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A B S T R A C T

Pectin has several purposes in the food and pharmaceutical industry making its quantification important for
further extraction. Current techniques for pectin quantification require its extraction using chemicals and pro-
ducing residues. Determination of pectin content in orange peels was investigated using near infrared hyper-
spectral imaging (NIR-HSI). Hyperspectral images from orange peel (140 samples) with different amounts of
pectin were acquired in the range of 900–2500 nm, and the spectra was used for calibration models using
multivariate statistical analyses. Principal component analysis (PCA) and linear discriminant analysis (LDA)
showed better results considering three groups: low (0–5%), intermediate (10–40%) and high (50–100%) pectin
content. Partial least squares regression (PLSR) models based on full spectra showed higher precision
(R2 > 0.93) than those based on few selected wavelengths (R2 between 0.92 and 0.94). The results demonstrate
the potential of NIR-HSI to quantify pectin content in orange peels, providing a valuable technique for orange
producers and processing industries.

1. Introduction

Citrus are among the most cultivated crops around the world since
they are beneficial for human consumption due to their nutritional and
antioxidant properties. As a result, the citrus industry is responsible for
millions of jobs (García-Martín, Olmo, & García, 2018; García, Olmo, &
García, 2016). Spain is the first producing country of oranges and juices
in the European Union and the fifth in the world. This agricultural
activity is mainly located in Valencia, producing 3 million tons of citrus
per year, of which, according to the Spanish Ministry of Agriculture,
Fishing and Food (2017) (Ministerio de Agricultura, 2019), 1.5 million
are oranges. The orange juice sector generates about 1.2 million tons
waste per year in Spain. This waste is mainly used for animal feed
(which is energy costly) or is ploughed into landfills. However, this
organic waste has great potential for the food industry as source of
many important and valuable compounds (Lessa, Gularte, Garcia, &
Fajardo, 2017).

Orange waste can include peel, pulp, seeds, leaves and oranges
without the quality requirements. This waste contains, as average,
16.9% (wt.) soluble sugars, 9.21% (wt.) cellulose, 10.5% (wt.)

hemicelluloses, and 42.5% (wt.) pectin, which is its most important
component. The soluble sugars present in orange peel are glucose,
fructose, and sucrose. The insoluble polysaccharides of the cellular wall
of the orange peel are composed of pectin, cellulose, and hemi-
celluloses. Pectin and hemicelluloses are rich in galacturonic acid,
arabinose, and galactose, and contain small amounts of xylose, rham-
nose and glucose (Grohmann, Cameron, & Buslig, 1995; Rezzadori,
Benedetti, & Amante, 2012). Pectin is composed of a main chain, which
has a linear structure of α-D-galacturonic acids linked by α-(1,4)-gly-
cosidic bonds, and a side chain that mainly contains neutral sugars (Liu,
Fishman, Kost, & Hicks, 2003).

Pectin has several purposes in the food and pharmaceutical in-
dustry, as it is used as thickener, stabilizer, gelling agent, emulsifier and
drug delivery vehicle (Wicker, Kim, Thirkield, Lin & Jung, 2014).
Hence, the extraction of pectin from orange waste is very important and
requires an economically feasible alternative. Among the different
pectin extraction methods (dialysis, metal precipitation, membrane
separation, etc.), alcohol precipitation is the most widely used methods
despite its high energy and ethanol requirements (Ren et al., 2019).
However, it is also important to quantify the amount of pectin in orange
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residue, in order to justify investments in the waste processing and
extraction methods. The current techniques for pectin quantification
requires the previous pectin extraction. In this sense, the commonly-
used sulphuric acid-carbazole colorimetric method for pectin content
measuring in citrus involves pectin extraction, pectin depolymerisation,
reaction of pectin with carbazole and absorbance measurement at ap-
proximately 525 nm (Wang, Chuang, & Hsu, 2008).

