
Fluid Mechanics for Biomedical
Applications: Weakly Viscoelastic
Electrospray, Flow Focusing and

Collapsible Channel Models.

SERGIO BLANCO TREJO

PhD Thesis
2022









Fluid Mechanics for Biomedical
Applications: Weakly Viscoelastic
Electrospray, Flow Focusing and

Collapsible Channel Models.

A dissertation submitted by
Sergio Blanco Trejo

to the Department of Aerospace Engineering and Fluid
Mechanics

in partial fulfilment of the requirements for the degree
Doctor of Philosophy

in the subject of Fluid Mechanics

Advisor: Prof. Dr. Alfonso Miguel Gañán Calvo
Co-Advisor: Prof. Dr. Miguel Ángel Herrada Gutiérrez

i





Abstract
Three different research topics are discussed in this thesis: i) weakly-

viscoelastic electrospray, ii) the emergence of whipping effect on the Flow
Focusing technique, and iii) fluid-structure interaction (FSI) phenomena im-
plementing a 2D collapsible channel model. i) A systematic, theoretical com-
parison of a Newtonian fluid, and a non-Newtonian one modelled using an
Oldroyd-B model was performed, resulting in a better understanding of how
the properties of this type of material influence aspects such as meniscus
shrinking, the agreement with a 1D-slenderness model, or the minimum flow
rate value defining the boundary between electrospray and electrospinning. ii)
In order to use Flow Focusing for some applications (e.g. XFEL), chaotic os-
cillations on the jet, known as whipping, must be avoided. A stability map
for axisymmetric and lateral perturbation modes was obtained and compared
to previous experimental data, examining the effect of different nozzle ge-
ometries on the emergence of the whipping effect and jetting-to-dripping con-
figuration physical boundary. iii) In the last paper, the implemented model
overcame some limitations presented in other 2D collapsible channel mod-
els, leading to the system’s global stability analysis using a non-negligible
membrane thickness and large deformations on the flexible wall segment. The
multiplicity of solutions and their folding points, and the quantification of the
effect of physical parameters such as wall thickness and inertia values on the
emergence of self-excited oscillations were investigated.
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Chapter 1

Introduction

1.1 Introduction

Fluid mechanics is an omnipresent discipline in healthcare technology,
from drug production and drug delivery to the implementation of biome-
chanical models, the synthesis of biomaterials or the development of

diagnostic techniques. These advances have required an understanding of the
physical parameters and boundary conditions that govern processes such as
the ejection and rupture of micron-sized capillary jets, under what conditions
is possible to obtain aerosols with characteristic droplet size, or at what point
a turbulent phenomenon within a blood vessel or the collapse of the channel
itself can take place, which could have a negative impact on a person’s health.

This thesis aims to contribute to some aspects of fluid mechanics phe-
nomena directly applicable to healthcare developments, through three differ-
ent studies involving flow-surface and flow-structure interactions, including
the stability of those flows: (I) Electrospray, (II) Flow Focusing and (III) the
flow in collapsible channels. Firstly, in the following section, the fundamental
physical and mechanical concepts related to liquid ejection configurations and
flow stability will be briefly discussed.

In that endeavour, dimensional analysis is a key tool to assess the rela-
tionship among the multiplicity of physical parameters, providing ways to
rationalize the information on the dominance of specific effects, actions or
boundary conditions in a given configuration. Some of the most commonly
used non-dimensional parameters are those in Table 1. Therefore, depending

1



2 1.1 Introduction

Table 1.1: Dimensionless numbers
Name Expression Physical interpretation

Reynolds Re = ρuL
µ

Relates the inertial forces
to viscous forces.

Weber We = ρv2L
σ

Relates the inertial forces
to surface tension.

Bond Bo = ∆ρgL2

σ

Relates the gravitational forces
to the surface tension.

Ohnesorge Oh = µ√
ρσL =

√
We

Re
Relates viscous forces

to inertial forces and surface tension.
Deborah De = tc

tp
Relates relaxation to observation times.

on the value of some of these parameters (the dominant or relevant ones), we
will be able to predict how the fluid will behave or what configuration it will
adopt for certain imposed boundary conditions.

In the formation of jets, the Weber (We) and Ohnesorge (Oh) numbers play
a fundamental role. The capillary velocity vc is defined as that for which We,
relating kinetic energy to surface tension as We = ρv2L/σ , is equal to 1. The
value We= 1 (or close to unity) often appears related to critical configurations.
For a jet to be stable, the convective velocity should be larger than vc in order
to prevent perturbations from travelling upstream towards the source of the
jet. Additionally, Oh gives information about the ratio of viscous to surface
tension stresses by Oh = µ

(ρσa)1/2 . This parameter is related to the viscosity-
induced delay of the growth rate of disturbances which eventually lead to the
break up of the jet into drops.

Each configuration in its steady-state exhibits a specific behaviour under
given disturbances. In general, the complexity of that behaviour of dynamical
response has an obvious dual origin: (i) the complexity of the disturbance,
including its spectra of frequencies, wavelengths and amplitudes, and (ii) the
intrinsic response of the system to each frequency and spatial distribution of
amplitudes of the disturbance. When the amplitude is (sufficiently) small, the
system usually exhibits a behaviour fundamentally dictated by the same fre-
quency of the disturbance. That behaviour is termed a normal mode when it
is not influenced by other frequencies, and exhibits a specific wavelength or
spatial distribution of amplitudes. In this case, the spatiotemporal Fourier de-
composition (discrete or continuous depending on the extension of the system)
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of the disturbance univocally determines the system response.

Certain configurations of a system may eventually exhibit a non-linear re-
sponse to an arbitrarily small perturbation for a range of values of a given
parameter. That non-linear response necessarily alters the state of the system
before the disturbance. The system may or may not recover its initial state
after the perturbation disappears, which defines the parametric ranges of insta-
bility that characterise the general behaviour of the system.

Stability analysis in fluid-dynamic problems has been a discipline of great
interest since the XIX century [48], and especially since the 90s, for its predic-
tive potential related to the system bifurcations and breakdown, as for example
the dripping-to-jetting transitions in steady capillary ejection or the capillary
jet breakup.

In this thesis, we focus on global linear stability analyses. These are car-
ried out by linearising the system equations, formulating the general solution
as a steady solution plus the linear response of the system to small-amplitude
perturbations that are normal in the time domain as e(iωt), where ω = ωr + iωi
stands for complex frequency, and global in the spatial domain, which us-
ing cylindrical polar coordinates can be expressed as Φ(r,z) for a 2D domain,
and as Φ(r,θ ,z) for a 3D domain. In the 3D case, such perturbations can be
decomposed into azimuthal modes: Φ( j)(r,θ ,z) = Φ2D(r,z)e(imθ), where m
stands for azimuthal wavelength, Φ( j) stands for any variable of the problem,
and (r, z,θ ) is a cylindrical coordinate system where the z-axis coincides with
the base flow symmetry axis. By imposing the boundary conditions along with
the hydrodynamic equations of the problem, it is possible to determine the spa-
tial structure of each linear mode and the dispersion relationship that gives the
eigenfrequency ω of a mode with azimuthal wavenumber m as a function of
the physical parameters of the system.

Generally, global stability applies to the cases where the hydrodynamic
length is of the order of or much smaller than the dominant disturbance, yield-
ing patterns of motion called global modes. These depend inhomogeneously
on two or three spatial directions, in which harmonic oscillations appear with
the same complex frequency ω and a fixed phase relation. In this way, it is pos-
sible to separate time-dependent and spatial variables and analyse how these
respond to perturbations. These global modes are computed as the eigenfunc-
tions of the linearized Navier-Stokes operator as applied to a given base flow,
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which will be asymptotically stable in the case where all of the eigenvalues
are stable in the half-plane, that is, when they all exhibit an imaginary part
ωi < 0. If this condition is fulfilled, any small-amplitude disturbance applied
to the system will decay exponentially as time tends to infinity.

Global stability analysis is therefore an ideal tool to characterize the dy-
namic nature of flows with a free surface, such as the ejection of liquid from a
source into open or bounded domains. In particular, we focus on those config-
urations which exhibit steady-state solutions with axial symmetry, e.g. in the
form of ejected capillary jets or liquid ligaments. There are essentially three
types of configurations covered in this thesis:

• Dripping: The liquid ligament breaks up into droplets in a region close
to the emitting orifice. The obtained droplets will usually exhibit a ra-
dius larger than the orifice.

• Jetting: The liquid ligament moves downstream convectively beyond the
orifice. Eventually, the ligament will break up into droplets at a charac-
teristic distance which will be larger than the diameter of the orifice due
to Raleigh instabilities.

• Tip streaming: It is characterized by the presence of a nearly static
meniscus with a characteristic length sufficiently large compared to the
diameter of the ligament, and a conical shape tapering into a liquid lig-
ament that can be a steady jet, or it may break up into droplets. In this
case, the sizes of the ejections involved are much smaller than the device
orifice.

Both in the case of electrospray and Flow Focusing, it is of great interest
to know under which operating regimes a steady jet leads to the emission of
spray droplets (jet-to-spray, in the case of electrospray) and to the controlled
emission of droplets (jetting-to-drip, in the case of Flow Focusing). A more
specific description will be given later on, but as a first approximation, a jet is
considered to be in a stationary jet regime when:

• The liquid meniscus is globally stable.

• The emitted jet is convectively unstable.

• The resulting droplets after breakage are of the same order than the jet
diameter.
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In this regime, an axisymmetric cusp-shaped liquid meniscus of density
ρ , viscosity µ and surface tension σ leads to the formation of a jet with an
emission flow rate Q. While the meniscus geometry is maintained in nearly-
static equilibrium by surface tension between the liquid and the environment
(typically air), the kinetic energy and viscous extensional forces play a fun-
damental role in the jet: their relative weight compared to surface tension,
especially around the meniscus cusp, undergo significant changes along the
jet development region in the axial direction. Thus, although the jet radius
depends on the distance to the meniscus, it often reaches an uniform value R
just near the breakup region. The dimensionless parameters Reynolds, Weber
and capillary numbers characterize the behaviour of the jet.

We =
ρQ2

π2R3σ
, Re =

ρQ
πRµ

, Ca =
We
Re

, (1.1)

After this introductory section, the two technologies on which this thesis
focuses are presented.

1.2 Electrospinning/Electrospray
In 1897, Rayleigh began his first investigations into this technique, which was
studied in greater detail by Zeleny [55] in 1914, to later be patented in 1934
by Formhals. In the electrospray dispersion technique, a high-intensity elec-
tric field is used to eject a liquid in the form of a jet that eventually, by the
action of viscosity and surface tension, break up into spherical droplets. To
impose an electric field, a high-potential difference V between the liquid to be
ejected, commonly known as dope, and a collector is required. The dope is
loaded onto a stainless steel tube, such as a needle, and is supplied continu-
ously by a syringe pump. To prevent electrical attraction from influencing the
planned trajectory, a dielectric medium must be placed between the tube and
the collector. As the voltage applied to the system increases, a charge accu-
mulation process begins at the fluid’s surface, resulting in Maxwell stresses.
Due to the balance of Maxwell and surface tension stresses at the surface, a
so-called Taylor cone will begin to form at the tip of the tube over a range of
voltages (see figure, 1.1).

Taylor’s theoretical, no-emission, equipotential, semi-infinite conical so-
lution results from the perfect balance of Maxwell stresses and surface tension
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Figure 1.1: Accumulation charges process and the formation of a Taylor
cone, and the later ejection by electrical repulsion. a) Droplet pending on the
needle due to the effect of surface tension. b) As voltage increases, the
spherical shape of the liquid is affected as accumulated charges on the lower
surface are being attracted. c) A greater increase of voltage leads to the
formation of a Taylor cone. d) Further increase of voltage, produce the
emission of the liquid due to Coulomb repulsion, which eventually breaks up
into droplets [15].

for a surface with zero hydrostatic pressure:

σ

R tan(αT )
=

ε0

2
E2

n,T (1.2)

where R is the spherical coordinate radius, ε0 vacuum permittivity and En,T is
the normal electric field on the cone.

This, combined with an axial component of the electric field, allows charges
to migrate from the cone’s surface toward the collector, dragging some of the
fluid with them. The length of the liquid layer that responds to the attraction
induced by the electric field is known as the Debye length, and it is governed
by the electrical conductivity of the fluid utilised. In figure 1.2, a sketch of all
the involved parameters is shown.

The ejection process will occur only if the kinetic energy obtained by the
electrical component exceeds or is on the order of the surface tension, as dis-
cussed in the preceding section. From here, the material is expelled through
a stretching and thinning process. It will be electrospray when the jet breaks
up into droplets or electrospinning otherwise, depending on the continuity of
the jet during the process until the liquid reaches the collector [41] (see figure
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Figure 1.2: Electrospray description and all physical components.En is the
normal component of the electric field on the jet surface. τ the tangential
stress on the jet surface, where ES and En are the tangential and normal
components of the electric field on the jet surface respectively. ∆V the
difference of potential applied, which is mainly converted into kinetic energy.
I and K stands for current intensity and conductivity respectively. L is an
axial characteristic length that is small compared to the feeding capillary, and
long compared to the jet’s radius R. σ stands for the surface tension and ε0
for electric permittivity. ΘT is the Taylor’s conical solution Reprinted with
permission from [23]. https://doi.org/10.1103/PhysRevE.79.066305. Physical
review E, 79(6), 066305. Copyright (2022) by the American Physical Society.
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Figure 1.3: Set-up electrospray and electrospinning. On the left figure,
perturbations on the jet lead to the break-up into small droplets
(electrospray). On the right figure, perturbations give arise to whipping
effect, modifying the trajectory of the jet. Figure taken from [34] under
licence Creative Commons 4.0 http://creativecommons.org/licenses/by/4.0/.

