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1. Introduction
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mogeneous vector spaces, i.e. actions of algebraic groups admitting an open dense orbit. 

✩ Partially supported by MTM2016-75027-P, P12-FQM-2696, FEDER and by the DFG project Se 
1114/3-1.
* Corresponding author.

E-mail addresses: narvaez@us.es (L. Narváez Macarro), 
christian.sevenheck@mathematik.tu-chemnitz.de (Ch. Sevenheck).
https://doi.org/10.1016/j.aim.2019.06.007
0001-8708/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.aim.2019.06.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
mailto:narvaez@us.es
mailto:christian.sevenheck@mathematik.tu-chemnitz.de
https://doi.org/10.1016/j.aim.2019.06.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aim.2019.06.007&domain=pdf


L. Narváez Macarro, Ch. Sevenheck / Advances in Mathematics 352 (2019) 372–405 373
These D-modules turn out to be examples of so-called tautological systems, as studied in 
[16], [18] and more recently in a series of papers [21,2,20]. The underlying philosophy is 
that in the case where the group is an algebraic torus, these D-modules are nothing but 
the well-known GKZ-systems of Gelfand’, Graev, Kapranov and Zelevinski (see, e.g., 
[12,1]). They play a prominent role in toric mirror symmetry ([13], [17], [27,28]), and 
part of our motivation for this paper comes from the wish to understand whether certain 
tautological systems can potentially occur as quantum D-modules.

We consider more specifically the situation where a reductive algebraic group acts on 
a vector space V such that there exists an open and dense orbit. Moreover, we suppose 
that the complement of this orbit is a divisor, which has a reduced equation defined by 
the determinant of the matrix the columns of which are the coefficient of the vector fields 
defined by the corresponding Lie algebra action. This is exactly the situation studied in 
[3,15], where the discriminant divisor is called linear free: it is a free divisor in the sense 
of K. Saito (see [33]), that is, the sheaf of logarithmic vector fields is locally free, and 
it is linear free since the coefficients of these vector fields are linear functions. One can 
consider the subgroup (called AD below) of the given algebraic group consisting of linear 
transformations stabilizing all fibres of a reduced equation defining the divisor. It is the 
group Gm ×AD, acting on the space C × V that defines the tautological system, called 
M in the main body of this article (see Definition 4.1). This is a D-module on the dual 
space of C × V , where the extra factor is needed to ensure some homogeneity property. 
From this it follows that the tautological system is regular if it is holonomic, which may 
not be the case in general. Indeed, a theorem of Hotta [16] shows that holonomicity holds 
if the action of G has finitely many orbits. In order to have this property, we restrict to 
the case of strongly Koszul free divisors (see the beginning of Section 3), a notion that 
dates back to [14]. We prove in section 4 (see Theorem 4.6) that for strongly Koszul 
linear free divisors, the associated tautological system underlies a mixed Hodge module. 
More precisely, this main result can be formulated as follows.

Theorem 1.1 (Compare Lemma 4.4 and Theorem 4.6 below). Let V = An and let D ⊂ V

be a strongly Koszul reductive linear free divisor with (reduced) defining equation h ∈ OV . 
Let V ∨ be the dual space, and h∨ an equation for the dual divisor. Consider the (free) 
OV -module of vector fields logarithmic to all fibres of h∨, that is,

θ(− log h) =
n−1⊕
i=1

OV δ
∨
i

where δ∨i (h∨) = 0. Put Ṽ ∨ := A1
λ0

× V ∨ with coordinates λ0, . . . , λn, then for all 
β0 ∈ Z such that β0 < min

(⋃
k≥0(k + n · {roots of bh(s)})

)
(where bh(s) ∈ C[s] is the 

Bernstein-Sato polynomial of h) the DṼ -module (called tautological system associated to 
D in the main body of this article)
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DṼ ∨

(∂n
λ0

− h(∂λ1 , . . . , ∂λn
), δ∨1 , . . . , δ∨n−1, χ̃

∨ + (n + 1) + β0)

(where χ̃∨ =
∑n

i=0 λi∂λi
) underlies a mixed Hodge module on Ṽ ∨.

We will see later that the above presentation of the tautological system as well as the 
condition on the parameter β0 is quite natural. A similar statement for GKZ-systems 
has been shown in [25, Theorem 3.5.].

The proof of Theorem 4.6 is based on two main observations: As in the case of 
GKZ-D-modules (see [25]), regular singular tautological systems are obtained as Fourier-
Laplace transforms of certain monodromic D-module on the dual space, that is, the space 
C ×V in our above notation. Using the Radon transformation formalism for D-modules, 
it is sufficient to show that this Fourier-Laplace transform underlies a mixed Hodge mod-
ule. This is done by expressing this module as a direct image of a (twisted) structure 
sheaf, and the main point is to show that multiplication with the coordinate correspond-
ing to the first factor in C × V is invertible on that module (this is parallel to the main 
result of [34]). This is done in sections 2 and 3, based on the construction of Spencer 
complexes associated with some Lie-Rinehart-algebras. These complexes can be filtered 
in such a way that their graded complexes are Koszul complexes, which become acyclic 
under our strongly Koszul hypothesis. This technique has been extensively used in [4–6,
23].

In the last section, we consider a dimensional reduction of the tautological systems 
defined by linear free divisors. This again is parallel to constructions in toric mirror sym-
metry, where GKZ-systems are reduced to D-modules on the complexified Kähler moduli 
space (see also [37] for a more general framework). As mentioned above, our motivation 
is to study potential Landau-Ginzburg models (i.e. regular functions on smooth affine 
varieties) that can occur in Hodge theoretic mirror symmetry for non-toric varieties. We 
obtain these functions as hyperplane sections of the fibres of the equation of our free 
divisor. The dimensional reduction is done here using a direct image, in contrast to the 
toric case, where it is a non-characteristic inverse image (see also the discussion of the 
example of a normal crossing divisor in section 5, in particular formula (8)). This reflects 
the fact that the regular function occurring here are not Laurent polynomials, and there 
is in general no global coordinate system on the Milnor fibres of the free divisor (whereas 
Laurent polynomials are functions on algebraic tori).

Our reduced system is a D-module in two variables. It turns out that this system 
(or rather its partial Fourier-Laplace transform) is isomorphic to a system already stud-
ied in detail in [10] and [35,36], where we have explicitly calculated the Gauß-Manin 
cohomology and related invariants (like the Hodge spectrum) of hyperplane sections of 
the Milnor fibres of the divisor using a rather complicated algorithmic approach. Here 
the structure of the reduced D-modules can be directly obtained from the shape of the 
tautological system. More precisely, we obtain the following statement.



L. Narváez Macarro, Ch. Sevenheck / Advances in Mathematics 352 (2019) 372–405 375
Theorem 1.2 (Compare Proposition 5.6 below). Let D ⊂ V be a strongly Koszul reductive 
linear free divisor with defining equation h, let h∨ ∈ OV ∨ be an equation for the dual 
divisor D∨ ⊂ V ∨. Let p ∈ V \D and write X := h−1(h(p)) and X∨ := (h∨)−1(h(p)). Put

Ψ : X∨ × V −→ A1
s ×A1

t

(f, x) �−→ (f(x), h(x)).

Then we have the following expression for the (partial localized Fourier-Laplace trans-
formation of the) Gauß-Manin system of the family of hyperplane sections of the Milnor 
fibre h−1(p):

FLloc
Gm,t

H0Ψ+OX∨×V (∗(X∨ ×D)) ∼=
DA1

z×Gm,t

(znbh(t∂t) − h(p) · t, z2∂z + ntz∂t)
.

Here FLloc
Gm,t

denotes the localized Fourier-Laplace transformation as defined in Formula 
(1) below.

Let us fix some notation that will be used throughout this paper. For a smooth alge-
braic variety over the complex numbers, we let DX be the sheaf of algebraic differential 
operators on X. If X is affine or D-affine, we sometimes make no distinction between 
sheaves of DX -modules and their modules of global sections.

The Fourier transformation for algebraic D-modules is used at several places and 
defined as follows.

Definition 1.3. Let Y be a smooth algebraic variety, U be a finite-dimensional complex 
vector space and U ′ its dual vector space. Denote by E the trivial vector bundle τ :
U × Y → Y and by E ′ its dual. Write can : U × U ′ → A1 for the canonical morphism 
defined by can(a, ϕ) = ϕ(a). This extends to a function can : E × E ′ → A1. Define 
L := OE×Y E′e−can, the free rank one module with differential given by the product rule. 
Consider also the canonical projections p1 : E ×Y E ′ → E , p2 : E ×Y E ′ → E ′. The partial 
Fourier-Laplace transformation is then defined by

FLY := p2,+

(
p+
1 • ⊗LL

)
.

If the base Y is a point we recover the usual Fourier-Laplace transformation and we 
will simply write FL. Notice that although this functor is defined at the level of derived 
categories, it is exact, i.e., induces a functor FLY : Modh(DE) → Modh(DE′).

We will also need a localized version of the Fourier-Laplace transformation, defined as 
follows. Suppose that U is one-dimensional, with coordinate s. We consider the Fourier-
Laplace transformation relative to the base Y as above, and we denote the coordinate 
on the dual fiber U ′ by τ . Set z = 1/τ and denote by jτ : Gm,τ × Y ∨ ↪→ A1

τ × Y and 
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jz : Gm,τ × Y ↪→ A1
z × Y = P1

τ \ {τ = 0} × Y the canonical embeddings. Let N be an 
object of Db(DU×Y ), then we put

FLloc
Y (N ) := jz+j

+
τ FLY (N ), (1)

notice that this functor again is exact.

2. Lie-Rinehart algebras and Spencer complexes

In this section we will be concerned with the following filtered rings (R, F•) of differ-
ential operators:

(i) R = C[x][∂] = C[x1, . . . , xn][∂1, . . . , ∂n] and F• the usual filtration by the order 
of differential operators. The corresponding graded ring will be the (commutative) 
polynomial ring GrR = C[x][ξ1, . . . , ξn] with its usual grading: C[x] is in degree 0
and ξi = σ(∂i) with deg(ξi) = 1.

(ii) R = C[x][∂][s] = C[x1, . . . , xn][∂1, . . . , ∂1, s] and F• the total order filtration for 
which C[x] is the order 0 part and s, ∂1, . . . , ∂n have order 1. The corresponding 
graded ring will be GrR = C[x][ξ1, . . . , ξn, s] with C[x] in degree 0 and ξ1, . . . , ξn, s
in degree 1.

In both cases the commutative C-algebra F0R coincides with C[x] and C[x] has a natural 
left R-module structure denoted by

(r, f) ∈ R× C[x] �−→ r(f) ∈ C[x]

(in case (ii) s annihilates C[x]). Moreover, any r ∈ F1R can be decomposed as r =
r(1) + (r − r(1)) and so we obtain a natural decomposition F1R = (F0R) ⊕ (Gr1 R) by 
identifying r − r(1) ≡ σ1(r).