Some works have been reported using vibrational techniques, more
specifically near infrared spectroscopy and Fourier transform near in-
frared spectroscopy, to determine some parameters in orange, including
orange firmness, peel thickness and total pectin content (Bizzani,
Flores, Colnago, & Ferreira, 2017; Chen et al., 2018). Although this
techniques have achieved good results for many parameters, the fact
that it only detects a single point of the sample at a time can be a barrier

for complex samples (Feng & Sun, 2012).
In this context, near infrared hyperspectral imaging (NIR-HSI), as an

emerging technology, offers numerous advantages over conventional
analysis methods and can overcome some problems faced by near in-
frared spectroscopy. Combined to chemometrics, NIR-HSI has achieved
very precise results for many compounds and properties in food, as
colour and pH in meat (Elmasry, Sun, & Allen, 2012), fibre in flour
(Badaró, Morimitsu, Ferreira, Clerici, & Barbin, 2019) and melamine in
milk powder (Forchetti & Poppi, 2017). As the hypercube data are
massive, chemometrics is used to reduce the high dimensionality to the
most meaningful dimension (data simplification) without compro-
mising the information contained into the original image (Feng,
Makino, Oshita, & Martín, 2018). Hence, HSI could provide a dis-
tribution map of pectin in the orange waste, as other authors have

Fig. 1. Spectra of orange peels and pectin: a) Smoothing, b) Smoothing + SNV, c) Smoothing + 1st derivative, d) Smoothing + 2nd derivative, e)
Smoothing + MSC, f) Smoothing + MSC + 2nd derivative, g) Smoothing + SNV + 1st derivative. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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developed in other fruit such as peach (Zhu, Huang, Wu, Chen, & He,
2017). For quantitative assessment, partial least squares regression
(PLSR), a type of linear analysis, is widely used to establish the corre-
lation between spectral data of the hypercubes and real quantities or
concentrations of the compound measured by ordinary laboratory as-
sessments (Feng et al., 2018). NIR-HSI coupled with PLSR could be used
in a preliminary analysis of orange waste to determine its constituents
(such as pectin) in a quick way, to further decide whether to extract
them or not based on the concentrations determined, being an alter-
native to improve extraction yield.

Thus, the hypothesis of this work is that NIR-HSI has a potential
application for identification of pectin content in orange peels. This
hypothesis will be verified by identification of the wavelengths that
most contribute in the development of models with good precision and
accuracy (defined as optimum wavelengths) and development of a

prediction model to quantify pectin content in orange peels.

2. Material and methods

2.1. Pectin extraction from raw material

Lanelate oranges harvested from January to July of 2019 were
supplied by Export Orange S.L. The oranges were ground
(1 cm × 1 cm × 1 cm) and the juice was separated from the peel using
a strainer. The peel was washed with water at 100 °C, and washed again
with water at 50 °C. This step was carried out to remove most of sugars.
Then, the peel was strained and oven dried at 45 °C for 2 days. After,
the peel was milled using a milling machine and sieved with an ASTM
N°50 mesh (300 µm diameter). A sample of 5 g was dispersed in water
at a solid–liquid ratio of 1:40 (w/v) and the pH of the mixture was

Fig. 2. PCA scores and loadings of orange peels and pectin: (a and e) Smoothing + 2nd derivative, (b and f) Smoothing + MSC + 2nd derivative, (c and g)
Smoothing + SNV + 1st derivative, (d and h) Smoothing + 1st derivative. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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adjusted to 1.5 with 0.1 M HCl. Subsequently, the mixture was placed
in a water bath between 70 and 85 °C at 300 rpm for 70 min. After, the
mixture was centrifuged at 5000 rpm for 20 min. The supernatant
(solution of pectin extract) was removed and the liquid residue was
oven dried at 45 °C for 2 days. Then, the dried residue was milled and
sieved with the ASTM N°50 mesh.

2.2. Sample preparation and image acquisition

Standard pectin (Apple pectin powder − 100% purity, Solgar, Inc.
Leonia, USA) was added to the dried residue of orange peel without
pectin in the following percentages: 0, 1, 5, 10, 15, 20, 30, 40, 50, 60,
70, 80, 90 and 100% (being 0% residue of orange peel without pectin
addition, and 100% pure pectin without residues of orange peel). Ten

Fig. 3. PCA scores of orange peels and pectin after
variable selection: a) Smoothing + 2nd derivative,
b) Smoothing + MSC + 2nd derivative, c)
Smoothing + SNV + 1st derivative, d)
Smoothing + 1st derivative. (For interpretation of
the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 1
LDA models performance for qualitative analysis of pectin in orange peels.