1.3). The investigation of the parametrical boundaries between these two con-
figurations is critical for optimizing the desired outcomes for each application.

The primary application of electrospray in biomedicine, chemistry, and
biotechnology is mass spectrometry. This technique can characterize chemi-
cal compounds as well as various types of cells and viruses. Electrospray can
also be used for other biomedical applications, such as drug delivery in the
form of micro/nano-spheres encapsulation, microbubbles for contrast agents
used for biomedical imaging or implants coating for regulating their integra-
tion with the surrounding tissue [11].

Electrospinning, on the other hand, enables the development of fibresăfor
regenerative therapies. This necessitates a high level of control over their di-
ameter, because reducing diameters increases contact surface with the biologi-
cal medium, favouring both biocompatibility and biofunctionality and increas-
ing the efficiency of binding sites on cell membrane receptors [2]. Another
control parameter is the porosity of the fibre network, which allows chemical
species to exchange between cells and the surrounding medium (oxygenation,
nutrients, blood vessel growth...). The resulting scaffold resembles the ex-
tracellular matrix, which is composed of proteins and carbohydrate polymers
known as glycosaminoglycans and serves as a support structure for cells by
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forming a mesh. Poly(α-esters) and enzymatically degradable polymers with
viscoelastic properties such as elastin, albumin, and fibrin [18] are among the
most commonly used materials for biomedial applications [3, 42].

The Oldroyd-B model is one of the most widely used models for viscoelas-
tic materials [45, 49]. This model’s behaviour can be explained from two
perspectives. On the one hand, it can be viewed as a rubber network of in-
terconnected elastic threads that form and decay according to arbitrary laws
[25]. On the other hand, it can be interpreted as a Newtonian-modeled linear
elastic spring subjected to the drag of the surrounding fluid [37]. In order to
analyse the effect of a liquid with weakly viscoelastic properties when using
the electrospray/electrospinning technique, [9] performed a theoretical com-
parison between a Newtonian case, previously studied by [47], and its non-
Newtonian variant.

However, in some applications, high voltage can cause the destruction of a
portion of the biological sample or is incompatible due to the material’s poor
electrical properties. Flow focusing is capable of manipulating such materials
for a wide range of applications in the field of health science by using purely
mechanical methods. One of its most important applications is the delivery of
samples in the XFEL technology process of reconstructing biological struc-
tures of molecules.

1.3 Flow Focusing

Flow focusing is based on the interaction of two immiscible fluids. When a
given pressure difference ∆P is applied on the focusing fluid, it is large enough
to overcome the stresses due to surface tension between the two fluids, creat-
ing a virtual nozzle that gives it the shape of a capillary jet at the mouth of a
capillary tube, giving rise to a cusp-shaped meniscus. This meniscus appears
after a certain distance has been travelled and is influenced by both the pres-
ence of favourable pressure gradients and the presence of viscous shear and
extensional stresses that cause a constriction in the fluid. The focused fluid be-
gins to elongate as the meniscus forms, and both fluids pass through an orifice
located in a plate some distance from the capillary tube’s mouth. The diame-
ter of the focused fluid obtained is much smaller than that of the orifice. If the
capillary flow is sufficiently stable, a jet of a certain diameter will be formed,
which length (on the order of millimetres) will be determined by both the flow
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Figure 1.4: Flow Focusing description and all physical components. ∆P is the
pressure drop applied to the focusing fluid, D the orifice diameter, τ the
tangential viscous stress exerted by the focusing fluid on the meniscus surface
and H the capillary-orifice distance. ρg, µg and Ug are the gas’s density,
viscosity and velocity respectively Reprinted with permission from [23].
https://doi.org/10.1103/PhysRevE.79.066305. Copyright (2022) by the
American Physical Society.

rate and the Reynolds number of the focused fluid. However, as seen in the
case of electrospray, there will come a point downstream, at the orifice’s out-
let, when the surface tension becomes dominant over the kinetic energy of the
jet as the pressure values for both fluids decrease, resulting in the emission of
bubbles or droplets [22, 40]. A sketch of this configuration is shown in 1.4

The main advantage is that viscous shear stresses are lower than in other
techniques, making it easier to manipulate highly sensitive biological material
such as cells, DNA, or biomolecules. Contributing to a better understanding
of how the fundamental elements of organic nature are organised leads to the
development of new therapies, drug synthesis, and knowledge generation for
biological pathways such as gene expression and suppression. In the last two
decades, there has been an increasing interest in the study of biological sam-
ples in the form of crystals, such as proteins [24].
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In a numerical study published in 2000, [44] proposed using high-intensity,
short-duration pulses of the order of fs to extend the conventional damage bar-
rier (on the order of 200 photons per Å2 with energy of 12keV or a wave-
length of 1 Å). This enabled the retrieval of protein structural information just
before their interaction with the energy pulse damaged the biological mate-
rial, combining three aspects: spatial coherence, high-intensity energy peaks,
and pulses with a narrow time window. This method was dubbed SFX (Serial
Femtosecond Crystallography).

XFEL (X-ray free electron laser) technology [13] is based on the interac-
tion of protein crystals moving in a jet at around 100 m/s with high-frequency
X-ray pulses of the order of 4.5 MHz. When the interaction occurs, a diffrac-
tion pattern is collected just before the sample is destroyed due to the pulse’s
high energy. Following the acquisition of several thousand diffraction patterns,
they are sequentially sorted by detecting small displacements, and the molec-
ular spatial distribution is computed. Shock waves form during the destruction
process, damaging biological material and interfering with data collection by
causing pattern distortion. Only one interaction diffraction pattern is ideal (see
figure 1.5).

When the laser pulse interaction occurs, the velocity of the water jet or
buffer (natural environment of the protein crystals) must be as high as possible
to ensure the availability of fresh undamaged sample. To summarise, three fac-
tors must be optimised in this pipeline: data diffraction quality, data collected
per sample (ideally only one), and experimental ability to reduce collection
times.

The jet diameter must be reduced in order to reduce the amount of liquid
surrounding the crystals and thus the obstructions in the effect of the samples’
diffraction patterns. When using gas-focused liquid methods (GDVN [16] or
Flow Focusing)[14], the jet diameter should be in the range of 1 to 5 µm.

Flow Focusing is one of the most widely used mass transport techniques
among injectors used in SFX. The diameter of the crystals in the focused liq-
uid is on the order of 50 microns, while the focused fluid allows the ejected
diameter to be reduced by an order of magnitude. The main disadvantage of
this method is its high sample consumption rate, which is inappropriate for
some applications. As tipically the liquid flow rate is greater than 10 micro-
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Figure 1.5: The XFEL pipeline is depicted schematically. The diffraction
patterns are collected, and after computationally analysing the Bragg peaks,
the orientation of the molecules can be recalculated. After several hundred
repetitions, the molecular crystal structure of the biological particle can be
reconstructed [21].
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liters/min, it can consume tens of milligrammes of microcrystals in order to
get a full data set. However, progress has been made in reducing the consump-
tion required by these systems.

As the Weber number for a constant jet-mode increases, the resulting jet di-
ameter decreases and instabilities increase due to periodic perturbations. This
type of research, in which physical parameter values can be used to predict
the configuration of the downstream jet, leads to the calculation of stability
regions. The regions where global instabilities can be reached after increasing
the pressure drop beyond a limit point for a fixed flow rate, characterised by a
chaotic movement of the jet that changes the orientation of its symmetry axis
continuously at a given point downstream, must be avoided for proper perfor-
mance and resource optimization.

The whipping effect is classified into two types: convective and absolute.
Convective whipping is defined by jet oscillations beyond the discharge orifice
with no downstream consequences. When nozzles are used instead of the tra-
ditional configuration, absolute whipping occurs, and lateral oscillations can
occur. As a result, SFX technology must account for this phenomenon, which
has become a critical point in its proper performance because, under certain
conditions, whipping causes the jet to make contact with the nozzle wall. In
[10], authors hypothesised that the growing of the dominant linear lateral mode
(m=1) could be responsible for the growing of lateral oscillations, leading to
absolute whipping, as observed in [1].

1.4 Biomechanical models

Numerical models for the kinematic and dynamic analysis of biomechanical
systems are critical in areas such as high-performance sports, rehabilitation,
diagnosis, implants designing, and surgical planning. One of its main strengths
is the analysis of various physical variables that may influence an individ-
ual, allowing it to provide personalised therapies and accurate diagnostics by
adapting the implemented model to patient-specific cases. Originally, such
predictions relied on approximations based on animal tests [5] or the use of
corpses.

Different research groups have widely used so-called lumped-models, with
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Figure 1.6: The relationship between transmural pressure across the airways
and the pressure required to collapse the airways. On the left side we find the
trachea, and on the right side the bronchioles [26].

Wiendkessel’s models standing out [46, 54]. These models rely on blood ves-
sel network modelling as electronic components (see figure 1.7). Different
elements and configurations can be used depending on the characteristic to
model (compliance, inertia, or energy loss). Approaches based on CFD (Com-
putational Fluid Dynamics) are becoming more common, allowing the use of
biomedical images of patients to define specific geometry and boundary con-
ditions [19] (see figure 1.8).

The analysis of flexible channel models was the focus of this thesis [12,
28, 53]. The ability of these models to perform simplifications of channel de-
formation and analyse fluid-structure interaction (FSI) phenomena, as well as
collect in greater detail some of the most important characteristic properties
of a given segment of the vascular network, such as small wall deformations,
boundary layer detachment, and conduit collapse, is their main feature.

The shell model is one of the most widely used due to its simpler consis-
tent approximation. The Kelvin-Voigt viscoelastic model, in which the total
strain is proportional to the strain and the time derivative of the strain, has
shown good agreement with experimental data from animals [5] and humans
[4] for the flexible membrane, allowing features such as wall hysteresis to be
captured.
Flexible channel models, on the other hand, might be computationally expen-
sive, therefore ad-hoc simplifications can be applied. For example, the linear
elasticity assumption is reached by assuming that the artery wall is homoge-
neous and considering sufficiently small deformation gradients and displace-
ments. Other assumptions include a small vessel thickness, which may allow
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Figure 1.7: Windkessel models of various components for blood vessel
simulations based on their electronic analogy. Figure taken from [54] under
Creative Commons 2.0 license https://creativecommons.org/licenses/by/2.0/.

for a simplified transition from a 3D to a 2D shell model. Furthermore, assum-
ing an unbranched cylindrical geometry leads to cylindrical shell models. It is
possible to convert a shell model to a membrane model if the bending stiffness
of the channel is ignored [12]. However, as the thickness of the membrane
approaches (or matches) the radius of the duct, or when dealing with large
deformations on the flexible membrane domain, the accuracy of these models
decreases.

In a system with constant control parameters, self-excited oscillations oc-
cur when a stable solution does not exist or becomes unstable [39]. Models
based on self-excited oscillations and flexible membrane conduits can analyse
the frequency response as well as the system’s local and global stability.
They have been used to quantify the severity of conditions such as pulmonary
wheezing (see figure 1.6) [26], or cases of apnea. They can detect aneurysms
or the emergence of oscillations in the coronary veins during open heart surgery
in blood vessels, and it can detect urea flow insufficiencies in the urethra. Fur-
thermore, these models, aid in the development of groundbreaking medical
devices such as artificial hearts, voice cord prosthesis, and intra-aortic bal-
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Figure 1.8: Flow velocity maps of aortic dissection thoracic segments
showing blood acceleration through dissection tears and subsequent
impingement on the far aortic wall. A, Aortic dissection characterised by a
stable transaortic diameter. B, Aortic geometry exhibiting rapid expansion
[50]. Use license number: 5335030997292. DOI: 10.1016/j.jvs.2015.02.048

Figure 1.9: Left: Cylindrical shell model where R is the middle surface
radius, h the thickness of the shell and L the length. Right: Deformed and not
deformed shell states along its displacement [12].
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loons.
When the transmural pressure falls below a certain level, any physiologi-
cal conduit through which a fluid circulates is prone to collapse. This phe-
nomenon will occur in some cases in small vessels, such as capillaries, where
the Reynolds number is low, and in others in larger vessels where it is high. In
the latter case, a correlation between the occurrence of self-excited oscillations
and duct collapse has been studied, as in the case of wheezing or Korotkoff
sounds [35].

Depending on the desired degree of detail in the models [27], we can find:

• 1D: These are simplified models, mostly ad-hoc. Their accuracy is ad-
equate for describing phenomena such as wave propagation, choking,
and transitions between subcritical and supercritical flows.

However, when compared to some experimental models, 1D models ex-
hibit accuracy errors. This is observed in both the case of viscous dissi-
pation for high Reynolds number flows and the coupling with the local
pressure per area ratio, because they are not obtained from higher order
systems. These disadvantages lead to deficiencies in the description of
the system’s energy losses. In addition, some unstable modes may be
ignored when performing a global stability analysis of the system due
to low resolution in the results.

• 2D (Bounded flows): In this type of model, the solid and fluid domains
are treated in such a way that they are coupled to each other, allowing for
a more detailed description of when the system can exhibit self-excited
oscillations. It entails simulating the conduct with a finite length and a
segment of it replaced by a membrane/beam subjected to longitudinal
tension. This model is implemented in two ways: by imposing a spe-
cific flow or by imposing an external pressure on the flexible segment
(see figure 1.10). This increased resolution can deal with instabilities
that appear when, for example, a specific longitudinal stress value T
applied to the flexible membrane is low enough or Re is high enough
[39]. They are also able to capture vorticity phenomena inside the chan-
nel. Nevertheless, when dealing with unsteady systems, the membrane’s
thickness is tipically considered asymptotically thin, reducing the scope
of the analysis. In order to overcome this limitation, [33] implemented
a 2D numerical model based on the implicit resolution of the system’s
governing equations, and the use of an elliptical meshing for capturing
large deformations on the membrane.
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Figure 1.10: 2D collapsible channel model sketch [27].