We have the following facts ([30]; see also [23, Appendix A]):

• In case (i), the filtered ring (R, F•) appears as the enveloping algebra of the Lie-
Rinehart algebra Derk(C[x]) =

⊕
i (C[x]∂i) over (C, C[x]) with its natural filtration.

• In case (ii), the filtered ring (R, F•) appears as the enveloping algebra of the Lie-
Rinehart algebra (C[x]s)⊕DerC(C[x]) over (C, C[x]) with its natural filtration. Here, 
the anchor map (C[x]s) ⊕ DerC(C[x]) → DerC(C[x]) is the projection.

Both cases are unified by the fact that R appears as the enveloping algebra of the 
Lie-Rinehart algebra Gr1 R over (C, C[x]).

We will be especially interested in left R-modules of the form R
R〈r1,...,rm〉 with:

• ri ∈ F1R for i = 1, . . . , m (resp. r1 ∈ F0R and ri ∈ F1R for i = 2, . . . , m).
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• The system {σ1(r1), σ1(r2), . . . , σ1(rm)} (resp. {σ0(r1) = r1, σ1(r2), . . . , σ1(rm)}) is 
linearly independent over F0R = C[x].

• The module 
⊕

i (C[x] · ri) is closed under the Lie bracket.

The above hypotheses will allow us to consider L =
⊕

i (C[x] · ri) as a Lie-Rinehart 
algebra over (C, C[x]) and to take advantage of the constructions of Spencer complexes 
([30, §4]; see also [23, (A.18)]).

Under the above hypotheses, let us call U = U(L) the enveloping algebra of L. The 
Cartan-Eilenberg-Chevalley-Rinehart-Spencer complex Sp•

L associated with L is defined 
as:

Sp−e
L = U ⊗C[x]

∧e
L, e = 0, . . . ,m

where the left U-module structure comes exclusively from the left factor U of the tensor 
product, the differentials d−e : Sp−e

L → Sp−e+1
L are given by d−1(P ⊗ λ) = Pλ and

d−e(P ⊗ (λ1 ∧ · · · ∧ λe)) =
e∑

i=1
(−1)i−1Pλi ⊗ (λ1 ∧ · · · λ̂i · · · ∧ λe) (2)

+
∑

1≤i<j≤e

(−1)i+jP ⊗ ([λi, λj ] ∧ λ1 ∧ · · · λ̂i · · · λ̂j · · · ∧ λe), 2 ≤ e ≤ m,

and the augmentation is P ∈ U = Sp0
L �→ d0(P ) := P (1) ∈ C[x].

Let us denote by Sp•
L the augmented complex Sp•

L → C[x] = U(L)/ U(L)〈L〉.

Proposition 2.1. The complex Sp•
L is a left U-free resolution of C[x].

Proof. One has to use two ingredients. The first one is the PBW theorem which asserts 
that, L being free over C[x], the graded ring GrU coincides with the symmetric algebra 
of L over C[x]. The second one consists of filtering Sp•

L with

Fi Sp−e
L := (Fi−eU) ⊗C[x]

∧e
L, FiC[x] := C[x], i ≥ 0,

in such a way that the corresponding graded complex coincides with the augmented 
Koszul complex 

∧•
L ⊗C[x] Sym• L, which is exact. �

From the inclusion L =
⊕

i (C[x] · ri) ⊂ F1R we obtain a map of filtered rings U(L) →
R. We define the Spencer complex over R associated with r = (r1, . . . , rm), denoted by 
Sp•

R,r, as:

Sp•
R,r := R⊗U(L) Sp•

L .

It computes the total derived tensor product R
L
⊗U(L) C[x], and its 0-cohomology is
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R⊗U(L) C[x] = R

R〈r1, . . . , rm〉 .

Now we will study some conditions on r = (r1, . . . , rm) implying that the Spencer 
complex Sp•

R,r is a R-free resolution of R/R〈r1, . . . , rm〉.

Proposition 2.2. Under the above hypotheses, assume that the sequence of symbols 
{σ1(ri) | i = 1, . . . , m} (resp. {σ0(r1), σ1(r2), . . . , σ1(rm)}) is regular in GrR. Then, 
the Spencer complex Sp•

R,r is concentrated in degree 0 and so it is a (left) R-free res-
olution of R/R〈r1, . . . , rm〉. Moreover, {r1, . . . , rm} is an involutive basis of the ideal 
R〈r1, . . . , rm〉, i.e. their symbols generate the ideal σ (R〈r1, . . . , rm〉).

Proof. Let us prove the proposition in the case where r1 ∈ F0R, ri ∈ F1R for i = 2, . . . , m
and where {σ0(r1), σ1(r2), . . . , σ1(rm)} is a regular sequence in GrR.

We have L = L0 ⊕ L1 with L0 = (C[x] · r1) and L1 =
⊕m

i=2 (C[x] · ri). Observe that 
L0 is an ideal of the Lie-Rinehart algebra L.

As in the proof of Proposition 2.1 and [5, Th. 5.9], we are going to filter the complex 
Sp•

R,r in such a way that the graded complex coincides with the Koszul complex of

σ0(r1), σ1(r2), . . . , σ1(rm) ∈ GrR = SymC[x] Gr1 R.

Instead of declaring 
∧e

L to be of order e, we now have to use the decomposition L =
L0 ⊕ L1, with L0 of order 0 and L1 of order 1. Namely, we consider the grading 

∧e
L =

(
∧e

L)e−1
⊕

(
∧e

L)e with

(
∧e

L)e−1 = L0 ⊗C[x]

(∧e−1
L1

)
, (

∧e
L)e =

∧e
L1,

and the filtration

Fi Sp−e
R,r = Fi

(
R⊗C[x]

e∧
L

)

:=
[
(Fi−e+1R) ⊗C[x]

(
e∧
L

)
e−1

]⊕[
(Fi−eR) ⊗C[x]

(
e∧
L

)
e

]
,

which is easily seen to be compatible with the differentials. The corresponding graded 
complex is isomorphic to the Koszul complex over GrR � SymGr1 R associated with 
the C[x]-linear map

σ(L) := σ0(L0) ⊕ σ1(L1) := (C[x] · σ0(r1)) ⊕ (⊕m
i=2 (C[x] · σ1(ri))) ↪→ GrR,

i.e. the Koszul complex over GrR associated with the sequence {σ0(r1), σ1(r2), . . . ,
σ1(rm)}, which by the hypotheses is acyclic in degree �= 0, and we conclude that Sp•

R,r

is also acyclic in degree �= 0.
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To prove the involutivity of {r1, . . . , rm} one proceeds as in [4, Prop. 4.1.2].
The case where ri ∈ F1R for i = 1, . . . , m and {σ1(r1), σ1(r2), . . . , σ1(rn)} is a regular 

sequence in GrR is easier and can be proven in a similar way by considering the filtration

Fi Sp−e
R,r := (Fi−eR) ⊗C[x]

e∧
L,

and checking that the corresponding graded complex is isomorphic the Koszul complex 
over GrR associated with the sequence {σ1(r1), σ1(r2), . . . , σ1(rm)}. �
3. Free divisors, the strong Koszul hypotheses and the Bernstein module

From now on, we will write V = Cn and Ṽ = C ×V . We let (w1, . . . , wn) be coordinates 
on V , and (w0, w1, . . . , wn) coordinates on Ṽ . We will write

AV := C[w1, . . . , wn], DV = AV 〈∂w1 , . . . , ∂wn
〉.

We assume that h ∈ AV is a reduced quasi-homogeneous polynomial with weights 
(p1, . . . , pn) of degree d and that D = {h = 0} ⊂ An is a free divisor in the sense 
of [33], that is, that the module DerV (− logD) is free over OV . Let δ1, . . . , δn−1, δn =
χ =

∑n
i=1 piwi∂wi

be a basis of Der(− logD) ⊂ DerC(AV ), chosen in such a way that 
δi(h) = 0 for i = 1, . . . , n − 1.

Notice that the ring of logarithmic differential operators AV [δ1, . . . , δn] ⊂ DV is ac-
tually equal to the enveloping algebra U(Der(− logD)) [4, Prop. 2.2.5]. We assume for 
the moment the following strongly Koszul hypothesis ([14, Def. 7.1], [23, Cor. (1.12)]):

(SK) The symbols with respect to the usual order filtration in DV of h, δ1, . . . , δn−1

form a regular sequence in GrDV , or equivalently, the symbols with respect to the 
total order filtration in DV [s] of h, δ1, . . . , δn−1, χ − ds form a regular sequence in 
GrDV [s].

Hypothesis (SK) makes sense not only for polynomial quasi-homogeneous free divisors 
as above, but also for free divisors on any complex manifold. Examples of free divisors 
satisfying (SK) are those which are locally quasi-homogeneous ([5, Th. 5.9]), for instance 
normal crossing divisors, free hyperplane arrangements, or the discriminant of stable 
maps in Mather’s “nice dimensions”. Later we will be concerned with the more special 
class of so-called linear free divisors (see Definition 4.2 below). These are discriminants 
in prehomogeneous vector spaces, and then the (SK) condition is equivalent to a finite 
orbit type assumption for a natural group action.

Hypothesis (SK) implies the following properties ([9, Criterion 4.1], [6, Th. 1.24], [23, 
§4]):
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(a) The natural map

DV [s]
L
⊗AV [δ1,...,δn][s] AV [s]hs → DV [s]hs

is an isomorphism, or equivalently:
(a-1) The annihilator of hs over DV [s] is generated by δ1, . . . , δn−1, χ − ds; and
(a-2) The Spencer complex over DV [s] associated with (δ1, . . . , δn−1, χ −ds) is exact 

in degrees �= 0, i.e. it is a DV [s]-free resolution of

DV [s]/DV [s]〈δ1, . . . , δn−1, χ− ds〉.

(b) The natural map

DV [s]
L
⊗AV [δ1,...,δn][s]

AV [s]hs

AV [s]hs+1 → DV [s]hs

DV [s]hs+1

is an isomorphism, or equivalently:
(b-1) The annihilator of the class of hs over DV [s] is generated by h, δ1, . . . , δn−1, χ −

ds; and
(b-2) The Spencer complex over DV [s] associated with (h, δ1, . . . , δn−1, χ − ds) is 

exact in degrees �= 0, i.e. it is a DV [s]-free resolution of

DV [s]/DV [s]〈h, δ1, . . . , δn−1, χ− ds〉.

This property implies that the b-function bh(s) of h satisfies the symmetry: bh(−s −
2) = ±bh(s).