Pre-treatment Wavelengths (nm) Sensitivity (Validation) Specificity (Validation) Accuracy – Calibration
Model (%)

C1 C2 C3 C1 C2 C3

Smoothing 1100, 1290, 1442, 1775, 1918, 2032, 2118, 2289 0.58 0.67 1.00 0.83 0.81 1.00 83.51
Smoothing + SNV 1318, 1442, 1775, 1871, 2032, 2213 0.67 0.40 0.93 0.70 0.81 1.00 84.54
Smoothing + 1st Derivative 1014, 1252, 1376, 1547, 1747, 1842, 1918,

1985, 2080, 2185, 2251
0.67 0.67 0.93 0.83 0.81 1.00 92.78

Smoothing + 2nd Derivative 1071, 1166, 1242, 1318, 1404, 1595, 1718,
1785, 1871, 1947, 2042, 2147, 2213

0.58 0.73 1.00 0.87 0.81 1.00 90.72

Smoothing + MSC 1318, 1452, 1775, 1871, 2051, 2213 0.67 0.47 0.93 0.73 0.81 1.00 85.57
Smoothing + MSC + 2nd Derivative 1081, 1166, 1233, 1309, 1404, 1595, 1718,

1785, 1871, 1947, 2042, 2137, 2213
0.58 0.67 1.00 0.83 0.81 1.00 88.66

Smoothing + SNV + 1st Derivative 1014, 1252, 1376, 1547, 1747, 1842, 1918,
1985, 2080, 2185, 2251

0.67 0.60 0.93 0.80 0.81 1.00 91.75

C1: low pectin content (0–5%); C2: intermediate pectin content (10–40%); C3: high pectin content (50–100%).

Table 2
PLSR model performance for quantitative analysis of pectin in orange peels.

Pre-treatment Wavelengths (nm) LV R2
CV RMSECV R2

P RMSEP SEP RPD RER

Smoothing Full spectra 6 0.93 8.54 0.93 9.16 8.27 4.11 12.09
1271, 1366, 1452, 1690, 1766, 1861, 1947, 2261, 2365 6 0.93 8.61 0.93 8.84 8.04 4.22 12.44

Smoothing + SNV Full spectra 6 0.95 7.43 0.94 7.99 7.15 4.75 13.98
1271, 1328, 1452, 1690, 1766, 1871, 1947, 2261, 2346 5 0.95 7.57 0.94 8.42 7.59 4.47 13.17

Smoothing + 1st Derivative Full spectra 3 0.93 8.71 0.95 7.94 7.66 4.43 13.06
1223, 1395, 1652, 1728, 1813, 1899, 2166, 2318 2 0.94 8.37 0.92 9.73 9.20 3.69 10.87

Smoothing + 2nd Derivative Full spectra 4 0.95 7.42 0.96 6.50 6.32 5.37 15.81
1062, 1214, 1318, 1433, 1690, 1861, 2051, 2118, 2204, 2270 2 0.94 8.15 0.94 8.03 7.33 4.63 13.64

Smoothing + MSC Full spectra 4 0.96 6.68 0.94 8.23 7.88 4.30 12.68
1328, 1452, 1690, 1766, 1871, 1937, 2194, 2237 4 0.95 7.60 0.94 8.03 7.70 4.41 12.99

Smoothing + MSC + 2nd Derivative Full spectra 4 0.95 7.30 0.96 6.94 6.67 5.09 14.99
1033, 1318, 1423, 1690, 1861, 2118, 2204, 2270 2 0.94 7.85 0.94 8.32 7.85 4.32 12.74

Smoothing + SNV + 1st Derivative Full spectra 5 0.95 7.13 0.95 7.96 7.51 4.52 13.32
1290, 1395, 1499, 1652, 1728, 1899, 2166, 2299 3 0.95 7.54 0.94 8.44 7.90 4.29 12.66
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samples of 5 g of each percentage were prepared, totalizing 140 sam-
ples. Samples were placed in Petri dishes of 3 cm of diameter for image
acquisition.

