exert on the progression of the disease. Here, we presented a summary of
the most commonly used histochemical and immunohistological techniques, we explained
the rationale behind the use of certain markers and we cited reliable protocols to guide the
researcher. Importantly, the paper stresses that some of the methods used in the past have
been substituted with either easier or more reliable protocols and citations are provided.

The main limitation of this article is the impossibility of addressing all possible markers
and stains ever used in the field of dystrophinopathies. Nevertheless, we provide markers
of degeneration for necrotic/pyroptotic fibres, markers of inflammation and inflammatory
cells, means to evaluate oxidative stress and mitochondrial function, protocols to assess the
regenerative process including markers for SC proliferation and differentiation, markers
of myofibre maturation and branching and markers for FAPs, together with methods
to evaluate fibrosis, fat accumulation and calcification, capillarisation and, finally, NMJ
reorganisation. Furthermore, we also explain mechanisms of analysis and how to interpret
the results of some of these histological tests.
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8-OHdG 8-hydroxy-2′-deoxyguanosine
α-BTX alpha bungarotoxin
α-SMA alpha smooth muscle actin
ALP alkaline phospatase
APC antigen-presenting cells
CCR C-C chemokine receptor
CD cluster of differentiation
CNF centrally nucleated fibres
COX cytochrome C oxidase
CSA cross sectional area
CTGF connective tissue growth factor
DAMPs damage-associated molecular patterns
DAPC dystrophin-associated protein complex
DAPI 4′,6-diamidino-2-phenylindole
DHE dihydroethidium
DMD Duchenne muscular dystrophy
EBD Evan’s blue dye
ECM extracellular matrix
emb-MyHC embryonic myosin heavy chain
FAPs fibro-adipogenic progenitors
FOXP3 Forkhead box protein 3
GT Gömöri trichrome
H&E haemotoxylin and eosin
HNE 4-hydroxynonenal
IB4 isolectin B4 from Griffonia Simplicifolia
IFNγ interferon gamma
Ig immunoglobulin
IH immunohistology/immunohistological
IL-10 interleukin 10
IL-1β interleukin 1 beta
IL-4 interleukin 4
IL-6 interleukin 6
iNOS inducible nitric oxide synthase
M’sT Masson’s trichrome
MF’sD minimum Feret’s diameter
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MPO myeloperoxidase
MyHC myosin heavy chain
MyoD myoblast determination protein 1
Myog. myogenin
NF neurofilament
NG2 neuron-glial antigen 2
NMJ neuromuscular junction
NO nitric oxide
nNOS neuronal nitric oxide synthase
ORO Oil red O
Pax7 paired box protein 7
PDGFR-α platelet-derived growth factor receptor-alpha
PDGFR-β platelet-derived growth factor receptor-beta
PR Picrosirius red
RF revertant fibre
ROS reactive oxygen species
RT-qPCR real-time quantitative polymerase chain reaction
SC satellite cell
SDH succinate dehydrogenase
SR sarcoplasmic reticulum
Syn synaptophysin
TEM transmission electron microscopy
TGF-β transforming growth factor-beta
TCF4 transcription factor 4
Treg T regulatory cell
TNFα tumour necrosis factor alpha
UEA 1 Ulex europaeus agglutinin 1
WB Western blotting
WGA wheat germ agglutinin
WT wild type
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