(c) The Logarithmic Comparison Theorem holds, or equivalently in terms of DV -module 
theory, the natural map

DV

L
⊗AV [δ1,...,δn] AV (D) → AV [
D]

is an isomorphism. This property is equivalent to the following facts:
(c-1) The DV -module of meromorphic functions AV [
D] is generated by h−1 (this 

is a consequence of the fact that bh(s) has no integer roots < −1); and
(c-2) The Spencer complex over DV associated with (δ1, . . . , δn−1, χ + d) is exact in 

degrees �= 0.

As a consequence of (b-1), the b-function bh(s) belongs to DV [s]〈h, δ1, . . . , δn−1, χ −
ds〉. Actually, it is the generator of C[s] ∩DV [s]〈h, δ1, . . . , δn−1, χ − ds〉.

Let us consider now a new variable w0 and the rings

A ˜ = AV [w0] = C[w0, w1, . . . , wn], D ˜ = DV [w0]〈∂w0〉 = A ˜ 〈∂w0 , ∂w1 , . . . , ∂wn
]〉.
V V V
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Let us consider h̃ = h − cwd
0 , χ̃ = χ + w0∂w0 with c ∈ C \ {0}. We are interested in 

the ideals I(β) = DṼ 〈h̃, δ1, . . . , δn−1, χ̃ − dβ〉 for some complex parameter β and the 
DṼ -module N(β) = DṼ /I(β).

Let also consider the ring DṼ [s] endowed with the total order filtration, the ideal

I(s) = DṼ [s]〈h̃, δ1, . . . , δn−1, χ̃− ds〉 ⊂ DṼ [s],

and the DV [s]-module N(s) = DṼ [s]/I(s).
Let us denote by S̃p•(β) the Spencer complex over DṼ associated with (h̃, δ1, . . . , δn−1,

χ̃ − dβ), and let S̃p•(s) be the Spencer complex over DṼ [s] associated with (h̃, δ1, . . . ,
δn−1, χ̃− ds).

Proposition 3.1. The complex S̃p•(s) is concentrated in degree 0 and so it is a free reso-
lution of N(s). Moreover h̃, δ1, . . . , δn−1, χ̃− ds is an involutive basis of I(s).

Proof. We are going to use Proposition 2.2 for the case R = DṼ [s] together with the 
total order filtration (for which ∂w0 , . . . , ∂wn

as well as s have degree 1). Notice that the 
symbols of the generators of I(s) with respect to that filtration are:

h̃ = h− cwd
0 , σ(δ1), . . . , σ(δn−1), σ(χ) − ds + w0ξ0.

We have to show that they form a regular sequence in GrDṼ [s] = AṼ [s, ξ0, . . . , ξn]. We 
already know by the (SK) assumption that h, σ(δ1), . . . , σ(δn−1), σ(χ) − ds is a regular 
sequence in AV [s, ξ1, . . . , ξn].

To show that h̃ = h − cwd
0 , σ(δ1), . . . , σ(δn−1), σ(χ) − ds + w0ξ0 is a regular sequence 

in AṼ [s, ξ0, . . . , ξn], we first notice that h, σ(δ1), . . . , σ(δn−1), σ(χ) − ds, w0 is a regular 
sequence in AV [s, ξ1, . . . , ξn][w0] = AṼ [s, ξ1, . . . , ξn]. Since

〈h, σ(δ1), . . . , σ(δn−1), σ(χ) − ds, w0〉 = 〈h− cwd
0 , σ(δ1), . . . , σ(δn−1), σ(χ) − ds, w0〉

we deduce that h̃, σ(δ1), . . . , σ(δn−1), σ(χ) − ds, w0 is a regular sequence. On the other 
hand,

h̃, σ(δ1), . . . , σ(δn−1), σ(χ) − ds, w0, ξ0

is again a regular sequence in AṼ [s, ξ1, . . . , ξn][ξ0], and in a similar way we deduce that

h̃, σ(δ1), . . . , σ(δn−1), σ(χ) − ds + w0ξ0, w0, ξ0

is a regular sequence. We conclude that ̃h, σ(δ1), . . . , σ(δn−1), σ(χ) −ds +w0ξ0 is a regular 
sequence. �
Proposition 3.2. For any β ∈ C, the multiplication (s − β) : N(s) → N(s) is injective.
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Proof. Since the generators of I(s) form an involutive basis and σ(s −β) = s, it is enough 
to check that the following sequence

s, h̃, σ(δ1), . . . , σ(δn−1), σ(χ) − ds + w0ξ0

is regular in GrDṼ [s] = AṼ [s, ξ0, . . . , ξn].
We know that σ(δ1), . . . , σ(δn−1), σ(χ) is a regular sequence in GrDV = AV [ξ1, . . . , ξn]

(this is the Koszul property). So, σ(δ1), . . . , σ(δn−1), σ(χ), s is a regular sequence in 
GrDV [s] = AV [ξ1, . . . , ξn, s].

Let us prove that h − cwd
0 , σ(δ1), . . . , σ(δn−1), σ(χ), s is a regular sequence in 

AV [w0][ξ1, . . . , ξn, s]. We filter by the degree in w0 and since wd
0 , σ(δ1), . . . , σ(δn−1),

σ(χ), s is a regular sequence, we are done. Now, we add the new variable ξ0 and we 
know that

h− cwd
0 , σ(δ1), . . . , σ(δn−1), σ(χ), s, ξ0

is a regular sequence in AV [w0][ξ0, ξ1, . . . , ξn, s]. We repeat the procedure in the proof of 
Proposition 3.1 and we deduce first that

h− cwd
0 , σ(δ1), . . . , σ(δn−1), σ(χ) + w0ξ0 − ds, s, ξ0

is a regular sequence, and second that

h− cwd
0 , σ(δ1), . . . , σ(δn−1), σ(χ) + w0ξ0 − ds, s

is a regular sequence. �
Corollary 3.3. For any β ∈ C, the Spencer complex over DṼ associated with (h̃, δ1, . . . ,
δn−1, χ̃− dβ) is a free resolution of N(β).

Proof. We proceed as in the proof of [23, Cor. (4.5)]:

N(β) =
DṼ [s]

DṼ [s]〈s− β〉 ⊗D
Ṽ

[s] N(s) =
DṼ [s]

DṼ [s]〈s− β〉
L
⊗D

Ṽ
[s] N(s) =

DṼ [s]
DṼ [s]〈s− β〉 ⊗D

Ṽ
[s] S̃p•(s) = S̃p•(β). �

Proposition 3.4. For any complex parameter β ∈ C, the DṼ -module N(β) is holonomic 
and the generators

h− cwd
0 , δ1, . . . , δn−1, χ̃− dβ

form an involutive basis of I(β).
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Proof. The proposition is a consequence of the fact that the symbols of these generators

h− cwd
0 , σ(δ1), . . . , σ(δn−1), σ(χ) + w0ξ0

form a regular sequence in GrDṼ , and this is proven following the same lines as in the 
proofs of the two preceding propositions. �

Now we are concerned with the question of invertibility of the multiplication w0 :
N(β) → N(β). After Corollary 3.3, we are reduced to study the cokernel of the injective
map w0 : S̃p•(β) → S̃p•(β).

Theorem 3.5. The cokernel of w0 : S̃p•(β) → S̃p•(β) is acyclic whenever the following 
condition holds:

β /∈
⋃
k≥0

(
k

d
+ {roots of bh(s)}

)
.

Proof. Let us call K• the cokernel of w0 : S̃p•(β) → S̃p•(β) and L̃(β) ⊂ DṼ the Lie-
Rinehart algebra over (AṼ , C) with basis h − cwd

0 , δ1, . . . , δn−1, w0∂w0 + χ − dβ.
We consider the filtration F

∂w0• DṼ given by the order with respect to ∂w0 . The graded 
ring is Gr∂w0 DṼ = DV [w0][ξ0].

Let us call Q := DṼ /〈w0〉DṼ , that can be naturally identified, as left DV -module, 
with DV [∂w0 ]. From the identity ∂j

w0
w0 = w0∂

j
w0

+ j∂j−1
w0

we see that the exact sequence 
of (DV ; DṼ )-bimodules

0 −→ DṼ

w0·−→ DṼ −→ Q = DV [∂w0 ] −→ 0 (3)

is strict with respect to F
∂w0• and the right action of w0 on Q = DV [∂w0 ] is given by∑

j

Pj∂
j
w0

∈ DV [∂w0 ] �−→
∑
j

jPj∂
j−1
w0

∈ DV [∂w0 ].

So, the right action of w0∂w0 on Q = DV [∂w0 ] is given by∑
j

Pj∂
j
w0

∈ DV [∂w0 ] �−→
∑
j

jPj∂
j
w0

∈ DV [∂w0 ].

For each e = 0, . . . , n we have K−e = Q ⊗A
Ṽ

∧e
L̃(β) and the differentials de : K−e → K−e

are given by the same expression as in (2). Since the right multiplication on Q of the 
elements in L̃(β) is compatible with the F

∂w0• -filtration on each K−e, we may consider 
the filtration F

∂w0• on the whole complex K•.
Taking the Gr∂w0 of (3) we obtain an exact sequence of graded (DV ; DV [w0][ξ0])-

bimodules (here DV has the trivial grading)
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0 −→ DV [w0][ξ0]
w0·−→ DV [w0][ξ0] −→ Gr∂w0

Q = DV [ξ0] −→ 0,

where the action of w0 on Gr∂w0 Q = DV [ξ0] vanishes and the action of w0ξ0 on the 
degree k piece Gr∂w0

k Q = DV · ξk0 is given by

P · ξk0 ∈ Gr∂w0
k Q = DV · ξk0 �−→ kP · ξk0 ∈ Gr∂w0

k Q = DV · ξk0 .

So, the degree k piece Gr∂w0
k K• is isomorphic to the Spencer complex Sp•

DV ,rk over DV

associated with rk = (h, δ1, . . . , δn−1, χ − dβ + k) and we have

Gr∂w0
k K• � Sp•

DV ,rk �
(

DV [s]
DV [s]〈s− (β − k/d)〉

)
⊗DV [s] Sp•

DV [s],rs
(b)
�(

DV [s]
DV [s]〈s− (β − k/d)〉

)
L
⊗DV [s]

(
DV [s]hs

DV [s]hs+1

)
,

with rs = (h, δ1, . . . , δn−1, χ − ds). If bh(β − k/d) �= 0, then s − (β − k/d) and bh(s) are 
coprime and the map

s− (β − k/d) : DV [s]hs

DV [s]hs+1 −→ DV [s]hs

DV [s]hs+1

is invertible, and so Gr∂w0
k K• is acyclic. �

Remark: Actually, we do not need to assume that h is quasi-homogeneous. At most we 
need to have an Euler vector field, let us say with χ(h) = h. This is actually implied 
by the (SK) hypothesis (see [23, Prop. (1.9) and (1.11)]). On the other hand, instead 
of considering the deformation h̃ = h − cwd

0 , with d equal to the degree of h, we can 
consider any deformation h̃ = h − cwd

0 with d ≥ 1 arbitrary, including the case d = 1, 
and the deformation of χ, assuming χ(h) = h, would be χ̃ = χ + 1

dw0∂w0 . That covers 
the case of studying the graph embedding h − w0.