Figure 1.11: Starling resistor set-up diagram [43].

• 3D: These models describe with more detail the collapse of the chan-
nel, allowing both small and larger deformations. The way the channel
can be obstructed may not be axisymmetric, resulting in a non-linear
flow and pressure relation, where flow limitations may be solely due to
viscous effects. This model sub-category can also be used to collect
hysteresis phenomena on conduct spatial locations. Its main backdraw,
is that for some implementations they might be computationally expen-
sive.

The Starling-Resistor is commonly used in experimental studies of self-
excited oscillations. They proposed the original configuration. The system
consists of an elastic segment anchored at its ends to rigid conduits and en-
closed in a pressurised chamber at constant pressure Pext . The flow is con-
trolled by adjusting the pressure difference between the upstream Pup and
downstream Pdn ducts. The Reynolds number, which is usually in the 102-104

range, is imposed by selecting the diameter of the duct. The pressures at the
elastic region’s entrance and exit p1 and p2 are controlled by the use of valves
(see figure 1.11).

Buckling occurs in the flexible region when external pressure is applied in
the absence of flow (i.e., when pu = pd), adopting an elliptical configuration.
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If the region is sufficiently short, two elliptical lobes may appear. Additional
increases in the pe translate into a reduction in cross-sectional area in this
configuration. In the case of elastic rings, a relationship between transmu-
ral pressure and cross section can be established using thin-shell theory. 3D
models (based on nonlinear shell theory) can predict phenomena such as axial
pre-stress and subcritical buckling instabilities [29].
When a fluid flows inside the duct and an external pressure is applied to it pe,
the channel narrows in the downstream zone of the elastic region. There are
several options based on this configuration. One of them is to investigate the
maximum flow limit by varying the pressure drop between p1 and p2 while
maintaining the transmural pressure constant (p1 − pe).

Bertram and colleagues [6, 7], investigated on self-excited oscillations and
established their existence at different frequency bands and the dependency on
the physical parameters of the elastic material, as well as exhibiting hysteresis
phenomena and the interaction between the system’s modes. Self-excited os-
cillations’s frequencies can be related to fluttering effects depending on their
values. In terms of inertia, low-frequency values correspond to low inertial
values in the elastic solid, whereas high-frequency values correspond to in-
creased inertial effects.

1.5 Numerical method used in the thesis

Professor Herrada’s numerical method was employed in papers I, II, and III
[30]. The algorithm implements the equations that govern the problem and its
boundary conditions using the Matlab symbolic tool, and calculates the rele-
vant derivatives evaluating them at each time step in a much simpler and less
computationally expensive manner than other approaches found in the litera-
ture.

As stated in the first section of this manuscript, fluid-dynamics problems
are divided into two parts: One of them entails subjecting the stationary flow
defined by the non-linear equations to small perturbations and analysing the
corresponding eigenmodes of the linearized problem. The non-linear evolu-
tion is calculated from the initial conditions in the other part. This second part,
in particular, requires the formulation of the problem’s derivatives, which can
become tedious depending on the scenario, and this is the main advantage that
this numerical method can provide.
Therefore, a solution U(x, t) can be decomposed as the sum of a stationary
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term U0(x, t) and a transitory one ξ Up(x, t) where ξ is a constant. From the
premise of considering Up small enough relative to U0, it must necessarily be
fulfilled that ξ << 1. Under this framework, it is possible to linearize the
problem equations, obtain a normal decomposition of the eigenmodes, and
compute the linear response of the system when perturbed:

Up(x, t) =
N

∑
i

ψi(x).eωit (1.3)

where each mode calculated ψi will have a certain frequency ωi. To ensure sys-
tem stability, all calculated modes must have an imaginary frequency ωi < 0,
so that the exponential attenuates in time. On the contrary, if there were at
least one mode with a frequency ωi > 0, it would imply a growth of Up, in
which case the system diverges from its stationary solution.

To compute the eigenmodes ψi, the linearized equations are derived ana-
lytically, and then the discrete eigenvalues problem is solved. This allows the
problem’s nonlinear evolution and linear stability to be calculated using the
same algorithm.

The steps followed by the algorithm are:

• Formulation of the problem: First, a mapping of the domain coordi-
nates and the modeling-dependent parameters is performed. A set of
equations in the form FK(t,ξ ,η ;u1,u2, ...,uJ) = 0 where ξ (x,y; t) and
η(x,y; t) represent the coordinate transformation from the real domain
(x,y) to the numeric domain; P represents the physical parameters of the
problem, and u j the set of all variables, including their partial derivatives
and the unknowns of the problem. When formulating the problem, both
the number of equations FK and the number of unknowns uJ must match.
Prior to executing the numerical simulations, all the partial derivatives
of the FK functions with respect to the uJ variables are symbolically cal-
culated, understanding by variables both the unknowns and their partial
derivatives.

• Problem discretization: The mesh points are defined in the numerical
domain (ξ ,η), calculating the corresponding values of the variables in
each of the mesh points at each time step At this point, the necessary
placement matrices are computed in order to evaluate the problem’s par-
tial derivatives. It should be noted that since the numerical domain is not
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time-dependent, neither the placement matrices are. The evaluated mesh
points are then converted to a 1D matrix. The derivative with respect
to time is computed using the second-orderăregressive finite difference
method.

• Symbolic Jacobian: Following the spatiotemporal discretization, the
mesh points and unknowns are rearranged in a 1D vector. It is possi-
ble to define the symbolic Jacobian in such a way that both the equa-
tions and the unknowns are described in the numerical model by tak-
ing into account the corrections of the spatial and temporal derivatives
and applying the pertinent relationships between the variables and their
derivatives in symbolic format.

• Newton-Raphson iterations:At each point of the numerical domain, the
equations defined in the preceding steps are solved iteratively. In each
step, the symbolic Jacobian is first evaluated at each point in the domain,
and then its inverse is calculated to determine the value of the unknowns.

• Global modes: Following the same strategy as described in the previ-
ous steps, it is possible to create a symbolic Jacobian matrix J, in a way
that allows both the calculation of the basic solution, and another Jaco-
bian matrix J0 for the perturbation. The problem would be defined as
U = U0 + εe−iωtδu, being U a problem variable, U0 the base solution
and δU the solution corresponding to the spatial disturbance, and ω the
complex eigenfrequency. Based on the defined parameters, the objective
will be to calculate both the eigenfrequency and the eigenmodes. The
main difference between this and the previous procedure is that in this
case, we will have a Q0 matrix whose elements are the partial deriva-
tives of the variables in the problem with respect to time. Finally, the
problem of calculating eigenmodes and eigenfrequencies would be de-
scribed as J(p,q)

0 δU (q) = iωQ(p,q)
0 δU (q).

An example of global stability calculation using the variables employed
in paper II of this thesis is shown below:

U(r,θ ,z; t) =Ub(r,z)+ εÛ(r,z)e−iωt+imθ (1.4)

V (r,θ ,z; t) = εV̂ (r,z)e−iωt+imθ (1.5)
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W (r,θ ,z; t) =Wb(r,z)+ εŴ (r,z)e−iωt+imθ (1.6)

p(r,θ ,z; t) = pb(r,z)+ ε p̂(r,z)e−iωt+imθ (1.7)

F(θ ,z; t) = Fb(z)+ εF̂(z)e−iωt+imθ (1.8)

, where ε << 1,{Û ,V̂ ,Ŵ , p̂, F̂} stands for eigenmode spatial depen-
dence and ω = ωr + iωi is the eigenfrequency and m is the azimuthal
wave number.

For further formality, the reader is referred to the article [30].



Chapter 2

Thesis structure

This thesis consists of 3 articles published in high impact journals:

• Blanco-Trejo, S., Herrada, M. A., Gañán-Calvo, A. M., & Montanero, J.
M. (2019). Electrospray cone-jet mode for weakly viscoelastic liquids.
Physical Review E, 100(4), 043114.
Journal Impact Factor 2.296, Q1 (9/55 in category of Physics, Mathe-
matical), Source: Journal Citation Reports (JCR Year 2019).

• Blanco-Trejo, S., Herrada, M. A., Gañán-Calvo, A. M., Rubio, A., Cabezas,
M. G., & Montanero, J. M. (2020). Whipping in gaseous flow focusing.
International Journal of Multiphase Flow, 130, 103367.
Journal Impact Factor 3.186, Q2 (45/135 in category of Mechanics),
Source: Journal Citation Reports (JCR 2020).

• Herrada, M. A., Blanco-Trejo, S., Eggers, J., & Stewart, P. S. (2022).
Global stability analysis of flexible channel flow with a hyperelastic
wall. Journal of Fluid Mechanics, 934.
Journal Impact Factor 3.627, Q1 (4/34 in category of Physics, Fluids
and Plasmas), Source: Journal Citation Reports (2020).

In paper I, a theoretical comparison was made between the use of a New-
tonian fluid and a non-Newtonian one in the electrospinnig/electrospray tech-
nique. The analysis of the system’s response at the global stability level, as
well as other aspects such as meniscus shape, provides information on how
fluids with weakly viscoelastic properties can affect the use of these fluids
(e.g. biopolymers and hydrogels).

23
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In paper II, the Flow Focusing technique was employed to investigate the
system’s regions of stability for the axisymmetric (m = 0) and lateral (m = 1)
modes. Understanding these stability regions enables optimization of operat-
ing conditions in applications like XFEL. The geometry of the nozzle and the
system’s response at the energy level were also studied.

In paper III, 2D collapsible channel model with a Neo-Hookean membrane
of non-negligible thickness, is employed to investigate the frequency response
considering the impact of inertial effects and flexible membrane’s thickness,
while exploring the system’s global stability in terms of the physical parame-
ters of the system, such as the external pressure and pre-tension applied over
the flexible membrane, or the liquid computational domain’s Reynolds num-
ber, resulting in the definition of maps of stability regions. In addition, the
multiplicity of solutions (and their folding points), and the characteristics of
the self-excited oscillation’s limit cycle were subjected to analysis.

The following sections will present all of the governing equations and
boundary conditions implemented in the simulations, as well as the consid-
erations and used data, followed by a description of the main results from
each paper. Finally, the conclusions of each research will be presented, as
well as potential future directions. A full version of each published paper can
be found at the end of this manuscript for more information.

2.1 Objectives
Due to the interdisciplinary nature of this thesis, each paper describes a par-
ticular topic, with knowledge development to enhance biomedical technology
serving as a common denominator.

2.1.1 Paper I: Electrospray cone-jet mode for weakly vis-
coelastic liquids

Newtonian models have been widely used to study the behaviour of the elec-
trospinning/electrospray technique. However, there was no comprehensive
study in the literature of how the occurrence of weakly viscoelastic effects
affected the system’s response, particularly at the global stability level, pro-
viding information and delimiting the boundary between electrospinning and
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electrospray. A systematic comparison was carried out using 1-octanol as the
fluid, analising the following aspects:

• Proposal of a viscoelastic model in electrospinning/electrospray with
which to study the behaviour of non-Newtonian fluids using an adapta-
tion from Newtonian model adding the consideration of the Oldroyd-B
model.

• Geometric, electrical and weakly viscoelastic fluid flow pattern charac-
terization.

• Study of global stability of the system, defining operating regions for
Newtonian and non-Newtonian fluids.

• Agreement quantification with 1-D slenderness model.

• Effect of polymer relaxation time on critical flow rate.

2.1.2 Paper II: Whipping in gaseous flow focusing
Previous research had allowed for the theoretical investigation of the global
stability of Flow Focusing configurations by implementing models with dif-
ferent geometries and performing global stability analysis for the axisymmet-
ric mode (azimuthal number m=0). On an experimental basis, [1] carried out
an experimental exploration of the axisymmetric and lateral (azimuthal num-
ber m=1) modes. The primary goal of this paper, was to identify the regions
of stability for the modes m=0 y m=1. Specifically, instabilities in the mode
m=1 would be associated with the emergence of whipping, phenomenon to
avoid in the molecular digitization protocol. The fluid used was 5-cSt silicone
oil. Therefore, the objectives of this paper were:

• Theoretical analysis of the geometric influence of the nozzle in the cal-
culation of global stability.

• Exploration of the Flow Focusing configuration (dripping, jetting and
whipping) in terms of the values of applied pressure difference ∆P and
flow rate Q.

• Quantification of surface disturbances for mode m=1.

• Comparison of the theoretical results with the previous experimental
research carried out by [1].
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• Experimental validation of the theoretical obtained results (Professor
Jose María Montanero’s group, Universidad de Extremadura).

2.1.3 Paper III: Global stability analysis of flexible channel
flow with a hyperelastic wall

Shell models are useful for describing the deformation and frequency response
of collapsible biomechanical duct systems (vocal cords, blood vessels, air-
ways...). These models are typically based on taking into account a membrane
of negligible thickness in relation to the duct diameter, as well as minor duct
deformations. The authors’ model overcomes these limitations by employing
a deformable hyperelastic solid model of significant thickness under preten-
sion, based on the works of [52] and [28], by implicit solving the equations
and boundary conditions without performing any simplification. The flexible
solid’s inertial effects and how the membrane’s thickness value affected the oc-
currence of self-excited oscillations have also been considered. This research
is intended to lay the groundwork for future biomechanical models based on
physiological duct networks. The specific goals were:

• Analysis of the global stability of the system as a function of the thick-
ness of the membrane, the inertia of the deformable solid, the external
pressure, the Reynolds number and the longitudinal pre-stress to which
the membrane was subjected.