NIR hyperspectral images were acquired from each sample in the
reflectance mode using a SWIR camera (Headwall Photonics SWIR M
series, Massachussets, USA), in the range of 900–2500 nm, with an il-
luminator of 75 W and a scanning speed of 14.7 mm/s. The program
automatically subtracted the white (~99% reflectance) and dark (0%
reflectance) references from subsequently acquired images.

2.3. Spectra extraction and multivariate analysis

Image segmentation and spectrum extraction were performed using
a code developed by the research group using the open software Python
(version 3.7.0; Python Software Foundation License). The averaged
reflectance spectra were smoothed (Savitzky-Golay) and mean centred
prior to multivariate data analysis. Data were pre-treated with Standard

Normal Variate (SNV), Multiplicative Scatter Correction (MSC), first
derivative (1st Der) (Savitsky-Golay smoothing, 11 points window, 2nd
order polynomial), second derivative (2nd Der) (Savitsky-Golay
smoothing, 11 points window, 2nd order polynomial) and a combina-
tion of MSC + 2nd der, and SNV + 1st der. After that, qualitative and
quantitative analysis such as Principal Component Analysis, Linear
Discriminant Analysis and Partial Least Square Regression were carried
out. The multivariate data analysis was performed using The
Unscrambler X 10.4 software.

2.4. Principal components analysis (PCA)

PCA was performed as exploratory data analysis, in order to obtain
an overview of the variation among samples, identify clusters and
outliers. This step is applied to reduce the spectral information into
principal components (PCs), which are a linear combination of the
variables in the spectra data and contain most of the relevant

Fig. 4. Predicted vs. reference plot for the PLSR models obtained with full spectra: a) Smoothing, b) Smoothing + SNV, c) Smoothing + 1st derivative, d)
Smoothing + 2nd derivative, e) Smoothing + MSC, f) Smoothing + MSC + 2nd derivative, g) Smoothing + SNV + 1st derivative.
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information (Rachmawati, Rohaeti, & Rafi, 2017). Moreover, through
PCA scores, data from both sets of experiments were split into cali-
bration and validation sets (independent sets), using Kennard-Stone
algorithm (Kennard & Stone, 1969), in a ratio of 70 and 30%, respec-
tively. In addition, the loadings plot were used to manually select the
wavelengths that contained the relevant information about the sample,
defined as optimum wavelengths. These optimum wavelengths were
chosen based on the most prominent peaks and valleys for further
qualification quantification analysis (LDA).

2.5. Linear discriminant analysis (LDA)

Linear discriminant analysis (LDA) is a classification method used to
differentiate samples into different classes. As a particularity of LDA
method, the number of variables must be smaller than the number of

samples (Manley & Baeten, 2018). Therefore, optimum wavelengths
selected in the loadings plot of PCA were used as the data input to
perform LDA analysis in all pre-treated data. LDA was performed with a
leave-one-out cross-validation method and an external validation was
carried out with the independent dataset. Models performance was
measured in terms of sensitivity, specificity (of validation set) and ac-
curacy of calibration model. Values of sensitivity and selectivity close or
equal to 1.00 and accuracy of 100% show good discriminative power.

2.6. Partial least Square regression (PLSR)

Partial Least Square Regressions (PLSR) was performed to test the
ability of NIR-HSI data to quantify the different percentages of pectin
added to the residues of orange peel. First, calibration models were
developed using full spectra, and, then, the weighted regression

Fig. 5. Regression coefficients for the PLSR models obtained with full spectra: a) Smoothing, b) Smoothing + SNV, c) Smoothing + 1st derivative, d)
Smoothing + 2nd derivative, e) Smoothing + MSC, f) Smoothing + MSC + 2nd derivative, g) Smoothing + SNV + 1st derivative.
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coefficients (Bw) resulting from these PLSR models were used for the
development of reduced models. The wavelengths with the highest
values (regardless of sign) were selected as optimum wavelengths. All
the models were developed based on a full cross validation (leave-one
out), and the models performance was evaluated in terms of coefficient
of determination and root mean square error of cross-validation (R2

CV,
RMSECV) and prediction (R2

P, RMSEP), the ratio performance to de-
viation (RPD) and the ratio of error range (RER), both based on the
standard error of validation (SEP). It is expected coefficients of de-
termination close to 1, errors close to 0, RPD and RER above 3 and 10,
respectively (Malley, Yesmin, & Eilers, 2002).