Let us also notice that if instead of taking a basis δ1, . . . , δn−1, χ as before, with 
δi(h) = 0 for i = 1, . . . , n − 1 and χ(h) = h, we take a general basis δ1, . . . , δn with 
δi(h) = αih for i = 1, . . . , n, our deformation ideal would be defined as

I(s) = DṼ [s]〈h̃ = h− cwd
0 , δ̃1, . . . , δ̃n〉

with δ̃i = δ + αi

d w0∂w0 − αi

d s. Observe that I(s) is always contained in the 

DṼ [s]-annihilator of the class of h̃s in D
Ṽ

[s]h̃s

D
Ṽ

[s]h̃s+1 .
Finally, everything works at the level of germs of analytic functions instead of the 

global polynomial case.
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4. Tautological systems and Fourier transformation

We introduce here the main playing character of this paper, which is a certain gen-
eralization of the A-hypergeometric system of Gelfand, Kapranov, Graev and Zelevinski 
(see, e.g., [12], [1]). The main point is that the GKZ-systems are build from a given 
torus action on an affine space, and this will be replaced by an action of a more general 
algebraic group. The D-module thus obtained has been considered rather recently in a 
series of papers by Yau and others (see [21,2,20]), but the idea dates back to [18] and 
[16].

Let us start with the definition of a tautological system, which we adapt slightly to 
fit to our purpose. Recall that we write V = Cn, with coordinates w1, . . . , wn and 
Ṽ = Cw0 × V . We denote by V ∨ resp. Ṽ ∨ the dual spaces, with dual coordinates 
(λ1, . . . , λn) resp. (λ0, λ1, . . . , λn).

Definition 4.1. Let G be a reductive algebraic group acting on V via ρ : G ↪→ Gl(V )
and let dρ : g → End(V ) be the associated Lie algebra action. For any x ∈ g, we write 
Z(dρ)(x) ∈ DerV for the linear vector field on V given by

Z(dρ)(x)(g)(w) := d

dt
g(ρ(e−tx)(w))|t=0.

Let moreover X ⊂ V be a closed subvariety of V which is G-invariant, i.e., a union of 
G-orbits. Chose a Lie algebra homomorphism β : g → C. Then we consider the left ideal

I(G, ρ,X, β) := DV (I(X)) + DV (Z(dρ)(x) − β(x))x∈g ⊂ DV

and the quotient M̌(G, ρ, X, β) = DV /I(G, ρ, X, β). Moreover, we put

M(G, ρ,X, β) := FL(M̌(G, ρ,X, β)) ∈ Mod(DV ∨)

and call M(G, ρ, X, β) the tautological system associated to G, ρ, X and β. If all the 
input data are clear from the context, we also write M̌ := M̌(G, ρ, X, β) and M :=
M(G, ρ, X, β).

Below we will consider, for a given tuple (G, ρ, V, β), a homogenized version of the 
action ρ, namely, we let G̃ := Gm ×G and we consider Ṽ := A1 × V together with the 
extended action

ρ̃ : G̃ −→ Aut(Ṽ )
(t, g) �−→ [(x0, x) �→ (tx0, tρ(g)(x)] .

Given a G-variety X ⊂ V , let X̃ be the closure of its cone in Ṽ

X̃ :=
{

(t, tx) ∈ Ṽ | t ∈ Gm, x ∈ X
}
.
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We will consider the “extended” differential systems

M̌(G̃, ρ̃, X̃, β̃) ∈ Mod(DṼ ) resp. M(G̃, ρ̃, X̃, β̃) ∈ Mod(DṼ ∨),

where we write β̃ : g̃ ∼= C × g → C for any Lie algebra homomorphism restricting to β
on g.

We are going to apply the above construction in the setup where the group and its 
action is defined by what is called a linear free divisor (see [3]). Let us recall the basic 
notion.

Definition 4.2. Let D ⊂ V be a reduced divisor. Suppose that it is free, i.e., that 
Der(− logD) is OV -free. Then D is called linear free if there is a basis δ1, . . . , δn of 
Der(− logD) such that we have δi =

∑n
j=1 aji∂wj

where aji ∈ C[w1, . . . , wn]1 are linear 
forms.

Let D ⊂ V be a linear free divisor and write h ∈ C[w1, . . . , wn] for its defining equa-
tion, then h is a homogeneous polynomial of degree n since the matrix S := (aij)i,j=1,...,n
(called Saito matrix) has the property that det(S) = h (see [33, Lemma 1.9]).

Recall (see, e.g., [15]) that GD denotes the identity component of {g ∈ Gl(V ) |g(D) =
D}. We call the linear free divisor D reductive if GD is so. A major class of examples 
of linear free divisors come from quiver representations, they are all reductive. However, 
there are non-reductive linear free divisors, see, e.g., the example after [15, Definition 2.1]. 
In the sequel of this paper, we will only be concerned with the reductive case.

The Lie algebra gD of GD acts on V via derivations, and we have the Lie algebra 
isomorphism

gD −→ Der(− logD)0
A �−→ w ·Atr · ∂w.

Here Der(− logD)0 is the set of logarithmic derivations along D of degree 0 (notice 
that since D is linear free, the module Der(− logD) inherits the natural grading of 
DerV , where the variables wi have degree 1 and partial derivatives ∂wi

have degree −1). 
Similarly, we let AD be the unity component of the group {g ∈ Gl(V ) | g∗h = h}. We 
have gD = aD ⊕ C · χ, where χ =

∑n
i=1 wi∂wi

(this vector field was also called δn in 
section 3, where it was defined for any quasi-homogeneous free divisor). Notice that the 
pair (V, GD) is a prehomogeneous vector space (see, e.g., [19]), with discriminant locus D
and open orbit V \D. Let us also recall that a linear free divisor D ⊂ V satisfies the (SK) 
condition if and only if the stratification of D by orbits of AD is finite [14, Prop. 7.2].

We are going to study the tautological system as well as its extended version for the 
group G := AD. Let ρ : AD → Gl(V ) denotes the action of AD on V . Moreover, chose 
a point p ∈ V \D and put X := ρ(AD)(p). Actually, our construction (in particular, the 
tautological system associated to the divisor D) does not depend on the choice of the 
point p up to isomorphism, but we will not elaborate on this point here.
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We have the following lemma, which describes the geometry of the orbit closure X.

Lemma 4.3. Let as above D a reductive linear free divisor and consider the action ρ :
AD → Gl(V ) and its extended version ρ̃ : ÃD → Gl(Ṽ ) (recall that ÃD = Gm × AD). 
Then we have the following facts.

1. The orbit ρ(AD)(p) is closed, i.e., we have X = ρ(AD)(p).
2. Consider the extended action ρ̃ : ÃD → Gl(Ṽ ) (recall that ÃD = Gm × AD). Put 

p̃ := (1, p) and X̃ := ρ̃(ÃD(p̃)) then

X̃\ρ̃(ÃD)(p̃) ⊂ {0} × V ⊂ Ṽ .

Proof. 1. As has been shown in [10, Section 3], the orbit ρ(AD)(p) is nothing but the 
fibre h−1(h(p)), which is obviously a closed subvariety of V .

2. This follows directly from the definition of the action ρ̃ and from part 1.: By def-
inition, the orbit ρ̃(ÃD) ⊂ Gm × V is simply the cone over the orbit ρ(AD) ⊂ V , 
hence closed in Gm × V by the first point. Hence the boundary of its closure in Ṽ is 
contained in the divisor {0} × V . �

The next step is to give a more explicit description for the extended system 
M̌(G̃, ̃ρ, X̃, β̃) for the case G = AD. We consider the dual action ρ∨ : G = AD → Gl(V ∨). 
As has been shown in [10, Proposition 3.7], since G is reductive, this action is again pre-
homogeneous, with discriminant locus (i.e., the complement of the open orbit) a divisor, 
which we call dual divisor of D and which we denote by D∨ ⊂ V ∨.

Lemma 4.4. Let D ⊂ V be a reductive linear free divisor, and let AD, ρ, X be as above. 
Put β := 0 and β̃ := (β0, 0). Then

M̌ = M̌(G̃, ρ̃, X̃, β̃) = DṼ /(h(p)wn
0 − h, δ1, . . . , δn−1, χ̃− β0), (4)

where δ1, . . . , δn−1 is a basis of Der(− log h) and where χ̃ = w0∂w0 +
∑n

i=1 wn∂wn
.

As a consequence, we have

M = M(G̃, ρ̃, X̃, β̃) = DṼ ∨/(h(p)∂n
λ0

− h(∂λ1 , . . . , ∂λn
), δ∨1 , . . . , δ∨n−1, χ̃

∨ + (n+ 1) + β0).

Here χ̃∨ =
∑n

i=0 λi∂λi
and δ∨1 , . . . , δ

∨
n−1 is a basis of Der(− log h∨), where h∨ is a 

reduced equation of the dual divisor D∨ ⊂ V ∨.

Proof. We have I(X̃) = (h(p)wn
0 − h) since deg(h) = n. Moreover, for any x ∈ aD, 

the linear vector field Zdρ(x) is an element in Der(− log h). On the other hand, we have 
ãD = C × aD, and for the element x = (1, 0) ∈ ãD, the corresponding vector field Zdρ(x)
is nothing but χ̃. Hence we get M̌ = DṼ /(h(p)wn

0 − h, δ1, . . . , δn−1, χ̃ − β0), according 
to the definition of M̌.
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To show the second statement, remark that under the isomorphism of C-algebras

Γ(Ṽ ,DṼ )=C[w0, . . . , wn]〈∂w0 , . . . , ∂wn
〉 −→ C[λ0, . . . , λn]〈∂λ0 , . . . , ∂λn

〉=Γ(Ṽ ∨,DṼ ∨)

wi �−→ ∂λi

∂wi
�−→ −λi

corresponding to the Fourier-Laplace transformation functor, we have

χ̃− β0 = −
n∑

i=0
∂λi

λi − β0 = −
(

n∑
i=0

λi∂λi
+ (n + 1) + β0

)
.

Moreover, the dual divisor D∨ ⊂ V ∨ is free since GD is reductive (see [10, Proposi-
tion 3.7]), and the module Der(− log h∨) is generated by the image of aD under the 
morphism

gD −→ Der(− logD∨)0

A �−→ −λ ·A · ∂.