• Exploration of the existence of multiple solutions and characterization
of the folding points.

• Comparison with the results obtained by [28], used as a benchmark.

• Analysis of the frequency response to small disturbances.

• Analysis of limit cycles and other phenomena, such as detachment of the
boundary layer and emergence of vorticity within the two-dimensional
channel.



Chapter 3

Paper I: Electrospray cone-jet
mode for weakly viscoelastic
liquids

3.1 Equations

A constant voltage V is applied to a cylindrical capillary. The capillary is
pushed up near to a planar grounded electrode at a distance of H. A steady
flow rate Q of liquid is injected through the capillary. Inside the capillary, the
flow has fully evolved, resulting in a parabolic Hagen-Poiseuille velocity pro-
file upstream at a distance Ln from the capillary’s outlet. The triple contact
line is anchored Ri away from the capillary axis. The ambient medium is a
perfect dielectric gas with no dynamic effects. The gravitational Bond number
takes sufficiently small values for the gravity effects to be inconsequential. A
sketch of the system can be seen in 3.1. The properties of the leaky-dielectric
Oldroyd-B liquid are characterized by the density ρ , zero-shear viscosity µ0,
stress (polymer) relaxation time λ̃s, retardation time λ̃r, surface tension γ , elec-
trical permittivity εi, and electrical conductivity K. As the outer domain is
considered vacuum or gas, the only parameter characterizing its electrical in-
fluence is its permittivity ε0.

The mass conservation and momentum equation are defined as:

∇.v = 0 (3.1)

27
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Figure 3.1: Problem sketch. The red square delimits the numerical domain.

∂v
∂ t

+ v.∇v =−∇p+∇.T (3.2)

where v(r, t) = u(r,z, t)er +w(r,z, t)ez is the dimensionless velocity and
p(r,z, t) is the reduced pressure. T corresponds to the extra stress tensor T in
the Oldroyd-B model, being the sum of the solvent contribution and that due
to the presence of polymers:

(1+λ
∗
s G)T = Oh0(1+λ

∗
r G)[∇v+(∇v)T ] (3.3)

, where λ ∗
s = λ̃s/tc is the stress relaxation time defined in terms of the capillary

time[20], G[A] the upper convective derivative operator, Oh0 = µ0(ρRiγ)
−1/2

the Ohnesorge number, λ ∗
r = λ ∗

s µ(s)/µ0 the dimensionless retardation time,
and µ(s) the solvent viscosity.

As in the majority of the viscoelastic liquids, the solution viscosity in-
creases as polymer is added to the solvent, µ(s) << µ0, leading to λ ∗

r ' 0.

In the implemented leaky-dielectric model the bulk net free charge is as-
sumed to be negligible. Thus, the inner and outer potentials φ i and φ o corre-
sponding to the liquid and gaseous domain obey the Laplace equation:

φ
i,o
zz +φ

i,o
rr +φ

i,o
r /r = 0 (3.4)

The subscripts r and z correspond to the partial derivatives with respect the
radius and length across z-axis.

The free surface location is defined by the equation:

r = F(z, t) (3.5)
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Total current intensity I, computed as the sum of the contributions due to
the bulk conduction Ib and the surface convection Is:

Ib(z) = 2παχ

∫ F(z)

0
E i

z(r,z)rdr, Is(z) = 2πF(z)σ(z)vs(z). (3.6)

where E i
z is the axial component of the inner electric field and vs(z) is the

free surface velocity.
The following temporal dependence allows the computation of the linear

axisymmetric global modes:

3.2 Boundary conditions
In order to compute the eigenvalues from the jetting regime for the analysis of
the global stability analysis, a boundary in the downstream direction is setted
and applied outflow boundary conditions at the cutoff of the computational
domain. The bond number is low enough to neglect gravitational effects.

The boundary conditions at the surface are defined by the following ex-
pressions:

• Kinematic compatibility condition:

∂F
∂ t

+Fzw−u = 0 (3.7)

• Balance of normal stress at both sides of the surface.

p+
FFzz −1−F2

z

F(1+F2
z )

3/2 +n.T.n =
χ

2
[(Eo

n)
2 −β (E i

n)
2]+χ

β −1
2

(Et)
2 (3.8)

• Balance of tangential stress at both sides of the surface.

t.T.n = χσEt (3.9)

where n is the outward normal vector, χ = ε0V 2/(Riγ) is the electric Bond
number, Ei and Eo correspond to the inner and outer electric fields, t is the unit
vector tangential to the free surface meridians, and σ the superficial charge
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density. The right-hand sides of the equations are the Maxwell stresses result-
ing from both the accumulation of free electric charges at the interface and the
jump of permitivity across that surface.

The electric field at the free surface and the surface charge density are
computed as:

E i
n =

Fzφ
i
z −φ i

r√
1+F2

z
, Eo

n =
Fzφ

o
z −φ o

r√
1+F2

z
(3.10)

It must be noted that the continuity of the electric potential across the free
surface (φ i = φ o) has been considered.

Et =
−Fzφ

o
z +φ o

z√
1+F2

z
=

−Fzφ
i
r +φ i

z√
1+F2

z
(3.11)

σ = χ(Eo
n −βE i

n) (3.12)

Surface charge conservation at r = F(z, t):

∂σ

∂ t
+∇s.(σv) = χαE i

n (3.13)

where ∇s is the tangential instrinsic gradient along the free surface, and
α = K[ρR3

i /γε2
0 ]

1/2 is the dimensionless electrical conductivity.

Hagen-Poiseuille velocity profile prescribed at entrance of the liquid do-
main z = 0:

u = 0, w = 2Q(1− r2) (3.14)

where Q = Q/(πR2
i vc).

Fixed potential in the capillary wall

φ
i = φ

o = 1 (3.15)

No-slip boundary conditions in the capillary wall:

u = w = 0 (3.16)

The triple contact line is anchored at the end of the capillary:

F = 1 z = Ln (3.17)
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Standard regularity conditions on the symmetry axis:

φ
i
r = u = wr = 0 (3.18)

Outflow conditions at the end of the computational domain ze = H +Ln:

uz = wz = Fz = σz = 0 (3.19)

At r = Re the analytical solution for the far-field electric potential is im-
posed:

φ1(r′,z′) =
−Kv

log(4H ′)
log

{
[r′2 +(1− z′)2]1/2 +(1− z′)
[r′2 +(1− z′)2]1/2 +(1+ z′)

}
(3.20)

where r′ and z′ are cylindrical coordinates whose origin is at the intersec-
tion between the symmetry axis and the grounded planar electrode, and Kv is
a dimensionless variable depending on H ′.

At z = 0 and 1 < r < Re a logarithmic drop of voltage is applied:

φ2 = 1− [1−φ1(re,z′e)] logr/ logRe, z′e ≡ H ′+Ln (3.21)

At z = ze for both the liquid and gas domain:

φz = (φ1)z (3.22)

The geometrical parameters in the computational domain had the follow-
ing values: H = 12, length of the feeding capillary Ln = 1.5, the distance be-
tween the two electrodes H ′ = 20, and a radial distance of the outer boundary
from the symmetry axis Re = 6

3.3 Dimensionless and characteristic parameters
The following characteristic parameters were defined as: the characteristic ra-
dial length do = [γε2

o/(ρK2)]1/3, axial length L of the cone-jet transition L ∼
d0Qr, axial velocity vo = [γK/(ρεo)]

1/3, electric relaxation time to = εo/K,
electric field Eo = (γ2ρK2/ε5

o )
1/6 and current intensity Io = γρ−1/2ε

1/2
o in

terms of the electrodynamic properties of the fluids exclusively. The residence
time tr in the cone-jet transition region scales as tr ∼ L/v0 ∼ d0Qr/v0, and the
fluid particle accelerates from negligible velocity up to the jet speed v j ∼ v0
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within the cone-jet transition region. The axial strain rate ε̇ in the critical re-
gion scales as ε̇ ∼ v j/L ∼ v0/(d0Qr).

Five dimensionles parameters can be formed with the following parame-
ters introduced before: the relative permittivity β = εi/εo, the electrohydro-
dynamic Reynolds number δµ = ρvodo/µ0 = [γ2ρεo/(µ

3K)]1/3, the dimen-
sionless stress relaxation time λs = λ̃s/t0 = λ̃s/(βd0/v0), the dimensionless
retardation time λr = λ̃r/λ̃s, and the relative flow rate Qr = Q/Qo, where
Qo = vod2

o = γεo/(ρK).

The minimum flow rate stability limit can be defined as a function of the
following parameters: Qrmin = Qrmin(β ,δµ ,λs,λr), where Qrmin = Qmin/Qo
and Qmin is the minimum flow rate.
Qrmin ∼ β as in the Newtonian inviscid (polarity-dominated) limit βδµ >> 1.
Due to this, the residence time in the cone-jet transition becomes tr ∼ d0β/v0 =

t0. The dimensionless stress relaxation time λs = λ̃s/t0 can be integrated as the
Deborah number (the stress relaxation time λ̃s measured in terms of the res-
idence time tr in the critical cone-jet region), the axial strain rate sclaes as
ε̇ ∼ v0/(d0β ) = t−1

0 , and λs can be regarderd as the Weissenberg number (the
strain rate times the stress relaxation time).
The diameter ratio Λ = 2Ri/d0 = 2[ρK2R3

i /(γ
2)]1/3, where Ri is the radius of

the triple contact line anchored at the feeding capillary end.

The problem variables were made dimensionless with the triple contact
line radius Ri, the liquid density ρ , the surface tension γ , and the applied volt-
age V . All of them yield the characteristic time, velocity, pressure and electric
field such that tc = (ρR3

i /γ)1/3, vc = Ri/tc, pc = γ/Ri and Ec = V/Ri respec-
tively.
The governing equations are formulated in terms of the dimensionless num-
bers {Oh0,λ

∗
s ,λ

∗
r ,β ,χ,α,Q}. By combining properly, leads to the set {β ,δµ ,λs,λr,Qr}:

δµ =α
−1/3Oh1/2

0 , λs =αβ
−1

λ
∗
s , λr =αβ

−1
λ
∗
r , Qr = παQ.Oh0 = µ0(ρRiγ)

−1/2,
(3.23)

Because the electric relaxation time t0 is substantially shorter than the cap-
illary one tc, the dimensionless conductivity α = β tc/t0 assumes values much
higher than unity.

This implies that λs >> λ ∗
s . It is noticeable that λs measures better the

effects due to viscoelasticity as it takes into account the time for the polymer
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to relax to its coiling state in terms of the residence time t0 in the stretching
region.
Most polymeric solutions have substantially higher zero-shear viscosities than
their comparable solvents. As a result, we shall use λ ∗

r ' 0 in our computa-
tions.

3.4 Computational domain
The inner (liquid) and outer domains were mapped onto two quadrangular
domains through a coordinate transformation. The computations were per-
formed discretizing the governing equations by means of the following mesh-
ing: nzi = nzo = 500 for both the inner and outer axial spatial domain respectiv-
elly, and solved using fourth-order finite difference. On the other hand, for the
radial direction nri = 10 for inner domain, and nro = 101 for the outer domain
using Chebysheb spectral collocation points.

3.5 Fluid properties
The employed liquid for the numerical simulations was 1-octanol, whose phys-
ical properties are: ρ = 827Kg/m3, µ = 7.20mPa.s, γ = 23.5mN/m, K = 9.0x
10−7, β = 10, δµ = 2.29. All the simulations were performed considering
χ = 7.92. The Newtonian and non-Newtonian fluids had as relaxation time
λs = 0 and λs = 2.656 respectively, being the retardation time λr = 0.0926λs.

3.6 Results
The acquired results were based on a systematic comparison of the Newtonian
fluid and the weakly viscoelastic fluid, analyzing the repercussion of the non-
Newtonian component (polymer relaxation time).

3.6.1 Fluid pattern

Firstly, the fluid pattern obtained in the steady solution exhibited a signifi-
cant difference, specially at the meniscus region, where a shrink respecting
to the Newtonian case can be observed (see figure 3.2). In both cases, for
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Figure 3.2: Base flows for β = 10, δmu = 2.29, χ = 7.92, Qr = 7.72, and
λr = 0.0926. (a) λs = 0 and (b) λs = 2.656. Streamlines and equipotential
lines are represented by lines in the inner and outer domains.

small enough flow rates, recirculations cells appear in the cone region. Such
recirculation suffers a shrink in the non-Newtonian liquid as well.

3.6.2 Global stability analysis

The maximum and minimum flow rates were determined by computing the
global stability of both fluids. It was discovered an interval for Newtonian fluid
solutions that were stable and ruled by the same dominant eigenvalue. In the
case of the viscoelastic fluid, however, the maximum flow rate was obtained,
but the minimum flow rate could not be obtained due to the computational
complexity of the problem, i.e. numerical instabilities due to the nature of the
simulations. Interestingly, for a flow rate of Qr ' 10, the weakly viscoelastic
fluid exhibits a jump in the dominant eigenmode, explaining the change in
oscillation frequency.