3. Results and discussion

3.1. Spectral analysis

The average HSI reflectance spectra of orange peel and pectin in
each percentage are presented in Fig. 1. The smoothed spectra (Fig. 1a)
showed very similar shape for all samples, only differing in the intensity
of reflectance across the spectral region. Overall, samples with lower
amount of pectin had higher reflectance. This baseline difference was
minimized after spectra pre-treatment with SNV and MSC (Fig. 1b and
1e, respectively). Peaks were observed around 1214 and 1728 nm,
which correspond to stretching vibrations of CeH in the first and
second overtone. A valley at 1306 nm indicated stretching vibration of
CeH or a combination of deformation. The peak around 1918 nm is
related to the stretching vibration of C]O in the second overtone of
amides. At 2100 nm, there was a peak which denotes a combination of
OeH deformation and CeO stretching vibration, associated to starch.

After 2nd derivatives and the combination of pre-treatments
(MSC + 2nd der), other peaks and valleys were highlighted along the
spectra (Fig. 1d and 1g). Most of these denote stretching vibrations of
CeH in the first and second overtones or combination of deformation.
In addition, the 2nd derivative highlighted in the spectra a peak around
2000 nm, which denote a combination of vibration of OeH and CeO
deformation in starch, and a valley at 2080 nm corresponding to a
combination of vibrations of OeH stretching and OeH deformation,
associated to sucrose and starch (Osborn, Fearn, & Hindle, 1993).

3.2. Principal components analysis (PCA)

According to the literature, the performance of classification models
based on multi-classes seems to be worse than classifications based on
group of classes (Ziegler et al., 2016). Therefore, in order to achieve a
better performance for models with different percentages of pectin,
three classes were created and defined as “Low content” (samples with
0–5% of pectin), “Intermediate content” (samples with 10–40% of
pectin) and “High content” (samples with 50–100% of pectin), based on
the average pectin content in orange peels reported by other authors
(El-Nawawi & Shehata, 1987; Rouse & Crandall, 1976), which is
roughly 30% (wt.) on a dry matter basis. Then, principal component
analysis was performed on reflectance spectra with all pre-treatments
based on these classes. Those pre-treatments that better separated the
groups of samples are displayed in Fig. 2. Fig. 2a, 2c and 2d show the
scores plots of PC1 and PC3 for spectra pre-treated with 2nd derivative,
a combination of SNV and 1st derivative, and 1st derivative only, re-
spectively; whereas, Fig. 2b shows the scores plot of the first two
principal components for spectra pre-treated with a combination of
MSC and 2nd derivative. Overall, samples with high content of pectin
are spread in the negative side of PC1, while samples with a low content
of pectin are in the positive side. Accordingly, samples with an inter-
mediate content of pectin are disposed between the other two groups.

The first three principal components explained over 75% of the
variance among samples, and the loadings plot of these three PCs are
represented in Fig. 2(e-h). Most of the peaks and valleys observed in
these plots agree with the respective spectra, especially those associated

to cellulose, starch and sucrose. Consequently, these loadings plot were
used in order to identify the wavelengths that most contributed to se-
parate the groups of samples. Then, these optimum wavelengths were
selected, and a new PCA was recalculated for each of the pre-treatments
(Fig. 3 a-d). Fig. 3a and 3b showed that over 90% of the variance be-
tween samples were explained by the first two PCs, with samples of low
pectin content displayed in the left side of PC1 and negative part of
PC2, and samples of high pectin content in the right side of PC1 and
positive part of PC2. Samples of intermediate pectin content remained
in between the other two classes of samples. After variable selection,
data pre-treated with SNV + 1st der and only 1st derivative showed
similar behaviour on PCA plot as with full spectra, with PC1 and PC2
explaining 89% of the variance among samples.