But this implies that a basis element δi of Der(− log h) is sent under the Fourier-Laplace 
isomorphism to an basis element δ∨i of Der(− log h∨). �

The next step is to obtain a more functorial description of both M(G̃, ̃ρ, X̃, β̃) and 
M̌(G̃, ̃ρ, X̃, β̃). This has been carried out for the case G = Gm in [34] and used extensively 
in [25,28].

Let X̃0 be the “open part” of X̃, i.e., X̃0 := ρ̃(ÃD)(1, p) ⊂ X̃. Write k : X̃0 ↪→ Ṽ for 
the composition of the closed embedding k′ : X̃0 ↪→ Gm×V (see the second point of the 
Lemma 4.3) with the canonical open embedding j : Gm × V ↪→ Ṽ . Notice that we have 
an isomorphism

ι : Gm ×X −→ X̃0

(t, x) �−→ (t, tx).

As a matter of notation, for any complex number β0, we write Oβ0
Gm

:= DGm
/(t∂t − β0). 

However, from now on we will only consider the case where β0 is a real number. Consider 
the DGm×X module

N β0 := Oβ0
Gm

� OX .

Notice that since β0 ∈ R, the module N β0 underlies an element of MHM(Gm × X, C)
(the abelian category of complex mixed Hodge modules, see, e.g., [11, Definition 3.2.1]). 
Then we have the following result, which gives a functorial description of M̌(G̃, ̃ρ, X̃, β̃)
for the case β̃ = (β0, 0).
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Proposition 4.5. Suppose that D ⊂ V is linear free and satisfies (SK). Suppose that β0

lies inside the good non-resonant set of Theorem 3.5, that is,

β0 /∈
⋃
k≥0

(k + n · {roots of bh(s)}) .

Then the module M̌ = M̌(G̃, ̃ρ, X̃, (β0, 0)) is obtained as

M̌ = (k ◦ ι)+N β0

Consequently, M̌ underlies a complex mixed Hodge module on Ṽ .

Proof. Recall that k = j◦k′, where k′ : X̃0 ↪→ Gm×V is closed and where j : Gm×V ↪→
Ṽ is the canonical open embedding. From the closedness of k′ we conclude that

(k′ ◦ ι)+N = DGm×V(
I(im(k′)), (θ)θ∈DerV (−X), χ̃− β0

) (5)

(notice that the direct image of OX under the closed embedding X ↪→ V is given by 
DV /(I(X), (θ)θ∈DerV (−X))).

It follows by comparing this expression to formula (4) that j+M̌ = (k′ ◦ ι)+N . We 
now use Theorem 3.5, which tells us that for our choice of β0, the multiplication with 
w0 is invertible on M̌. Hence we have that M̌ = j+j

+M̌, and hence

M̌ = j+j
+M̌ = j+(k′ ◦ ι)+N β0 = (j ◦ k′ ◦ ι)+N β0 = (k ◦ ι)+N β0 ,

as required.
The last statement follows since we have a direct image functor (with respect to the 

morphism k ◦ ι) from MHM(Gm ×X, C) to MHM(Ṽ , C). �
As a consequence, we obtain the following property of the tautological system associ-

ated to a linear free divisor satisfying the (SK) hypothesis.

Theorem 4.6. Let G = AD as above, where D ⊂ V is a linear free divisor satisfying the 
(SK) condition. Put

c := min

⎛⎝Z ∩
⋃
k≥0

(k + n · {roots of bh(s)})

⎞⎠ . (6)

Then for all β0 ∈ Z with β0 < c the tautological system M(G̃, ̃ρ, X̃, (β0, 0)) underlies an 
object in MHM(Ṽ ∨).
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Before entering into the proof, we have to relate the Fourier-Laplace transformation 
entering in the definition of M to the Radon transformation of D

P(Ṽ )-modules, as has 
been done in [25], [28] as well as in [7]. We recall the necessary definitions.

Definition 4.7. Denote by Z ⊂ P(Ṽ ) × Ṽ ∨ the universal hyperplane given with equation ∑n
i=0 wiλi = 0 and by U := (P(Ṽ ) × Ṽ ∨) \ Z its complement. Consider the following 

diagram

U
πU
2πU

1
jU

P(Ṽ ) P(Ṽ ) × Ṽ ∨π1 π2
Ṽ ∨ ,

Z

πZ
1

iZ
πZ
2

The Radon transformations are functors from Db
rh(D

P(Ṽ )) to Db
rh(DṼ ∨) given by

R := πZ
2,+π

Z,+
1

∼= π2,+iZ,+i
+
Zπ

+
1 ,

R◦ := πU
2,+π

U,+
1

∼= π2,+jU,+j
+
U π+

1 ,

R◦
c := πU

2,†π
U,+
1

∼= π2,+jU,†j
+
U π+

1 ,

Rcst := π2,+π
+
1 .

Proof of Theorem 4.6. Consider the following diagram, where the dotted arrows denote 
functors on D-modules, not maps

Gm ×X Ṽ Ṽ ∨

Ṽ \{0}

X V P(Ṽ ).

k◦ι

p2

FL

j0

π

g j

R◦
c

It can be shown along the lines of [25, Proposition 2.5, Lemma 2.6, Proposition 2.7] that 
for any β0 ∈ Z we have the following isomorphism in Db

rh(DṼ ∨)

R◦
c((j ◦ g)+OX) ∼= FL((k ◦ ι)+(Oβ0

Gm
� OX)). (7)

In particular, since FL is exact, it shows that the left hand side is actually an element 
in Mod(DṼ ∨), i.e., that we have Hi(R◦

c((j ◦ g)+OX)) = 0 for i �= 0. Notice also that for 
all β0 ∈ Z, we have an isomorphism p+

2 OX
∼= Oβ0

G � OX .

m



L. Narváez Macarro, Ch. Sevenheck / Advances in Mathematics 352 (2019) 372–405 391
In particular, since the functors entering in the definition of R◦
c exist at the level of 

mixed Hodge modules, we obtain that the DṼ ∨ -module FL((k◦ι)+(Oβ0
Gm

�OX)) underlies 
an object in MHM(Ṽ ∨) (notice that since β0 ∈ Z, we have that Oβ0

Gm
is an actual Hodge 

module, i.e., such that its perverse sheaf is defined over the rational numbers, and not 
just an element of MHM(Gm, C) as in the case where β0 is an arbitrary real number).

To finish the proof of the theorem, we now use Proposition 4.5. As we assume that 
β0 < c, which implies in particular that β0 /∈ ∪k≥0 (k + n · {roots of bh(s)}), we can 
conclude that

FL((k ◦ ι)+(Oβ0
Gm

� OX)) ∼= FL(M̌(G̃, ρ̃, X̃, (β0, 0))) = M(G̃, ρ̃, X̃, (β0, 0))

which shows the statement of the theorem. �
Remark: As already stated in the introduction, Theorem 4.6 should be considered as an 
analogue to [25, Theorem 3.5.], which treats the case of GKZ-systems, i.e., where our 
group G is a d + 1-dimensional algebraic torus acting on an n + 1-dimensional affine 
space (noticed that [34, Corollary 3.8] plays a key role in the proof of this latter result in 
the same way that Theorem 3.5 is needed to show Theorem 4.6). In the paper [26], this 
kind of result is pushed further by not only showing that certain regular GKZ-systems 
underly mixed Hodge modules but proving that the associated Hodge filtration is simply 
the induced filtration by orders of differential operators (up to a shift). One of the main 
ingredients was the calculation of the certain b-function (or Bernstein-Sato polynomial) 
of the generator of the total Fourier-Laplace transform (corresponding to the module M̌
in our notation) along the coordinate hyperplane w0, which was achieved using general 
estimations for such b-functions from [29]. In the present situation, one would be much 
interested in a similar result.

The first interesting example is the so-called 
3-quiver (see [15, Example 5.3.]), here 
the underlying graph is of Dynkin type, and hence the corresponding linear free divisor 
satisfies the (SK) hypothesis. A Macaulay2 calculation shows that the b-function of the 
class of 1 in the module M̌(ÃD, ̃ρ, X̃, β̃), i.e., the polynomial b(s) such that

b(w0∂w0w0) ∈ V 1DṼ + (h(p)wn
0 − h, δ1, . . . , δn−1, χ̃ + 9) ,

has roots −1, −3, −3, −3, −3, −5 (notice that β0 = −9 is the largest integer satisfying 
the assumptions of Proposition 4.5). This contrasts [29, Corollary 3.9], which treats a 
similar question for the case of GKZ-systems with normal toric rings, and where all roots 
are contained in an interval of length smaller than one. The latter result is crucially used 
in the proof of [26, Theorem 3.16]. Hence we cannot a priori conclude that the Hodge 
filtration on M̌(ÃD, ̃ρ, X̃, β̃) (and consequently the one on M(ÃD, ̃ρ, X̃, β̃)) is, up to a 
shift, given by the order filtration on DṼ (resp. the order filtration on DṼ ∨). On the other 
hand, as it has been already noticed in the last remark of section 3, we can also study 
the ideal (w0 − h, δ1, . . . , δn−1, n · χ̃− β0) for suitable β0. If the analogue of Theorem 3.5
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holds for the quotient by this ideal, then it can be shown that it is nothing but the graph 
embedding ih,+OV (∗D)hγ (not of the module of meromorphic functions itself, but of the 
twisted version OV (∗D)hγ for some suitable γ). Notice also that for β0 = 0 the module 
M̌(ÃD, ̃ρ, X̃, (0, 0)) is then obtained as a pullback under a cyclic cover of such a direct 
image under the graph embedding.

The roots of the element [1] of this module are simply shifts of the roots of bh itself. 
This means that in case where these roots are contained in an interval of length < 1 (like 
in the case of 
3, where they are −4/3, −1, −1, −1, −1, −2/3), we may actually be able 
to detect the Hodge filtration on the graph embedding module. This is closely related 
to the general problem of how the Hodge filtration behaves on the module OV (∗D), a 
question that has raised much attention over the last years in the context of birational 
geometry, see, e.g. [22,24].

5. Hyperplane sections and Gauß-Manin systems

In this section we discuss the relation of the tautological system M =
M(G̃, ̃ρ, X̃, (β0, 0)) (where G = AD) to the Gauß-Manin system of the universal family 
of hyperplane sections of a Milnor fibre of D. This family is the hypothetical Landau-
Ginzburg potential for a (yet to be found) non-toric A-model. Both the tautological 
and this Gauß-Manin system are regular holonomic DṼ ∨ -modules (and actually underly, 
using the results of the last section, objects in MHM(Ṽ ∨)). We first show that they 
are equal up to smooth DṼ ∨-modules. In a second step, we consider the dimensional 
reduction briefly discussed in the introduction. It consists in applying a direct image 
under a morphism from Ṽ ∨ to A2 given by the identity on the first component and the 
equation of the dual divisor D∨ as the second component. We obtain a reduced system 
that has been intensively studied in [10] using algorithmic methods.