3.6.3 Fluid stress and electric fields

In the cone-jet transition region, fluid particles are subjected to intense exten-
sional flow, with velocities increasing from low values to jet speeds. This
phenomenon stretches the dissolved polymers in the liquid, which after a
timescale λs∗ tend to recover their coiling state. When the timescale is large
enough in comparison to the axial strain state, the polymers avoid relaxation
and instead stretch across the cone-jet region. More precisely, when ε̇λ ∗

s >
1/2. In order to analyse this aspect, the strain rate ε̇ , and the two contribu-
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Figure 3.3: Real (a) and imaginary (b) part of the eigenvalue responsible for
instability as a function of Qr. The results were calculated for β = 10,
δµ = 2.29, χ = 7.92, λr = 0.0926λs, and λs = 0 (open symbols) and
λs = 2.656 (λ ∗

s = 0.108)(solid symbols)

tions to the extra stress tensor by the solvent and the polymeric components:
T (s)

zz = Ohs∂w/∂ z(Ohs = µs(ρRiγ)
−1/2) and T (p)

zz = Tzz − T (s)
zz respectively

along the symmetry axis were measured. The figure 3.4 shows the results
of such comparisons.

As shown in the figure 3.5, ε̇λ ∗
s > 1/2 in the cone-jet transition region,

where the polymer stress experiments an increment. Conversely, for values of
z & 2.6 the strain rate falls while T (p)

zz and T (p)
rz decay exponentially, and the

latter takes small but non-negligible values.
Comparing the tangential and normal components of the inner and outer elec-
tric fields at the free surface for the Newtonian and non-Newtonian fluids, Eo

n
is approximately three times larger than βE i

n in both cases in the cone-jet tran-
sition region. This implies that the superficial charge is not fully relaxed to its
local electrostatic value within that region. Regarding the outer normal com-
ponent Eo

n , in the Newtonian cone-jet transition region larger values than the
viscoelastic case are noticeable. This fact hints that the energy transmitted
by the dominant shear electric stress to the liquid is larger in the absence of
elasticity. The fact that Eo

n presents similar values in both fluids downstream,
hints that the transported amount of superficial charge density is essentially
the same.



36 3.6 Results

Figure 3.4: (a) Free surface position F and strain rate ε̇ as a function of the
axial position z. (b) Components T (p)

zz and T (p)
rz of the polymeric stress tensor

and solvent contribution T (s)
zz as a function of the axial position z. The results

were calculated for β = 10, δµ = 2.29, χ = 7.92, Qr = 7.72, λr = 0.0926λs
and λs = 2.656(λ ∗

s = 0.108).
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Figure 3.5: (a) and (c) Free surface position F , bulk current intensity Ib and
surface current intensity Is as a function of z. (b) and (d) Tangential Et and
normal components E i

n and Eo
n of the inner and outer electric fields at the free

surface. The results were calculated for β = 10, δµ = 2.29, χ = 7.92,
Qr = 7.72, λr = 0.0926λs, and λs = 0(left) and
λs = 2.656(λ ∗

s = 0.108)(right)

3.6.4 1D slenderness momentum suitability

The slenderness 1-D model for the momentum equation in the z-direction:

χ

2
[(Eo

n)
2 −β (E i

n)
2]z +χ

β −1
2

[(Et)2]z +
2σEt

F
= (

1
F
)z +(

Q2

2F4 )z+

6OhsQ
F2 (

Fz

F
)z +

1
F2 [F

2(T (p)
rr −T (p)

zz )]z

(3.24)

, Electrostatic, polarisation, and electric tangential forces per unit volume are
found on the left side of the equation, while surface tension, inertia, solvent
viscosity, and polymeric stress are found on the right.

All of the contributions of the involved forces, listed below, are depicted
in the figure 3.6:

• The electric tangential force is the most important implied force in both
fluids, especially in the Newtonian case, affecting not only the emission
region but also the emitted liquid thread.
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• Although minor, the electrical suction component aids in the shaping of
the cone-jet transition region to produce liquid ejection. It only prevents
flow behind the cone-jet transition region in the Newtonian case.

• Two phenomena occur in both Newtonian and viscoelastic fluids when
it comes to the polarisation force. On the one hand, the fluid is pushed
forward of the cone-jet transition region, while on the other, it opposes
liquid ejection behind that point.

• Analyzing the impact of the surface tension component, for the vis-
coelastic fluid constitutes the main energy sink in the cone-jet transition
region. This is due to the dissolved polymers’ resistance to their move-
ment along the liquid ejection, which stretches them.

• In the non-Newtonian fluid, the polymeric stress exhibits a maximum
absolute value larger than that of the electric tangential force, what pro-
vides solid evidence for the importance of polymeric axial stress even
when weakly viscoelastic effects are considered.

3.6.5 Current and diameter
In the case of the diameters, the larger the value of the shear electric stress the
larger the diameter of the emitted jet. Because of this, Newtonian diameters
are smaller than viscoelastic ones. As can be seen in the following figure 3.7,
in the Newtonian case diameters do not scale as Q1/2

r .
On the other hand, in the case of the convected electric current, this is greater
in the Newtonian case because of its velocity presents larger values than the
non-Newtonian one. For the Newtonian fluid is observed that intensity values
does scale as I/I0 ∼ Q1/2

r .

3.6.6 Minimum flow rate vs stress relaxation time
This is probably one of the most interesting obtained results, because of its
usage in several applications where the smallest and continuous droplets gen-
eration (or smallest jet diameter) is pursued (see figure 3.8). In the ratio
λr/λs = µ(s)/µ0, the value of viscosity µ0 was held constant in all compu-
tations. The minimum flow rate is notoriously affected by weakly viscoelastic
effects. The appearance of polymeric forces in the cone-jet transition region
can be interpreted as the stabiliser effect. Such polymeric forces, combined
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Figure 3.6: Graphs a)-c) show every force contribution of the 1D slenderness
model. In the graph d) it has been plotted free surface position F , bulk
current intensity Ib and surface current intensity Is as a function of the axial
position z. The shown results were calculated using β = 10, δµ = 2.29,
χ = 7.92, Qr = 7.72, λr = 0.0926λs and λs = 0 (for the left graph) and 2.656
(λ ∗

s = 0..108)(right graph).

Figure 3.7: a) Jet diameter dout . b) Current intensity I. Cases were computed
using β = 10, δµ = 2.29, χ = 7.92, λr = 0.0926λs, and λs = 0 for open
symbols and 2.656 (λ ∗

s = 0.108) for solid symbols. The line in the right
graph is the law I/I0 = 2.1Q1/2

r .
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Figure 3.8: Qrmin, dimensionless flow rate at the minimum flow rate stability,
as a function of λs, the stress relaxation time. The results were obtained using
β = 10, δµ = 2.29, χ = 7.92 and λr = 0.0926λs.

with shear electric stress, promote liquid pushing throughout this region, as-
sisting in overcoming resistance forces. Once this region is gone, polymers
obstruct the liquid movement in the opposite direction of shear electric stress,
which drives the fluid particle movement and increases its velocity.



Chapter 4

Paper II: Whipping in gaseous
flow focusing

4.1 Equations
A liquid of density ρl and viscosity µl is injected through a feeding capillary
of radius R1 at a constant flow rate Q. The feeding capillary is located inside
a converging-diverging nozzle at a distance H from the nozzle neck, whose
diameter is D. A pressure drop ∆p is applied to a gas stream of density ρg
and viscosity µg. The gas stream stretches the liquid meniscus that hangs on
the edge of the capillary end due to the action of the surface tension σ . In the
steady jetting regime, the meniscus tip emits a liquid microjet, which crosses
the nozzle coflowing with the outer gas stream.

(rU ( j))r

r
+

V ( j)
θ

r
+W ( j)

z = 0 (4.1)

ρ
δ jg(U ( j)

t +U ( j)U ( j)
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+
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zz

−U ( j)
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θ

r2 ],

(4.2)
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Figure 4.1: Geometry used by [1]. R1 ' 75µm, D ' 200µm and
H ' 440µm.

Figure 4.2: Numerical domain of the problem. The grey region shows the
position of the feeding tube for 440µm.



4.2 Boundary conditions 43
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(4.4)
where U , V and W stand for the three velocity components. The super-

scripts j denote the involved fluids (liquid and gas), while the subscripts r, t
and z denote the partial derivatives respecting to each variable. p is the pres-
sure, µ = µg/µl is the viscosity ratio of the fluids, ρ = ρg/ρl is the density
ratio of the fluids, δkm is the Kronecker delta and Oh = µl(ρlσR1)

−1/2 is the
Ohnesorge number.

4.2 Boundary conditions

Kinematic compatibility condition at the free surface position r = F(θ ,z; t):

Ft −U ( j)+
Fθ

F
V ( j)+FzW ( j) = 0 (4.5)

τ
(l)
n = τ

(g)
n ,τ l

t1 = τ
g
t1,τ

l
t2 = τ

g
t2, (4.6)

where τ
(l)
n , τ l

t1 and τ l
t2 are the sum of the capillary pressure, hydrostatic

pressure and viscous stress on the two sides of the free surface, and the subindexes
n, t1 and t2 denote the normal and two tangential directions. The expressions
of such stresses are given below:
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where Cn, Ct and Cθ are functions of the instantaneous free surface shape given
by the equations:
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)1/2
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. (4.10)

In addition, en =
1

FCn
[(Fθ sinθ +Fcosθ)er −(Fθ cosθ +Fsinθ)eθ −FFzez]

is the outward unit vector perpendicular to the free surface and

∇.en =
1

FCn
+

1
FC3

n
[
Fθ

F
(
Fθ

F
+2FzFθz)−C2

t
Fθθ

F
−Cθ FFzz] (4.11)

is the local mean curvature.
Anchorage condition impossed at the edge of the feeding capillary:

F = 1 (4.12)
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No-slip boundary conditions on all solid surfaces:

v = 0 (4.13)

Periodic boundary conditions in the angular direction are imposed for all
variables.
Hagen-Poiseuille velocity distribution:

U (l) = 0 (4.14)

W (l) = 2ve(1− r2)(ve = Q/(πR2
1vc)) (4.15)

Additional considerations:

• Uniform velocity profile at the inlet sections z = 0 of the liquid and gas
domains respectively.

• Uniform pressures at the outlet sections of the gas and liquid domains.

• The liquid outlet pressure equals that of the gas plus the capillary pres-
sure.

• The pressure drop ∆p applied to the gas stream is calculated as the dif-
ference between the value averaged over the inlet section and that im-
posed at the outlet section.

• The steady and axisymmetric base flow is characterized by the velocity
and pressure fields vb(r,z) = Ub(r,z)er +Wb(r,z)ez and pb(r,z), as well
as by the distance Fb(z) between a surface element and the z axis.

4.3 Dimensionless and characteristic parameters

The variables were made dimensionless with the capillary radius R1, liquid
density ρl and the surface tension σ leading to the definition of the charac-
teristic time tc = (ρlR3

1/σ)1/2, characteristic velocity vc = R1/tc and charac-
teristic pressure pc = σ/R1. The velocity v( j)(r,z,θ ; t) = U ( j)(r,z,θ ; t)er +
V ( j)(r,z,θ ; t)eθ +W ( j)(r,z,θ ; t)ez and the pressure p( j)(r,z,θ ; t) fields verify
the Navier-Stokes equations defined before.
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4.4 Computational domain
The governing equations are discretized in the transformed radial direction
η using nl

η=13, ng
η=40 Chebysheb collocation points in the liquid and gas

domain respectivelly. The transformed axial direction xi was discretized using
fourth-order finite differences and nl

ξ
=ng

ξ
=1201 equally spaced points.

4.5 Fluid properties
5-cSt silicone oil focused by air. The values of this liquid were a density
ρl = 917Kg/m3, viscosity µl = 4.60mPa.s, superficial tension σ = 19mN/m,
and Ohnesorge number Oh = 0.11.

4.6 Results

4.6.1 Comparison with previous experiments
A more complex geometry than the proposed by [1] was studied on the exper-
imental part of this paper by Jose María Montanero’s group (UEx).

The reason for this, is to improve the focusing effect produced by the
gaseous stream in the neck. Unfortunately, the mesh generation was not cur-
rent enough in the solid region, so simulations were performed using [1] ge-
ometry. In this work, we investigated the similarities between the experimental
results, and the results of global stability analysis obtained by our computa-
tions. For detecting the boundaries in the stability maps, the values of ∆P and
Q were changed in a way that allowed the tracking of the modes, since each
dominant mode exhibited similar frequency values for small changes in the
physical variables. For m=0, keeping a given value of ∆P, Q was increased
or decreased until a growth factor of zero was reached, while for m=1 a vice
versa strategy was carried out.

• Modes m=0 y m=1 using H=350 µm: Using this geometrical value, it
was verified a good agreement between simulations and [1]’s experi-
ments, with exception of a region of discrepancy that is attributed to an
optical distortion in the measurement. Another point of disagreement
was the nozzle deviation from the feeding capillary, which could be ex-
plained by the thickness of the feeding capillary versus the zero value
used in the simulations. Analyzing the behaviour of these modes, it
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Figure 4.3: Stability map of the different regions experimentally studied by
[1] using 5-cSt silicone oil. In the experiments, the open diamonds, squares,
and triangles correspond to the jetting-to-dripping, jetting-to-whipping, and
whipping-to-dripping transitions. The black and red solid circles show the
marginally stable flows under m=0 and m=1 perturbations, respectively,
calculated numerically for H = 350 µm.

is possible to predict jetting-to-dripping and jetting-to-whipping transi-
tions, as well as quantify which values of Q and ∆P give rise to regions
with a positive growth rate, resulting in whipping. Either decreasing
the value of Q or increasing ∆P led to a more unstable m=0 and m=1
eigenvalue. The ∆P value was specially determinant in the jetting-to-
whipping transition, for the jetting-to-dripping transition, the Q values
take precedence over the effect of ∆P, which causes the transition to
occur with lower or higher Q values (see figure 4.3).