3.3. Linear discriminant analysis (LDA)

The selected wavelengths from PCA loadings were used as pre-
dictors for LDA models, in order to evaluate the pre-treatments that
better discriminated samples into their respective classes. Table 1
shows the models performance of LDA for qualitative analysis of pectin
in orange peels. As in PCA, samples containing different percentages of
pectin were grouped into three classes defined as “Low content”
(samples with 0–5% of pectin), “Intermediate content” (samples with
10–40% of pectin) and “High content” (samples with 50–100% of
pectin). These classes were used to develop the classification models of
samples added of pectin. Data pre-treated with 1st derivative and a
combination of SNV + 1st derivative provided the calibration models
with the best accuracy (92.78 and 91.75%, respectively), and high
values of sensitivity and specificity (0.60–1.00), thus demonstrating
good capacity of the models to discriminate samples of residues of or-
ange peel with different pectin content. Calibration models developed
with pre-treated data with 2nd derivative and a combination of
MSC + 2nd derivative had the second and third best accuracy (90.72
and 88.66%), respectively. However, the sensitivity and selectivity of
these models were lower than those, ranging from 0.58 to 1.00. Data
that was only smoothed, and SNV and MSC pre-treatments showed a
suitable accuracy for calibration models (83.51, 84.54 and 85.57%,
respectively). However, they did not improve the model discriminant
power, since sensitivity and specificity of some classes were lower than
0.50. In addition, Class 3 had less misclassified samples when compared
to Classes 1 and 2. This was also observed in the PCA score plots (Fig. 2
e-h), where, visibly, the distance between Classes 1 and 2 were closer
than Class 3, so there was an overlap of samples from those classes.

3.4. Partial least Square regression (PLSR)

The PLSR models performances for pectin content in orange peels
are presented on Table 2. The predicted values of each PLSR model
based on full spectra are displayed in Fig. 4. Overall, these models
showed good precision, with high values of coefficient of determination
(over 0.93), and errors slightly lower than those obtained by models
based on optimum wavelengths, for both cross-validation and external
validation.

The development of representative and accurate models with few
wavelengths is more functional and interesting, especially for industrial
applications. The weighted regression coefficients (Bw) provide in-
formation about the model quality, and those with large absolute value
can be used as optimum wavelengths to develop reduced models
(Kamruzzaman, Makino, Oshita, & Liu, 2015). Therefore, the important
wavelengths were selected based on these weighted regression coeffi-
cients obtained by the full PLSR models, and the reduced models were
developed. The results obtained by the reduced models also showed
good coefficient of determination, which ranged from 0.92 to 0.94.
Additionally, the errors of most models were slightly higher than those
with full spectra, but still very close. Moreover, all the models based on
full spectra or reduced models had RPD > 3 and RER > 10, which
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showed a good calibration performance of the models.
The weighted regression coefficients carry a lot of information re-

garding the variables in the dataset. While those of high absolute values
have a large contribution in the model, those of small values have a
little contribution in the model (Elmasry et al., 2012). The weighted
regression coefficients of the PLSR models developed in this work
(Fig. 5) showed strong peaks and valleys, which are positive and ne-
gatively related to the important variables for pectin quantification.
Most of these peaks and valleys are the same to those observed in the
pectin spectra, as show in Fig. 1. In addition, they had spectral char-
acteristics and did not show a lot of noise, suggesting that the models
can be considered reliable and this technique can be considered for
further application.

4. Conclusion

Hyperspectral imaging technique showed a great potential to clas-
sify orange peel samples according to the pectin content. As PCA, LDA
was able to separate the groups of samples containing different per-
centages of pectin into the same three classes (low, intermediate and
high pectin content). Among the different combinations of data pre-
treatments assayed, 1st derivative and a combination of SNV + 1st
derivative achieved the best accuracy (92.78 and 91.75%, respectively),
and the highest sensitivity and specificity (between 0.6 and 1.0).
Additionally, PLSR models for pectin content quantification based on
full spectra showed excellent precision, providing high coefficients of
determination (over 0.93), whereas those of the PLSR models built with
the most contributing wavelengths ranged between 0.92 and 0.94.

Hence, the study confirms the hypothesis that NIR-HSI can be used
for quantification of pectin content in orange peels. The results showed
that this technique holds potential as an alternative to the carbazole
colorimetry method to quantify pectin in orange peels, and to cate-
gorize orange peel samples into groups of different pectin concentra-
tion, and can be used to justify investments in the waste processing and
extraction methods.
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