We start with the following statement, which is a direct consequence of the corre-
sponding results in the toric case, as worked out in details in [25] and [27,28]. Let c ∈ Z

be the constant from formula (6).

Proposition 5.1. Let D ⊂ V be a linear free divisor with defining equation h and suppose 
that D satisfies the (SK) condition. Let X = h−1(h(p)), where p ∈ V \D is a chosen 
point. Let can : V × V ∨ → A1

λ0
, (w, λ) �→

∑n
i=1 wiλi be the canonical pairing. Consider 

again the closed embedding g : X ↪→ V from above (see Lemma 4.3) and let ϕ be the 
composition

ϕ = (can ◦ (g, idV ∨),pr2) : X × V ∨ −→ A1
λ0

× V ∨ ∼= Ṽ ∨.

Then for all β0 ∈ Z with β0 < c there is an exact sequence in Mod(DṼ ∨)

0 −→ Hn−2(X,C) ⊗C OṼ ∨ −→ H0ϕ+OX×V ∨ −→ M(G̃, ρ̃, X̃, (β0, 0))

−→ Hn−1(X,C) ⊗C O ˜∨ −→ 0,
V



L. Narváez Macarro, Ch. Sevenheck / Advances in Mathematics 352 (2019) 372–405 393
where the left- resp. rightmost term are free OṼ ∨-modules with the trivial connection 
(having Hn−2(X, C) resp. Hn−1(X, C) as flat sections).

Proof. From the definition of the various Radon transformation functors and the ad-
junction triangle for the embeddings Z ↪→ P(Ṽ ) × P(Ṽ ∨) and U ↪→ P(Ṽ ) × P(Ṽ ∨) we 
obtain exact triangles

R(M)[−1] −→ Rcst(M) −→ R◦(M) +1−→
R◦

c(M) −→ Rcst(M) −→ R(M)[+1] +1−→

for any M ∈ Db
rh(D

P(Ṽ )) (where the second is dual to the first), see [25, Proposition 2.4]
for details. Recall (see the discussion after formula (7)) that we have HiR◦

c((j◦g)+OX) =
0 for i �= 0. Moreover, it can be shown as in [25, Proposition 2.7] that

R((j ◦ g)+OX) ∼= ϕ+OX×V ,

and since we have ϕ+OX×V ∈ D≤0
rh (DṼ ∨), we obtain H1(R((j ◦ g)+)OX) = 0. This 

implies that the second triangle yields an exact sequence

0 −→ H−1Rcst((j ◦ g)OX) −→ H0R((j ◦ g)OX) −→ H0R◦
c((j ◦ g)OX)

−→ H0Rcst((j ◦ g)OX) −→ 0.

Similarly to the proof of [25, Theorem 2.1], it can be shown that HiRcst((j ◦ g)OX) =
Hn−1−i(X, C) ⊗C OṼ ∨ for i = −1, 0. Moreover, we have seen above that

H0R◦
c((j ◦ g)OX) ∼= H0 FL((k ◦ ι)+OGm×X) ∼= H0 FL((k ◦ ι)+Oβ0

Gm
� OX)

= H0 FL(M̌(G̃, ρ̃, X̃, (β0, 0))) = M(G̃, ρ̃, X̃, (β0, 0)),

as required. �
Similarly to [25, Proposition 3.1, Proposition 3.3.] it follows that this sequence can be 

read in the category MHM(Ṽ ∨), where appropriate versions of the Radon transformation 
functors can be defined. We obtain the following consequence for the partial Fourier 
transformation of the two (non trivial) D-modules in the above sequence.

Corollary 5.2. For β0 ∈ (−∞, c) ∩Z we have an isomorphism of DA1
z×V ∨-modules

FLloc
V ∨(H0ϕ+OX×V ∨) ∼= FLloc

V ∨ M(G̃, ρ̃, X̃, (β0, 0)).

Proof. The functor FLloc
V ∨ is exact and kills kernel and cokernel of the map

H0ϕ+OX×V ∨ −→ M(G̃, ρ̃, X̃, (β0, 0))
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since these are OṼ ∨ -locally free. This yields the statement of the corollary. �
Remark: Notice that it follows from our main result (Theorem 4.6) that the partial 
Fourier transform FLloc

V ∨ M(G̃, ̃ρ, X̃, (β0, 0)) underlies an irregular Hodge module in 
the sense of [32]. However, since we do not have control over the Hodge filtration of 
M(G̃, ̃ρ, X̃, (β0, 0)) for the moment, this structure cannot yet be entirely described.

Next we are going to consider the dimensional reduction of the tautological system 
M(G̃, ̃ρ, X̃, (β0, 0)). As has been explained in the introduction, the main motivation to 
consider this operation is that it is parallel to the reduction process from a GKZ-system 
to a classical hypergeometric module that is considered in toric mirror symmetry (see, 
e.g. [27, Section 3.1] and [28, Section 6]). As an example (which is covered by the present 
case of a linear free divisor satisfying the (SK) condition but which is also of toric nature, 
i.e. which is a reduction of a GKZ-system to a classical hypergeometric module), consider 
the case where D is the normal crossing divisor with n components (the easiest example 
of a linear free divisor). Then the tautological system is a GKZ-system, more precisely, 
we have

M(G̃, ρ̃, X̃, (β0, 0))

∼=
DṼ(

∂n
λ0

−
∏n

i=1 ∂λi
,
∑n

i=0 λi∂λi
+ (n + 1) + β0, (λ1∂λ1 − λi∂λi

)i=2,...,n

) .
We have the dual divisor D∨ = {h∨ = λ1 · . . . · λn = 0}, and we can consider the mor-
phism κ : A1

λ0
×A1

t ↪→ Ṽ given by (λ0, t) �→ (λ0, t, 1, . . . , 1). Then one calculates directly 
that the (non-characteristic) inverse image by κ of the localized GKZ-system is given as

κ+
[
M(G̃, ρ̃, X̃, (β0, 0)) ⊗O

Ṽ
OṼ ∨(∗(A1

λ0
×D∨))

]
∼=

DA1
λ0×A1

t

(t∂n
λ0

− (t∂t)n, λ0∂λ0 + nt∂t + (n + 1) + β0)
(8)

which corresponds, after a partial Fourier-Laplace transformation relative to the param-
eter space Gm,t to the quantum differential equations for the projective space Pn−1. The 
results below generalize this example to the case of an arbitrary linear free divisor satis-
fying the (SK) condition. However, we will consider a direct image to A1

λ0
×A1

t instead 
of the inverse image by κ as above.

Consider again the equation h∨ of the dual divisor D∨, seen as a morphism h∨ : V ∨ →
A1

t . Let φ := (idA1
λ0
, h∨) : Ṽ ∨ → A1

λ0
×A1

t . Then we have the following statement.

Proposition 5.3. For any β0 ∈ R, write M(∗D∨) for the localization

M(G̃, ρ̃, X̃, (β0, 0)) ⊗O
Ṽ ∨ OṼ ∨(∗(A1

λ0
×D∨)).

Then we have an isomorphism of DA1 ×Gm,t
-modules
λ0
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H0φ+(M(∗D∨)) ∼=
DA1

λ0
×A1

t
[t−1]

(λ0∂λ0 + nt∂t + (n + 1) + β0, h(p) · t · ∂n
λ0

− bh(t∂t))
.

Before starting the proof, we state the following preliminary lemma.

Lemma 5.4. Let X = Spec (R), Y = Spec (T ) two smooth affine algebraic varieties over C
and g : X → Y a surjective morphism yielding an injective ring homomorphism T ↪→ R. 
Consider the rings of differential operators DR = Γ(X, DX), DT = Γ(Y, DT ).

Let P ∈ DR be given, and suppose that for all elements t ∈ T , we have P (t) ∈ T , 
where we see P as an element of EndC(R). Then P yields an element of DT , that is, 
there exists an element DT which we denote by P|T such that for all t ∈ T we have 
P (t) = P|T (t). The order of P|T is smaller than or equal to the order of P .

Proof. This is elementary using Grothendieck’s definition of DR resp. DT , namely, the 
statement is obvious if P is a function (i.e., an element of R) or a vector field (i.e., an 
element of DerC(R, R)), and then one argues by induction on the degree of P . �
Proof of the proposition. First note that according to the second statement of
Lemma 4.4, we have the following explicit expression of M(∗D∨):

M(∗D∨) =
DṼ ∨(∗(A1

λ0
×D∨))(

h(p)∂n
λ0

− h(∂λ1 , . . . , ∂λ1), δ∨1 , . . . , δ∨n−1,
∑n

i=0 λi∂λi
+ (n + 1) + β0

) (9)

where δ∨1 , . . . , δ
∨
n−1 is a basis of the module Der(−log(D∨)) of vector fields on V ∨ anni-

hilating the equation h∨ of the dual divisor D∨ of D. Write more explicitly

δ∨i =
n∑

j,k=1

α
(i)
jkλj∂λk

,

for some α(i)
jk ∈ C. Put D := DṼ ∨(∗(A1

λ0
× D∨)) and consider the right D-module 

[M(∗D∨)]right associated to M(∗D∨), which is given by D/(P0, P1, . . . , Pn)D, where

P0 = h(p)∂n
λ0

− h(∂λ1 , . . . , ∂λn
), (Pi =

n∑
j,k=1

α
(i)
jk ∂λk

λj)i=1,...,n−1, Pn =
n∑

i=0
λi∂λi

− β0.

Notice that we have for all i ∈ {1, . . . , n − 1} that

Pi =
n∑

j,k=1

α
(i)
jk ∂λk

λj =
n∑

j,k=1

α
(i)
jkλj∂λk

+ Trace(α(i)
jk ) =

n∑
j,k=1

α
(i)
jkλj∂λk

= δ∨i

since Trace(α(i)
jk ) = 0 as reductive linear free divisors are special in the sense of [10, 

Definition 2.1].
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Chose a D-free resolution F• by right D-modules, i.e. an exact sequence

. . . Dn+1 D M(∗D∨) 0.(P0·,...,Pn·)

Now consider the transfer module

OṼ ∨(∗(A1
λ0

×D∨)) ⊗φ−1OA1
λ0

×A1
t
[t−1] φ

−1DA1
λ0

×A1
t
[t−1]

which we abbreviate by D→. Recall that the left DṼ ∨(∗(A1
λ0

× D∨))-module structure 
on D→ is given as follows: Interpret a section g⊗Q ∈ D→ as a differential operator from 
φ−1OA1

λ0
×A1

t
[t−1] to OṼ ∨(∗(A1

λ0
×D∨)) sending k ∈ φ−1OA1

λ0
×A1

t
[t−1] to g · (φ∗(Q(k)))

(where φ∗ : φ−1OA1
λ0

×A1
t
[t−1] → OṼ ∨(∗(A1

λ0
×D∨)) is the morphism of sheaves of rings 

that corresponds to φ), then we have for all P ∈ DṼ ∨(∗(A1
λ0

×D∨)) that

P (g ⊗Q)(k) = P (g · φ∗(Q(k))).