• Influence of H (capillary-to-neck distance) on the global modes. H =
350µm vs H = 440µm: As illustrated in the diagram 4.4, changes in
this parameter have a significant impact on the m=0 mode, leading to a
change in the stability map. On the other hand, in the case of m=1, only
a slight change is appreciated.

• Free surface deformation: analyzing how m=1 was affecting to the free
surface, it was shown that there is a growth when capillary distance is
increased. In all analysed cases, the shape after perturbation was very
similar (see figure 4.5).
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Figure 4.4: Marginally stable flows under m=0 (black symbols) and m=1
(red symbols) perturbations calculated numerically for 5-cSt silicone oil
focused with the nozzle used by [1]. The circles and triangles correspond to
H = 350 and 440 µm, respectively.

Figure 4.5: Magnitude of the free surface perturbation amplitude, |F̂(z)|
corresponding to the mode m=1 for the marginally stable flows in the
simulations. The results were normalized using the maximum value for each
case. In the labels the capillary-to-neck distance (µm) and flow rate (ml/h)
are indicated. The positions of the nozzle neck are marked by dashed lines.
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4.6.2 Effect of the nozzle shape
All distances were made dimensionless with the capillary radius R1:

• Influence of the α parameter in the global stability analysis: In contrast
with the influence of the H parameter, the shape in front of the neck has a
strong repercussion on the emergence of whipping (m=1). The nozzle’s
shape convergence was implemented using the following formula:

S(z) = R0 − (R0 −D/2)exp[−α(z−Ll)
2]. (4.16)

Whipping is suppressed as the convergence rate increases, which ex-
plains why whipping is rare in the classical plate-orifice configuration.
As for the varicose mode, it depends on the analysed region of the sta-
bility map. For ∆P values ranging from ∆P≈ 70mbar there is no notice-
able change, but looking from this value to higher, it seems like m = 0
starts becoming more unstable as the convergence increases.

• Mode dominance and possible coexistence of dripping and whipping
(modes interaction): If the varicose mode is dominant, the jet will even-
tually exhibit a dripping transition. If the whipping instability is dom-
inant, the filament will oscillate at the free surface. According to the
observed results, a dripping configuration at the jet tip may be appreci-
ated during a whipping effect. This can occur if the growth rates of both
modes reach similar levels at the same time.

• Free surface perturbation: The results (figure 4.6) show a very similar
behaviour to that shown previously. In the region where z/R1 ≈ 7.5
differences are greater between the flow rates Q employed in the simu-
lations.
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Figure 4.6: Magnitude of the free surface perturbation amplitude, |F̂(z)| ,
corresponding to the mode m=1 for the marginally stable flows in the
simulations. The results have been normalised using the maximum value for
each case. The labels show the flow rate in millilitres per hour. The position
of the nozzle neck is indicated by the vertical dashed line.



Chapter 5

Paper III: Global stability analysis
of flexible channel flow with a
hyperelastic wall

5.1 Equations
A planar rigid (two-dimensional) channel of uniform internal width h is owing
an incompressible Newtonian fluid. An interior section of length L is removed
from the channel’s rigid upper wall and replaced by a pre-tensioned elastic
solid of (initially) uniform thickness e, which is subjected to a passive exter-
nal gas at uniform pressure Pext . The external gas load and fluid traction can
both deform this elastic wall. The lengths of the rigid sections upstream and
downstream of the compliant segment are L1 and L2, respectively. The flow is
driven by a specified upstream flux q in this case, whereas the fluid pressure at
the downstream end of the channel can be set to zero without losing generality
(see figure 5.1).

The fluid domain Ω1 is described by the planar coordinates x = xex + yey
where x parametrises the lower wall of the channel, with x = 0 at the intersec-
tion between the upstream rigid segment and the compliant segment, while y
parametrises the direction normal to the entirely rigid wall pointing into the
fluid (in the plane of the channel). The solid domain Ω2 is measured relative
to a reference configuration parametrised by the coordinates X = Xex + Yey
where X parametrises the lower surface of the wall and Y parametrises the di-
rection pointing into the wall (in the plane of the channel).
The conservation of mass and momentum equations in the fluid (i=1) and solid

51
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L
1

L L
2

External gas

y
x

Elastic solid

Rigid solid
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Figure 5.1: A sketch of the the geometry of the bi-dimensional channel.

(i=2) subdomains:

∇.vi = 0 (i = 1,2) (5.1)

ρi

(
∂vi

∂ t
+(vi.∇)vi

)
= ∇.σi (i = 1,2). (5.2)

where ρi is the density, vi the velocity field and σi is the stress tensor of
material i(i = 1,2).

The stress tensor for the region 1:

σ1 =−p1I +η1(∇v1 +∇vT
1 ) (5.3)

where p1 is the fluid pressure, I is the identity tensor and η1 the fluid vis-
cosity.
For the region 2 domain, we consider a neo-Hookean (hyperelastic) solid
which has a pre-stress, σ

(0)
2p in the initial undeformed state. The stress ten-

sor is given by [52]

σ2 =−p2I +µ2(F.FT − I)+F.σ (0)
2p .FT (5.4)
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where p2 is the solid pressure, µ2 is the shear elastic modulus, x(X , t) is
the position of a material point after deformation of the solid and F = ∂x/∂X
is the deformation gradient tensor. In the initial state, x = X and F.FT = I.
In order to make a connection between the Eularian formulation for the con-
servation of mass and momentum equations for the solid and the Lagrangian
formulation for the elastic stress, we need to determine the deformation gen-
erated by transport by the solid velocity v2. This is achieved using the inverse
Lagrangian map X(x, t) [36]:

∂X
∂ t

+ v2.∇X = 0 (5.5)

satisfying that the reference coordinates are invariants under flow.
Given the bi-dimensionality of the problem the material points can be ex-
pressed in Cartesian coordinates and so the velocity vectors can be written
as:

vi = vyiey + vxiex (i = 1,2) (5.6)

while the stress tensors can be written as:

σ = σyyey ⊗ ey +σyxey ⊗ ex+σxyex ⊗ ey +σxxex ⊗ ex, (5.7)

The deformation tensor in the solid can be written as:

F =
∂y
∂Y

ey ⊗ ey +
∂y
∂X

ey ⊗ ex +
∂x
∂Y

ex ⊗ ey +
∂x
∂X

ex ⊗ ex. (5.8)

In the initial undeformed position in the solid domain exists an initial lon-
gitudinal tension T0 that leads to an initial stress σ

(0)
2p = (T0/e)ex ⊗ ex.

By replacing the incompressibility equation in the solid domain based on the
velocity field by an expression relating the deformation tensor F [52], we ob-
tain:

det(F) =

(
∂y
∂Y

∂x
∂X

− ∂y
∂X

∂x
∂Y

)
= 1 (5.9)

For modeling the deformation on the solid domain, an implementation of
a mapping technique based on the work of [52] was performed. The spa-
tial domain occupied by the fluid Ω1(t) is mapped into a rectangular domain,
parametrised by Cartesian coordinates ξ1 and χ1 for the lower rigid wall and
channel inlet:
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y = f1(ξ1,χ1, t), x = g1(ξ1,χ1, t), [−L1 ≤ ξ1 ≤ L+L2] x [0 ≤ χ1 ≤ 1],
(5.10)

where the shape functions f1 and g1 are obtained as a result of the solution
of the problem. Using the quasi-elliptic transformation [17], it is possible
capturing large anisotropic deformations:

g22
∂ 2 f1

∂ξ 2
1
+g11

∂ 2 f1

∂ χ2
1
−2g12

∂ 2 f1

∂ξ1∂ χ1
= Q, (5.11)

g22
∂ 2g1

∂ξ 2
1
+g11

∂ 2g1

∂ χ2
1
−2g12

∂ 2g1

∂ξ1∂ χ1
= Q, (5.12)

where the coefficients take the form:

g11 =

(
∂g1

∂ξ1

)2

+

(
∂ f1
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(5.13)
where εp is a constant whose values are between 0 and 1 (εp = 0 corre-

sponds to the classical elliptical transformation). In our simulations a value of
εp = 0.2 was employed.
In the case of the elastic solid domain, it was mapped from an initial state Ω2o
and from the current state Ω2(t) onto rectangular domains, parametrised by
Cartesian coordinates ξ2 and χ2 for the lower surface of the flexible membrane
and the edges in contact with the rigid segments of the channel, by means of
non-singular mapping in the form:

y = f2(ξ2,χ2, t), x = g2(ξ2,χ2, t),
Y = F2(ξ2,χ2, t), X = G2(ξ2,χ2, t),

[0 ≤ ξ2 ≤ L]x[0 ≤ χ2 ≤ 1],
(5.14)
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Figure 5.2: Computational domains of the problem and a sketch of the
mapping technique employed in the paper.

where f2, g2, F2 and G2 are (again) obtained as a part of the solution. For
computing these functions, it is necessary to use the next equations:

g2 = ξ2 (5.15)

which ensures a direct application of the discretization used for the variable
ξ2 to the variable x, and

F2 = h+ eχ2 (5.16)

the elastic part of the upper channel wall, at its initial state, is a rectangle of
uniform width e.

g1 =−L1, f1 = hχ1, (x = ξ =−L1) (5.17)

5.2 Boundary conditions
Poiseuille profile at the channel entrance, x =−L1:
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v1x =
6q
h3 y(h− y), v1y = 0, (x =−L1,0 ≤ y ≤ h). (5.18)

Zero fluid pressure p1 = 0 at the channel exit, x = L+L2. No-slip condi-
tions along the entirely rigid wall:

vx1 = vy1 = 0, (y = 0,−L1 ≤ x ≤ L+L2). (5.19)

and the rigid parts of the upper wall:

vx1 = vy1 = 0, (y = h,−L1 ≤ x ≤ 0,x ≥ L). (5.20)

The flexible surface (where the elastic membrane and the fluid interact) is
defined as a function of x, avoiding the surface to overturn or expand beyond
the range 0 ≤ x ≤ L: y = h1(x, t). Across this interface the velocity field must
be continous:

vx1 = vx2, vy1 = vy2, (y = h1,0 ≤ x ≤ L) (5.21)

Normal and tangential stresses between the solid and the fluid:

n1.(σ1 −σ2).n1 = 0, t1.(σ1 −σ2).n1 = 0 (5.22)

where:

n1 =
ey − exh1,x

(1+h2
1,x)

1/2 , t1 =
ex + eyh1,x

(1+h2
1,x)

1/2 (5.23)

are normal and tangential vectors to the surface y = h1(x, t) and subscript
x represents a derivative with respect to x. Imposing no deformation along the
surfaces where the elastic material is clamped:

v2x = v2y = 0, Y = y, X = x, (x = 0,x = L with h ≤ y ≤ h+ e).
(5.24)

We denote the external surface of the flexible membrane as y= h2(x, t),(0≤
x ≤ L), imposing that the normal and tangencial elastic stresses are balanced
with the external pressure in the form:

n2.(σ2 −PextI).n2 = 0, t2.(σ2).n2 = 0 (5.25)

where:

n2 =
ey − exh2,x

(1+h2
2,x)

1/2 , t2 =
ex + eyh2,x

(1+h2
2,x)

1/2 (5.26)
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are normal and tangential vectors to the surface y = h2(x, t).
The following boundary conditions are used for ensuring the correct map-

ping on the solid deformations by the shape functions.
At the channel entrance:

g1 =−L1, f1 = hχ1, (x = ξ1 =−L1). (5.27)

At the channel exit:

g1 = L+L2, f1 = hχ1, (x = ξ1 = L+L2). (5.28)

On the lower wall we impose:

g1 = ξ1, f1 = 0, (y = χ1 = 0). (5.29)

Different boundary conditions are used for the rigids parts and the flexible
surface. For the rigid walls:

g1 = ξ1, f1 = h, (−L1 ≤ x = ξ1 ≤ 0,x = ξ1 ≥ L,y = h). (5.30)

whilst for the flexible segment:

f1 = f2, g1 = g2, (0 ≤ x = ξ1 = ξ2 ≤ L,y = h1(x, t),χ1 = 1,χ2 = 0).
(5.31)

Finally, for the edges of the rectangle that are in contact with the rigid
walls, clamped conditions are used, preventing deformation along the rigid
wall:

g2 = G2 = ξ2, f2 = F2 = h+ eχ2,

(x = ξ2 = 0,x = ξ2 = L,h ≤ y ≤ (h+ e),0 ≤ χ2 ≤ 1).
(5.32)

5.3 Dimensionless and characteristic parameters
All lengths were made dimensionless using the channel width h, velocities
on the mean inlet speed q/h, time on h2/q, the fluid stress on the viscous
scale η1q/h2 and the solid stress on the elastic shear modulus µ2. On the
other hand, the solutions were characterised by the interface’s dimensionless
profile between the fluid and solid domains ĥb1 = hb1/h, the dimensionless
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frequency ω̂ = ωq/h2 and the dimensionless eigenfunction profile of the sur-
face between the fluid and the solid, denoted δ̂h1 = (δh1)/h. The membrane’s
profile termed as mode-n, if δ̂h1 has n extrema across the compliant segment.
The problem is ruled by six dimensionless parameters:

Re =
ρ1q
η1

, Q =
η1q
h2µ2

,
p̂ext

µ2
, T̂0 =

T0

hµ2
, ê =

e
h
, ρ̂ =

ρ2q2

h2µ2
(5.33)

where Re is the Reynolds number, Q the ratio of the viscous stresses in the fluid
to the elastic shear stresses in the membrane, p̂ext the dimensionless external
pressure, T̂0 the dimensionless longitudinal pre-tension, ê the dimensionless
thickness of the flexible membrane and ρ̂ the ratio between the inertial and the
elastic forces in the solid. As for geometrical factors, we used:

L̂1 =
L1

h
, L̂ =

L
h
, L̂2 =

L2

h
, (5.34)

where L̂1 corresponds to the length of the upper rigid wall prior to the flexible
membrane, L is the length of the flexible membrane, and L̂2 the length of the
upper rigid wall beyond the flexible membrane.