The direct image complex φ+M(∗D) is represented by the complex of left
DA1

λ0
×A1

t
[t−1]-modules associated to the complex of right DA1

λ0
×A1

t
[t−1]-modules φ∗(F⊗D

D→) (using that φ is affine), where

F ⊗D
Ṽ ∨ D→ : . . . Dn+1

→ D→ 0,Π

where the last sheaf D→ sits in degree 0 and where the map Π is given by

Π(g0 ⊗ 1, . . . , gn ⊗ 1) =
[
k �−→

n∑
i=0

Pi(gi · φ∗k)
]

for any g0, . . . , gn ∈ OṼ ∨(∗(A1
λ0

× D∨)) (notice that because D→ is a right
φ−1DA1

λ0
×A1

t
[t−1]-module, and the map Π is φ−1DA1

λ0
×A1

t
[t−1]-linear, it suffices to de-

scribe it on elements gi ⊗ 1 ∈ D→). Notice moreover that since P1, . . . , Pn−1 are vector 
fields and Pn is a vector field plus a constant, we have

Pi(gi · (φ∗k)) = Pi(gi) · (φ∗k) + gi · Pi(φ∗k) (10)

for i = 1, . . . , n − 1 and

Pn(gn · (φ∗k)) =
(

n∑
i=0

λi∂λi
− β0

)
(gn) · (φ∗k) + gn ·

(
n∑

i=0
λi∂λi

)
(φ∗k)

=
(

n∑
λi∂λi

)
(gn) · (φ∗k) + gn ·

(
n∑

λi∂λi
− β0

)
(φ∗k).

(11)
i=0 i=0
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Our aim is to calculate the cohomology H0φ∗(F ⊗D D→), i.e., the cokernel of the map 
Π, seen as a DA1

λ0
×A1

t
[t−1]-module.

Notice that for all i ∈ {1, . . . , n − 1} and for all k ∈ φ−1OA1
λ0

×A1
t
[t−1], we have 

Pi(φ∗k) = 0 since Pi = δ∨i is a vector field in Der(− log h∨). Write e0, e1, . . . , en−1, en for 
the canonical generators of Dn+1

→ , then we see from formula (10) that

Π ((gi ⊗ 1)ei) = δ∨i (gi) ⊗ 1 ∈ D→, i = 1, . . . , n− 1.

In other words, the image of Π is the right φ−1DA1
λ0

×A1
t
[t−1]-submodule of D→ gen-

erated by {
Π((g0 ⊗ 1)e0), δ∨1 (g1) ⊗ 1, . . . , δ∨n−1(gn−1) ⊗ 1,Π((gn ⊗ 1)en) |
g0, . . . , gn ∈ OṼ ∨(∗(A1

λ0
×D∨))

}
.

Consider OṼ ∨(∗(A1
λ0

×D∨)) as a φ−1OA1
λ0

×A1
t
[t−1]-module. Then it is clear that the 

C-vector space {
δ∨i (g) | 1 ≤ i ≤ n− 1, g ∈ OṼ ∨(∗(A1

λ0
×D∨))

}
has the structure of a φ−1OA1

λ0
×A1

t
[t−1]-submodule (since elements from

φ−1OA1
λ0

×A1
t
[t−1] are killed by the vector fields δ∨1 , . . . , δ∨n−1). We claim that we have an 

isomorphism of φ−1OA1
λ0

×A1
t
[t−1]-modules

OṼ ∨(∗(A1
λ0

×D∨)){
δ∨i (g) | 1 ≤ i ≤ n− 1, g ∈ OṼ ∨(∗(A1

λ0
×D∨))

} ∼= φ−1OA1
λ0

×A1
t
[t−1]

or, equivalently (recall that the first component of φ is the identity) an isomorphism of 
(h∨)−1OA1

t
[t−1]-modules

OV ∨(∗D∨)
{δ∨i (g) | 1 ≤ i ≤ n− 1, g ∈ OV ∨(∗D∨))}

∼= (h∨)−1OA1
t
[t−1].

In order to show the claim, consider n − 1-st (i.e. the top) cohomology of the relative 
(meromorphic) de Rham complex

Hn−1(h∨)∗(Ω•
V ∨/A1

t
(∗D∨), d) = (h∨)∗Hn−1(Ω•

V ∨/A1
t
(∗D∨), d).

The cohomology (h∨)∗Hn−1(Ω•
V ∨/A1

t
(∗D∨), d) is nothing but OA1

t
[t−1]: each (non-

singular) fibre of h∨ is an orbit of the dual action of G = AD on V ∨, having finite 
stabilizers, and since AD is reductive and connected, it has a deformation retraction to 
a compact connected n − 1-dimensional real Lie group, hence Hn−1((h∨)−1(t), C) = C

for all t �= 0.
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Notice that we have

(Ω•
V ∨/A1

t
(∗D∨), d) ∼= (Ω•(− log h∨)(∗D∨), d),

where

Ω•(− log h∨) := Ω•
V ∨(− logD∨)

d(h∨)
h∨ ∧ Ω•−1

V ∨ (− logD∨)
,

see [10, Section 2.2]. Then

Hn−1(Ω•
V ∨/A1

t
(∗D∨), d) ∼= Hn−1(Ω•(− log h∨)(∗D∨), d)

∼=
(

OV ∨(∗D∨){
δ∨1 (g), . . . , δ∨n−1(g) | g ∈ OV ∨(∗D∨)

}) · α

where α = iχ∨(vol /h∨) = n vol /d(h∨) is a volume form in the fibres of h∨ (see [10, 
Formula 2.7]). Here χ∨ denotes the Euler field 

∑n
i=1 λi∂λi

in the space V ∨ (Notice 
that we have again a decomposition Der(− logD∨) = Der(− log h∨) ⊕ OV ∨χ∨, where 
Der(− log h∨) = {θ ∈ DerV ∨ | θ(h∨) = 0} since D∨ is again a reductive linear free 
divisor), and we write iχ∨ : Ωi

V ∨(∗D∨) → Ωi−1
V ∨ (∗D∨) for the interior derivative.

Namely, if we write λj := iδ∨j (α) ∈ Ωn−2(− log h∨), then since dλj = 0 (because D
and D∨ are special, see [10, Lemma 2.6]) and since iδ∨j (dg ∧ α) = 0 ∈ Ωn−1(log h∨)
(see [10, Proof of Lemma 4.3]) the morphism d : Ωn−2(− log h∨) → Ωn−1(− log h∨) is 
identified with

n−1⊕
j=1

OV ∨λj −→ OV ∨α

(g1, . . . , gn−1) �−→
[∑n−1

j=1 δ∨j (gj)
]
α.

This shows the claim. As a consequence, we have an identification

D→(
δ∨1 (g) ⊗ 1, . . . , δ∨n−1(g) ⊗ 1, | g ∈ OṼ ∨(∗(A1

λ0
×D∨))

)
φ−1DA1

λ0
×A1

t
[t−1]

=

OṼ ∨(∗(A1
λ0

×D∨)) ⊗φ−1OA1
λ0

×A1
t
[t−1] φ

−1DA1
λ0

×A1
t
[t−1](

δ∨1 (g) ⊗ 1, . . . , δ∨n−1(g) ⊗ 1, | g ∈ OṼ ∨(∗(A1
λ0

×D∨))
)
φ−1DA1

λ0
×A1

t
[t−1]

∼= φ−1OA1
λ0

×A1
t
[t−1] ⊗φ−1OA1

λ0
×A1

t
[t−1] φ

−1DA1
λ0

×A1
t
[t−1] ∼= φ−1DA1

λ0
×A1

t
[t−1]

(12)

and hence
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D→/ im(Π) ∼=
φ−1DA1

λ0
×A1

t
[t−1]

(Π((g0 ⊗ 1)e0),Π((gn ⊗ 1)en))φ−1DA1
λ0

×A1
t
[t−1]

where now Π((g0 ⊗ 1)e0) resp. Π((gn ⊗ 1)en) denotes the image of these two elements of 
D→ in φ−1DA1

λ0
×A1

t
[t−1] under the identification given by equation (12).

Consider the Bernstein polynomial bh∨(s) =
∏n

i=1(s −αi) of h∨ normalized such that 
we have

h(∂λ1 , . . . , ∂λn
)(h∨)s = bh∨(s) · (h∨)s−1.

Notice (see [14] or [23]) that the roots αi are symmetric around zero and write bh∨(s) =
s · Bh∨(s), where we take the convention that Bh∨(s) =

∏n
i=2(s − αi), i.e. that α1 = 0. 

We now claim that

H0φ∗(F ⊗D D→) ∼=
DA1

λ0
×A1

t
[t−1](

∂n
λ0
h(p) − ∂t ·Bh∨(t∂t), ∂λ0λ0 + nt∂t − 1 − β0

)
· DA1

λ0
×A1

t
[t−1]

.

(13)

Using formula (11), we have

Pn(φ∗k) = (
n∑

i=0
λi∂λi

− β0)(φ∗k) = (∂λ0λ0 +
n∑

i=1
λi∂λi

− 1 − β0)(φ∗k),

which means that the differential operator 
∑n

i=0 λi∂λi
− β0 satisfies the assumptions 

of the previous lemma (Lemma 5.4) for X = Ṽ ∨, Y = A1
λ0

× A1
t and the morphism 

φ : X → Y . On the other hand, Bernstein’s functional equation

h(∂λ1 , . . . , ∂λn
)(h∨)s = bh∨(s) · (h∨)s−1

for the function h∨ implies that the differential operator h(∂1, . . . , ∂n) also satisfies the as-
sumptions of the previous lemma (in the situation where X = Ṽ ∨, Y = A1

λ0
×A1

t , φ : X →
Y ). Hence Lemma 5.4 shows that they both define differential operators on the subalge-
bra φ−1OA1

λ0
×At

. Namely, the operator h(∂λ1 , . . . , ∂λn
)|φ−1OA1

λ0
×A1

t

∈ φ−1(DA1
λ0×A1

t

[t−1])
corresponding to h(∂λ1 , . . . , ∂λn

) via the previous lemma is precisely ∂t ·Bh∨(t∂t) (since 
it acts on ts as h(∂λ1 , . . . , ∂λn

) acts on hs). Similarly, the operator 
∑n

i=0 λi∂λi
∈ DṼ ∨

corresponds to λ0∂λ0 + nt∂t = ∂λ0λ0 + nt∂t − 1 ∈ φ−1DA1
λ0×A1

t

[t−1]. This shows the 

claim, i.e. formula (13).
The final result follows by taking the associated left DA1

λ0
×A1

t
[t−1]-module of the right 

hand side of equation (13), notice that
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(∂t ·Bh∨(t∂t))T = −Bh∨(t∂t)T · ∂t = (−1)n
n∏

i=2
(t∂t − αi)T · ∂t

= (−1)n
∏n

i=2(−∂tt− αi) · ∂t =

=
n−1∏
i=1

(t∂t + 1 + αi) ∂t = ∂t

n−1∏
i=1

(t∂t + αi)
(∗)= ∂t

n−1∏
i=1

(t∂t − αi)

= ∂tBh∨(t∂t) = t−1bh∨(t∂t)

where (−)T denotes the operation of taking the transpose operator and where the equal-
ity (*) holds by the symmetry around 0 of the roots of Bh∨ .