The steady solutions were denoted by using the subscript b. The following
formulas were used to calculate the minimal and maximum positions of the
flexible membrane deformation:

ĥmin = minx

(
h1b

h

)
ĥmax = maxx

(
h1b

h

)
. (5.35)

5.4 Computational domain
Hence, for the liquid domain, the unknowns are f1, g1, p1, v1x and v1y whilst
for the solid domain the unknowns are f2, g2, p2, v2x, v2y, F2 and G2. The
derivates appearing in the governing equations are expressed in terms of ξ , χ

and t.
The mapping is applied to the governing equations. For the χ-direction, equa-
tions are discretized using nχ1 and nχ2 Chebyshev spectral collocation points
for both the liquid and the solid computational domain. In contrast, for the
ξ -direction, fourth-order finite differences was employed, with nξ 1 and nξ 2
equally spaced points in the liquid and solid domain.
The computations were performed using the following number of nodes:
nξ 1 = 641, nξ 2 = 201, nχ1 = 19, nχ2 = 14.
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Figure 5.3: Streamlines and pressure contours for the steady solution using.
a) authors’ model; b) [28]’s model. T̂0 = 10, ê = 0.01, ρ̂ = 0, Re = 500 and
p̂ext = 3.204.

5.5 Results

5.5.1 Heil’s results as a benchmark
An evaluation of the precision of our numerical technique was carried out.
For this purpose, we used the steady flow from [28], whose physical values
were ê = 0.01 and T̂0 = 10 for the flexible membrane, L̂1 = 1, L̂ = 5, L̂2 = 10,
Q = 0.01 (elastic stresses dominate the viscous ones).
Pressure distribution in the liquid domain, the streamlines and the flexible
membrane deformation were subjected to analysis. As depicted in figures 5.3
and 5.4, a remarkable agreement was obtained, with minor differences. In fig-
ure 5.3, both of them exhibit a recirculating flow separation downstream from
the collapsing membrane.

The second comparison was the minimum ĥmin and maximum ĥmax mem-
brane’s position values. For sufficiently large Reynolds numbers, the system
admits multiple steady solutions at the same point in the parameter space. In
our study, this resulted in three Branches labelled I, II and III, connected by
two limit points namely folding points (starting-ending points that delimit the
frontier between branches of steady solutions) (see figure 5.4).
For computatiing each Branch and its folding points, different strategies were
followed. For Branches I and III, from initial cases with sufficiently low and



60 5.5 Results

large p̂ext values, respectively, increments (for Branch I) and decrements (for
Branch III) were performed until the solutions from the other Branch were de-
tected by monitoring the values of ĥmax and ĥmin and an abrupt change in the
values was observed. For the Branch II steady solutions, an initial case was
obtained using a constant p̂ext value while decreasing T̂0 from a high value. A
quantitative comparison of the ĥmin values for Branch II and III was made by
changing the p̂ext values for Re = 500 and Re = 250. Both showed a very good
agreement, with exception of small differences for the higher p̂ext region (see
5.4).

The definition of the applied pre-stress to the flexible membrane was dif-
ferent from [28]. We defined this dimensionless parameter as σ0, which is
directly related to our model through σ0 =

T̂0
ê (i.e. for a value of σ0 = 1000 we

used values of T̂0 = 10 and ê = 0.01). All the simulations concerning to this
part were performed without considering inertial effects ( ρ̂ = 0).

For cases with a Reynolds number larger that a certain value, namely
Recusp, [28] stated a region that allows the co-existence of multiple steady
solutions for the same parameter values (see figure 5.5).

In order to obtain the value of Recusp, the p̂ext values for each Branch were
monitored, detecting the folding points of Branches I and III for each Re value
(see figure 5.6). This was first performed using large values of Re, and de-
creasing in each iteration, until the folding point of each Branch collapsed in
a p̂ext value. It was assessed that starting from a Re ≈ 330, multiple solutions
can be obtained in a range of p̂ext values. In figure 5.6 we can see not only the
zone of solution multiplicity, but also the region of stability when self-excited
oscillations begin to emerge in the system.

The folding points were named as p̂ext1 for the limit of the Branch I so-
lutions, and p̂ext2 for those solutions of the Branch III. If the p̂ext > p̂ext1,
the channel will suffer a catastrophic collapse jumping from Branch I to III,
whereas for values p̂ext < p̂ext2 the channel will recover from the collapsed
state, jumping from Branch III into Branch I steady solutions. Figure 5.7
shows a transition from Branch I to III, by increasing incrementally the value
of p̂ext from 1.52 to 1.54.

During the collapse of the channel, a boundary layer separation at the end
of the flexible membrane is noticeable. A supplementary video showing the
process can be reached out at: https://researchdata.gla.ac.uk/1113/. This phe-
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Figure 5.4: a) Maximum (ĥmax) and minimum (ĥmin) spatial point of the
flexible membrane vs p̂ext . Folding points are reached for p̂ext1 = 1.52 for
Branch I and p̂ext2 = 1.42 for Branch III. b)Precision assessment using [28]’s
results. Black circles represent [28]’s folding points and crosses paper results
T̂0 = 10, ê = 0.01 and ρ̂ = 0.
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Figure 5.5: An example of multiplicity of solutions. Streamlines and
pressure distribution p̂b inside the channel a) Branch I. b) Branch II. c)
Branch III. T̂0 = 10, ê = 0.01, ρ̂ = 0 and Re = 500.

50 100 150 200 250 300 350 400 450 500
1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 5.6: Stability analysis along with the representation of multiplicity of
solutions starting from a certain value of Re (Recusp) and within a range of
p̂ext . The cross at the lower right part indicates the case employed for the
boundary layer separation analysis. ê = 0.01, ρ̂ = 0 and T̂0 = 10.
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Figure 5.7: Streamlines and pressure contours. a) Timeline representing the
evolution of the minimum point (ĥmin) in the flexible membrane. Red circles
from b) to e) hint the cases below. At time t ≈ 230 boundary layer separation
takes place. T̂0 = 10, ê = 0.01, ρ̂ = 0 and Re = 500.
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Figure 5.8: a) Eigenvalues spectrum of the global stability analysis. Stability
limit is denoted by red diamonds. b) Shape of the interphase. c)
Eigenfunction representation for p̂ext = 1.752, T̂0 = 10, ê = 0.01, Re = 500.

nomenon is similar to vortex breakdown in swirling flows in pipes [38, 31],
where also bifurcation diagrams can be employed to describe multiple steady
solutions. Since all the computed solutions from the Branch I were stables for
p̂ext > 0, the p̂∗ext curve was defined by performing the global stability analysis
from the Branch III steady solutions.

In figure 5.8, eigenvalues spectrum allows to track the transition from sta-
ble to unstable state in the global stability analysis, as p̂ext increases.

5.5.2 Effect of longitudinal pre-stress (T̂0) on the flexible mem-
brane

In this section, we studied the effect of applying a lower value of pre-stress
T̂0 = 5 on the membrane, while keeping a width value of ê = 0.01. Figure 5.9
summarizes the main obtained results:

• As Re increases, the unstable region for Branch III steady solutions ex-
pands, and the p̂∗ext curve almost overlaps the boundary of the multiplic-
ity solutions region p̂ext1.
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Figure 5.9: Stability analysis along with the representation of multiplicity of
solutions from a certain value of Re (Recusp) and within a range of p̂ext .
Unlike the previous graph, for sufficiently small value of T̂0 a stability region
delimited by p̂∗extI appears. ê = 0.01, ρ̂ = 0 and T̂0 = 5.

• Branch I introduces a new unstable region, where the system exhibits
self-excited oscillations when p̂ext falls below a external pressure value
p̂∗extI for a given Re (see figures 5.9 and 5.10).

• Recusp appears sooner (Recusp ≈ 275), leading to an expansion of the
multiple steady solutions.

Analyzing the membrane’s profile along with the eigenfunctions for the
case of neutral stability: p̂ext = 1.12, Re= 400 and T̂0 = 5 (Branch I), although
the membrane was inflated with a simple hump (mode-1) at neutral stability,
the eigenfunction was mode-2, which was similar to that of the Branch III (see
figure 5.11). This might be related to the specified upstream flux, which sup-
presses modes that induce large volume changes in the flexible membrane.

The study of limit cycles was another intriguing aspect of Branch I in-
stabilities. This occurred when the p̂ext values fell below a critical threshold
( p̂∗extI) for a given Re number, away from the upper branch (Branch I) limit
point and the region of multiple steady states. Using the values of Re = 500,
p̂ext = 1 and T̂0 = 5, the system’s behaviour in the instability region was stud-
ied, including the propagation of the hump(s) downstream and upstream along
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Figure 5.10: Representation of the three Branches. Stability regions are
delimited by dashed lines and the folding points are marked as p̂ext1 for
branch I and p̂ext2 for branch III respectively.
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Figure 5.11: Effect of p̂ext on mode-(i). a) Global stability analysis using
different values of p̂ext . Magenta diamonds depict the marginally stable case.
b) Interphase shape. c) Eigenfunction for the case with p̂ext = 1.12, ê = 0.01,
ρ̂ = 0 and T̂0 = 5.
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the cycle, changes in amplitude, and the shedding of a low pressure vortex
close to the downstream rigid segment, which resulted in a vorticity wave (see
figure 5.12).

5.5.3 Influence of the membrane’s thickness
The dimensionless thickness ê of the flexible membrane not only has an effect
on the global stability of steady solutions, but also on physical parameters
such as the ĥmin and v̂max = maxx,y(v̂1xb). For this purpose, we employed fixed
values of pre-tension, external pressure and Reynolds number: T̂0 = 5, p̂ext =
2.98 and Re = 50. This parameter values correspond to a case that is globally
unstable (see figure 5.11). As seen in the figure 5.13, the value of ĥmin below
1 hints that the channel is collapsed. Increasing the thickness value decreases
the v̂max in the channel while the value of ĥmin increases.
Increasing the thickness value from ê = 0.01 to ê = 2, is noticeable how as
the ê values become larger, the stable region is reached at a critical value of
ê & 0.08, and the resonance frequency ω̂r starts dropping.

Using a pre-tension value of T̂0 = 5 stability curves for five different values
of ê were obtained,allowing the influence on global stability to be more clearly
recognised. For small changes in ê non-significant changes were reported, but
as this value increases and becomes on the order of the channel width (ê ∼ 1),
the behaviour begins to change noticeably as shown in figure 5.14. For a value
of ê = 2, the values of critical p̂∗ext and ω̂r saturate as the Reynolds number
increases.

5.5.4 The influence of membrane’s inertia
We used the same values of pre-tension, external pressure, and Reynolds num-
ber to quantify the impact of inertia on global stability: T̂0 = 5, p̂ext = 2.98 and
Re = 50. By continuity, every mode was tracked as the value of ρ̂ increased.
The analysis reported four different modes as shown in the figure 5.15, with
mode-(iv) having the highest resonance frequency ω̂r. Different values for
dominance and frequency were obtained. It was concluded that an increase in
membrane inertia resulted in the destabilisation of higher-frequency modes of
instability, which eventually dominated the primary global instability as this
parameter becomes larger.

A second approach involved the tracking the system’s modes, by smoothly
changing Re and p̂ext values for different fixed values of ρ̂ (ρ̂=0,10,50). As



68 5.5 Results

b)

a)

Figure 5.12: a) Representation of the system’s evolution from linear regime
until to fully developed non-linear regime. b)-h) A time window representing
the deformation on the solid and liquid domains for a limit cycle, depicted on
a) with a red rectangle. Re = 500, p̂ext = 1 and T̂0 = 5.
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Figure 5.13: Effect of thickness ê without considering inertial effects
(ρ̂ = 0), for a case with T̂0 = 5, p̂ext = 2.98 and Re = 50.
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Figure 5.14: Effect of thickness on mode-(i). a) Stability regions. b)
Eigenfrequency values.
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Figure 5.15: Effect of inertia on system’s modes. a) Stability regions. b)
Eigenfrequency values. c)-e) Eigenfunctions for modes i-iii.

the membrane’s inertia increases, the mode-(i) instability region expands, and
high frequency modes of instability emerge. Figure 5.16 shows the changes in
the stability regions for each inertia value.
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Figure 5.16: Effect of inertia on the system’s modes. a) Stability regions. b)
Frequency values.
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Chapter 6

Conclusions and future work

6.1 Paper I: Electrospray cone-jet mode for weakly
viscoelastic liquids

6.1.1 Conclusions

• When the stress relaxation time is of the order of the residence time in
the cone-jet region, fluid particles undergo an extensional deformation
in that region that is intense enough to cause the dissolved polymers to
stretch continuously, preventing relaxation to the coiling state. As a re-
sult, the axial polymeric stress becomes much greater than that produced
by the solvent viscosity. This axial stress pulls from the liquid, causing
it to accelerate much faster than in the Newtonian case. The electrified
liquid meniscus contracts as a result of the sudden acceleration. Because
the kinetic energy gained by the meniscus from the stretching polymers
is lost in the jet region, where they eventually coil, axial polymeric stress
does not play a significant role in the final energy balance.