Finally, as we have already noticed above, we can assume that h and h∨ are equal 
since both define linear free divisors, so that also Bh = Bh∨ resp. bh = bh∨ . �

In the sequel, we draw some consequences of the above proposition.

Corollary 5.5. We have an isomorphism

FLloc
Gm,t

(H0(φ ◦ ϕ)+OX×V ∨(∗(X ×D∨))) ∼=
DA1

z×Gm,t

(znbh(t∂t) − h(p) · t, z2∂z + ntz∂t)
,

where FLloc
Gm,t

: Mod(DA1
λ0

×Gm,t
) → Mod(DA1

z×Gm,t
) is the localized partial Fourier-

Laplace transformation with base Gm,t (see formula (1) at the end of the introduction).

Proof. We deduce from Corollary 5.2 that for any β0 ∈ (−∞, c) ∩Z we have an isomor-
phism of DA1

z×A1
t
-modules

H0(idA1
z
, h∨)+

(
FLloc

V ∨(H0ϕ+OX×V ∨)
)
∼= H0(idA1

z
, h∨)+

(
FLloc

V ∨ M(G̃, ρ̃, X̃, (β0, 0)))
)
,

and similarly we get

H0(idA1
z
, h∨)+

(
FLloc

V ∨(H0ϕ+OX×V ∨(∗(X ×D∨)))
)
∼= H0(idA1

z
, h∨)+

(
FLloc

V ∨ M(∗D∨)
)

(14)

(assuming that β0 used in the definition of M(∗D∨) satisfies β0 ∈ (−∞, c) ∩Z). On the 
other hand, we have

H0(idA1
z
, h∨)+ FLloc

V ∨(K) ∼= FLloc
Gm,t

H0φ+(K)

for any K ∈ Db(DṼ ∨) since the first component of φ is the identity mapping on A1
λ0

. 
We know that Hi(ϕ+OX×V ∨(∗(X ×D∨))) is OṼ ∨(∗(A1

λ0
×D∨))-free of finite rank for 

i < 0 since the restrictions ϕ|X×{f} : X → A1
λ × {f} (for f ∈ V ∨\D∨) are tame 
0
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�

functions (see [10, Section 3.3] for the tameness, and then [31, Theorem 8.1]), so that 
FLloc

V ∨(Hi(ϕ+OX×V ∨(∗(X ×D∨)))) = 0 for i < 0. This implies that

H0(idA1
z
, h∨)+ FLloc

V ∨(ϕ+OX×V ∨(∗(X ×D∨)))
∼= H0(idA1

z
, h∨)+ FLloc

V ∨(H0ϕ+OX×V ∨(∗(X ×D∨))).

Using this, it then follows from equation 14 that

FLloc
Gm,t

H0φ+ϕ+OX×V ∨(∗(X ×D∨)) ∼= FLloc
Gm,t

H0φ+M(∗D∨).

Recall that we have shown in Proposition 5.3 that

H0φ+M(∗D) = H0φ+M(G̃, ρ̃, X̃, (β0, 0)) ⊗O
Ṽ ∨ OṼ ∨(∗(A1

λ0
×D∨))

∼=
DA1

λ0
×Gm,t

(λ0∂λ0 + nt∂t + (n + 1) + β0, h(p) · t · ∂n
λ0

− bh(t∂t))
.

Now notice that

FLloc
Gm,t

(
DA1

λ0
×Gm,t

(λ0∂λ0 + nt∂t + (n + 1) + β0, h(p) · t · ∂n
λ0

− bh(t∂t))

)

=
DA1

z×Gm,t

(znbh(t∂t) − h(p) · t, z2∂z + ntz∂t + z(n + β0))
,

however, multiplication by z is invertible on this module by construction (since it is a 
direct image under the open embedding jz : Gm,z × Gm,t ↪→ A1

z × Gm,t) and it is easy 
to see that multiplication with zn+β0 induces an isomorphism

DA1
z×Gm,t

(znbh(t∂t) − h(p) · t, z2∂z + ntz∂t)
∼=

DA1
z×Gm,t

(znbh(t∂t) − h(p) · t, z2∂z + ntz∂t + z(n + β0))
.

Next we discuss the relation of the D-modules obtained from tautological sys-
tems associated to linear free divisors to the one studied in [10] and [35]. Let f ∈
(h∨)−1(h(p)) ⊂ V ∨ be a linear form on V . In these papers we have considered the mor-
phism (f, h) : V −→ A1

s × A1
t and the direct image of OV (∗D) with respect to this 

morphism. Since this morphism depends on the chosen linear form f , we would like to 
consider it here rather as a morphism

Ψ : X∨ × V −→ A1
s ×A1

t

(f, x) �−→ (f(x), h(x))

where X∨ := (h∨)−1(h(p)). Then we have the following comparison result.
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Proposition 5.6. Let, as before, p ∈ V \D, X = h−1(h(p)) and X∨ = (h∨)−1(h(p)). Then 
there is an isomorphism in Db(DA1

λ0
×A1

t
)

Ψ+OX∨×V (∗(X∨ ×D)) ∼= (φ ◦ ϕ)+OX×V ∨(∗(X ×D∨))

and hence an isomorphism of DA1
z×Gm,t

-modules

FLloc
Gm,t

H0Ψ+OX∨×V (∗(X∨ ×D)) ∼= FLloc
Gm,t

(H0(φ ◦ ϕ)+(OX×V ∨(∗(X ×D∨))))

∼= DA1
z×Gm,t

(znbh(t∂t) − h(p) · t, z2∂z + ntz∂t)
.

Proof. By choosing appropriate coordinates on V (and the induced dual coordinates on 
V ∨), we can assume that the equations h and h∨ are simply equal. This holds since for a
general reductive prehomogeneous vector space V we have h∨(λ) = h(w) if (w1, . . . , wn)
are unitary coordinates and (λ1, . . . , λn) the corresponding dual coordinates (here h is a 
defining equation of the discriminant of V ). But it is known (see [14, Theorem 2.5]) that 
for a linear free divisor D, its defining equation h can be defined over Q in appropriate 
coordinates. Consider the following diagram

X × V ∨ V × V ∨ V ∨ × V X∨ × V

A1
λ0

× V ∨ = Ṽ ∨

A1
λ0

×A1
t

(g,idV ∨ )

ψ:=(can◦(g,idV ∨ ),h∨)

ϕ

dual

(can,pr)

(can′,h)

Ψφ=(idλ0 ,h
∨)

here can′ : V ∨ × V → A1
λ0

is given by (f, p) �→ f(p). On the other hand, we write 
dual for the morphism given by identifying V with V ∨ (and vice versa) via the chosen 
coordinates w1, . . . , wn on V and their dual coordinates λ1, . . . , λn on V ∨ (so it is not 
just the involution reversing the factors of V ×V ∨ resp. V ∨ ×V ). Nevertheless, we have 
can = can′ ◦ dual. It follows that (can, h∨) = (can′, h) ◦ dual since h is defined over Q. 
In particular, the morphism dual sends X × V ∨ = h−1(h(p)) × V ∨ isomorphically to 
(h∨)−1(h(p)) × V = X∨ × V . Similarly, the subvariety X ×D∨ inside X × V ∨ is sent to
X∨ ×D.

It is easy to check that the above diagram commutes. We conclude that we have an 
isomorphism



L. Narváez Macarro, Ch. Sevenheck / Advances in Mathematics 352 (2019) 372–405 403
(φ ◦ ϕ)+OX×V ∨(∗(X ×D∨)) = ψ+OX×V ∨(∗(X ×D∨))

= (can′, h)+(dual)+(g, idV ∨)+OX×V ∨(∗(X ×D∨))

= ((can′, h) ◦ dual|X×V ∨)+OX×V ∨(∗(X ×D∨)) ∼= Ψ+OX∨×V (∗(X∨ ×D)).

The second assertion follows by combining this result with Corollary 5.5. �
Notice that this gives exactly the result in [36, Theorem 4], which in turn was based 

on the rather involved algorithmic arguments of [10, section 4]. Actually, it is possible 
to show Proposition 5.6 without assuming the (SK) hypotheses. However, since Theo-
rem 3.5 is not available in this case, one is forced to consider a partial Fourier-Laplace 
transformation of the object (k′ ◦ ι)+N β0 from formula (5) instead of the total Fourier-
Laplace transform of M̌, as has been done in the proof of Theorem 4.6. The latter can 
be expressed as a Radon transformation, but not the former, and hence the argument 
runs quite differently (compare also [8] where a similar strategy is used in the toric case). 
We postpone this discussion to a subsequent paper.

Remark: The most basic case of linear free divisors (satisfying the (SK) hypotheses) 
is the normal crossing divisor given by h = w1 · . . . · wn. It is well known that in this 
case G = AD = Gn−1

m , and so the tautological system M(G, ρ, X, β) is nothing but the 
GKZ-system Mβ

A, where

A =

⎛⎜⎜⎝
1 0 0 . . . 0 −1
0 1 0 . . . 0 −1
...

...
... . . .

... −1
0 . . . 1 −1

⎞⎟⎟⎠ .

In this case the exact sequence of Proposition 5.1 is the same as in [25, Theorem 2.13], 
and obviously the reduced module FLloc

Gm,t
H0φ+(M(∗D∨)) (or rather its restriction to 

z = 1) is nothing but the quantum differential equation of the projective space Pn−1. 
Notice that in this case the dimensional reduction can be done by a direct image (under 
the map φ = (idA1

λ0
, h∨)), as in the current paper, as well as by a direct image under 

an embedding A1
λ0

× Gm,t ↪→ A1
λ0

× V ∨, as has been done in [27, Section 3.1]. As 
we have mentioned at several places, it is a natural question to ask whether the more 
general tautological systems defined by prehomogeneous group actions (say under the 
current hypotheses, i.e., with a linear free divisor satisfying (SK) as discriminant) can 
also be interpreted as quantum differential equations of some variety or orbifold. This 
is particularly interesting in the case of quiver discriminants, since one may hope to 
construct an appropriate A-model directly from the given quiver.
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