• The shrinkage of the meniscus reduces the outer normal component of
the electric field over the free surface while increasing the resistance
force provided by surface tension and viscosity in the cone-jet transition
region. These effects work together to reduce the speed of the emitted
jet in comparison to the Newtonian case.

• The current intensity transported by the viscoelastic liquid is much lower
than that calculated in the Newtonian simulation, especially at low flow
rates. The fact that the liquid gains kinetic energy from polymeric stress

73



74 6.2 Paper II: Whipping in gaseous flow focusing

in the most unstable region seems to explain why the minimum flow rate
stability limit is decreasing.

• When a small amount of polymer is added to a Newtonian solvent, the
liquid undergoes two significant changes: on the one hand, when fluid
particles are deformed at a high enough rate, polymeric stresses form.
The zero-shear viscosity, on the other hand, rises.

• The presence of long polymeric chains strongly aligned with the flow is
the molecular source of anisotropy, which causes the liquid mechanical
response to be non-Newtonian.

6.1.2 Future work

Two factors influence stretching on the cone-jet transition region in viscoelas-
tic liquids: the emergence of Deborah numbers on the order of unity in liquids
with stress relaxation times as short as hundreds of microseconds; and the in-
fluence of electrical conductivity on both the stretching rate (increases) and the
residence time (decreases). The study of the rheological properties of weakly
viscoelastic liquids and the performance of a comparison between numerical
calculations and laboratory data obtained by observing the slenderness of the
viscoelastic meniscus is an intriguing future approach. Such experimental data
would be obtained by measuring the fluid’s relaxation time.

6.2 Paper II: Whipping in gaseous flow focusing

6.2.1 Conclusions

• The capillary-to-neck distance affects the jetting-to-dripping transition
but has no effect on the whipping instability under the conditions con-
sidered in [1]. We also investigated the effect of nozzle shape on jetting
stability.

• The nozzle convergence rate was studied, which is defined as the in-
verse of the distance along which the diameter decreases to its smallest
value. Whipping is suppressed as the convergence rate increases, which
explains why it is much less common in the classical plate-orifice con-
figuration [22].
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• The stability map is highly dependent on many parameter conditions,
making it impossible to draw broad conclusions. For example, under
the conditions considered, the capillary-to-neck distance seems to have
no effect on whipping instability.

• The liquid viscosity eliminates the whipping instability and enables the
jetting regime for Q ≈ 10 ml/h.

• The shape of the nozzle’s converging part has a significant impact on
the response of the liquid jet far away from the discharge orifice. This
last result can be explained if we assume that convective whipping oc-
curs due to convection and amplification of lateral waves emitted by
small-amplitude oscillations of the liquid meniscus rather than wind-
induced destabilisation of the jet downstream. Overall, we can probably
conclude that ejector shapes closer to the plate-orifice configuration pro-
duce less whipping.

6.2.2 Future work
Although a region of stability for m=2 was not found in this paper, it may
be possible to observe its influence in the fluid jet and even its interactions
with modes m=0 and m=1 by employing new geometries in the computational
domain.

6.3 Paper III: Global stability analysis of flexible
channel flow with a hyperelastic wall

6.3.1 Conclusions
• The current implementation overcomes the limitations of other models

(elastic shell or membrane) by allowing a non-singular mapping of hy-
perelastic domain deformation using thicker values for the deformable
solid based on Arbitrary Lagrangian-Eularian (ALE). All fields are solved
at the same time, resulting in a fully implicit method.

• The model predicts that at least one steady solution will exist for all
parameter values. A region of three coexisting solutions will appear for
Reynolds numbers greater than Recusp. Such solutions are linked by a
pair of limit points that delimit the transitions between upper and lower
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branches, resulting in the channel’s collapse or recovery. There is an
intriguing analogy between these outcomes and those reported by [38,
31] in swirling flows in pipes and open jets [51].

• In the case of the lower branch, sufficiently large values of Re and ex-
ternal pressure p̂ext cause the system to become unstable. In the case of
the upper branch, if the pre-tension value falls low enough, a stability
region appears in which external pressure values below a critical point
cause self-excited oscillations.

• The fully developed limit cycle exhibits a hump propagating upstream
along the deformable segment interacting with the flow imposed up-
stream, and then being reflected by the rigid segment upstream. The
flow then sheds a low pressure vortex, allowing a vorticity wave to enter
the downstream rigid segment.

• Analyzing the thickness of the wall without inertia revealed no signif-
icant changes in either the steady solutions or the oscillations until the
thickness of the compliant segment approaches the channel width. From
this point critical pressure is reached at higher values for the same Re,
whilst critical frequency values drop. For the maximum thickness con-
sidered in our study (ê = 2) both values saturate from a Reynolds num-
ber large enough.

• The dimensionless inertia parameter ρ̂ describes the strength of the wall
inertia compared to the internal elastic stress and an eigen-frequency of
the elastic wall compared to the characteristic (inverse) time scale of the
flow past the elastic wall. Increasing this parameter not only expands
the region of self-excited oscillations, but also promotes the emergence
of high frequency modes, which eventually dominate the primary global
instability.

6.3.2 Future work
Our hyperelastic definition is based on first-order elasticity, so that the stress
is proportional to the gradient of the strain energy function with respect to
the strain tensor, and imposing lateral boundary conditions of no displacement
along the face of the elastic solid in contact with the rigid wall. It should be
noted that our methodology cannot reproduce an elastic beam’s resistance to
bending because it would require strain gradient (second-order) elasticity, in
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which the stress exhibits additional contributions due to the derivative of the
strain energy function with respect to the strain gradient tensor. This method
necessitates the addition of new boundary conditions, such as enforcing the
gradient of the profile at the rigid segment edges.
A 3D collapsible channel model is currently being investigated. This new con-
figuration considers pre-tension over the flexible membrane using two com-
ponents: longitudinal and perpendicular to the channel. Another innovative
aspect is the use of lateral perturbation modes for the global stability analysis
of this new setup.
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We study theoretically the influence of viscoelasticity on the steady cone-jet mode of electrospray for small
stress relaxation times. For this purpose, we numerically integrate the leaky-dielectric model together with the
Oldroyd-B constitutive relationship and calculate both the base flow and linear eigenmodes characterizing its
stability as a function of the governing parameters. We describe the effect of the polymeric stresses on both
the cone-jet mode and the minimum flow rate stability limit. There are considerable differences between the
Newtonian and viscoelastic electrospray realizations even for relatively small stress relaxation times due to
the intense extensional deformation suffered by the fluid particles in the cone-jet transition region The axial
polymeric stress shrinks the liquid meniscus and stabilizes it by pushing the fluid particle in the cone-to-jet
transition region.

DOI: 10.1103/PhysRevE.100.043114

I. INTRODUCTION

Electrospinning of polymer solutions is a widely used
technique for the fabrication of polymer fibers with diameters
ranging from tens of microns down to a few nanometers [1].
Several medical areas, like tissue engineering or drug delivery
[2], benefit from this technique. Electrospinning produces
nanofibers with specific photonic, electronic, magnetic and
photocatalytic properties demanded in a number of technical
fields. Areas like textile and filter applications have benefited
from electrospinning as well [3].

Despite its wide applicability, the liquid ejection in elec-
trospinning is far from being fully understood. Most theo-
retical studies are based on the 1D (slenderness) approxima-
tion for the axial momentum equation [4,5], which allows
for a simple description of the balance between the forces
driving and opposing the liquid motion. Carroll and Joo [6]
conducted a “hybrid” local-global linear stability analysis
for low-conductivity viscoelastic liquids in which the axially
non-uniform base flow was numerically calculated from the
1D model, and was perturbed with normal modes. The analy-
sis was subsequently extended to highly-conducting polymer
solutions [7]. If the stress relaxation time is large enough
for the polymer coil-stretch transition to take place in the
unperturbed state, then the axisymmetric mode drastically sta-
bilizes. This mode has a capillary and electrical origin for low
and high conductivities, respectively. Dharmansh and Chokshi
[8] conducted the global linear stability analysis of a low-
conductivity Newtonian jet in the framework of the 1D model
too. They showed the stabilizing effect of the jet thinning, and
attributed that effect to both the variation of the surface charge
density and the extensional deformation rate in the base flow.
Similar conclusions were obtained when rheological effects
were considered [9]. To the best of our knowledge, there is

neither analytical nor numerical 2D (axisymmetric) solution
of the cone-jet mode in electrospinning. The calculation of
the scaling laws for the jet diameter and current intensity
commonly applied in electrospray of Newtonian liquids [10]
does not have its counterpart in electrospinning either.

Weakly viscoelastic polymer solutions with quasimonodis-
perse molecular weight distributions exhibit a constant vis-
cosity μ0 over a wide interval of shear rates (shear thinning
can be neglected) and elastic properties that can be approx-
imately quantified by a single characteristic relaxation time
λ̃s [11]. The Oldroyd-B model [12] is one of the simplest
approximations for calculating the total extra stress tensor of
this type of non-Newtonian liquids because it assumes a linear
relationship between the polymer stress and conformation ten-
sor, and a linear relaxation law for the latter. This simplicity,
and the fact that it can be derived from kinetic theory for a
fluid filled with elastic beads and spring dumbbells [13], has
conferred remarkable popularity upon this model [14]. One of
its fundamental limitations is the fact that it does not take into
account the finite extensibility of the polymers, and, therefore,
it cannot describe phenomena like the appearance of blistering
in capillary thinning [15,16].

The Taylor-Melcher leaky-dielectric model [17,18] has
been successfully applied to the description of the steady
cone-jet mode of electrospray [19–22]. In this approximation,
the net free charge accumulates within a very thin Debye layer
formed at the free surface, which collects free charge from
the bulk at a rate given by a constant electrical conductivity.
A natural question is whether this last condition still holds
under the anisotropic conditions arising in electrospray with
polymer solutions. In this case, the electrical conductivity
probably becomes a non-uniform tensorial quantity related to
the local value of the polymer conformation tensor, which
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accounts for the expected difference between the electrical
resistivity along the radial and axial directions of electrospray.
Given the absence of experimental measurements to support
this or any other correlation, researchers have simply extended
the Newtonian leaky-dielectric model to the viscoelastic case
by replacing the Newtonian constitutive relationship by the
Oldroyd-B or FENE-P model [4,5,9].

The cone-jet mode of electrospray is intrinsically unstable
because the breakup of the emitted jet into drops is always an
energetically favorable process. The question is whether one
can identify a fluid domain portion, which includes an ejected
thread long as compared to its diameter, where the flow
remains essentially steady. The most accurate approach to
address this question is the global linear stability analysis [23].
In this analysis, one asks the system whether small-amplitude
perturbations introduced at a given instant in the considered
fluid domain decay asymptotically on time in the Eulerian
frame of reference. For this purpose, one firstly calculates the
axisymmetric stationary solution U0(r, z) framed within the
considered fluid domain, and then obtains the global modes{

δU (k)(r, z) exp
[
i
(
mθ − ω(k)

m t
)]}

(k = 1, 2, . . . , N ) (1)

of that base flow. Here, the symbol U represents any hydrody-
namic quantity, r and z are the cylindrical coordinates (z is the
symmetry axis), and ω(k)

m = ω(k)
mr + iω(k)

mi is the eigenfrequency
characterizing the temporal evolution of the linear mode with
azimuthal number m. If all the growth factors {ω(k)

mi } are
negative, then any perturbation decays for long times, and the
base flow is asymptotically stable [23]. The linear superposi-
tion of decaying modes excited by a given perturbation may
lead to the short-term growth of that perturbation. In some
cases, this effect can destabilize an asymptotically stable flow
[24], as occurs in gaseous flow focusing [25]. However, this
possibility has not been observed in Newtonian electrospray,
where the minimum flow rates predicted by the global stability
analysis agree fairly well with the experimental values [21].
Therefore, it is reasonable to identify asymptotic stability with
linear stability in the weakly viscoelastic case too.

This work can be regarded as a first attempt to extend
the 2D numerical analyses of electrospray for Newtonian
liquids [19–22] to weakly viscoelastic fluids. We will study
how elasticity influences the flow pattern, meniscus shape,
superficial electric field, and both driving and resistant forces
arising in the cone-jet mode of electrospray. We will examine
the effect of elasticity on the linear stability of this mode under
axisymmetric m = 0 perturbations.

II. THE CONE-JET MODE OF ELECTROSPRAY

To gain insight into the time and spatial scales character-
izing the weakly viscoelastic electrospray, we here borrow
some well-established results from the Newtonian case. The
parameters which essentially characterize the steady cone-jet
mode of electrospray are the issued flow rate Q and both the
liquid and outer environment properties. The properties of
a leaky-dielectric Oldroyd-B liquid are the density ρ, (zero-
shear) viscosity μ0, stress (polymer) relaxation time λ̃s, retar-
dation time λ̃r , surface tension γ , electrical permittivity εi, and
electrical conductivity K . As can be seen, we assume that the

presence of macromolecules does not significantly alter the
isotropic character of electric conduction. This approximation
applies to viscoelastic solutions whose molecular composition
leads to significant mechanical anisotropy but quasi-isotropic
ionic diffusion. If the outer environment is either vacuum or a
gas, then its dynamical effect on the liquid can be neglected,
and the only parameter characterizing its electrical influence
is its permittivity εo.

There is a narrow interval of the applied voltage V within
which the steady cone-jet mode can be established. For this
reason, and as a first approximation, one does not regard
this quantity as a governing parameter. In the steady cone-jet
mode, conduction gives way to dominant charge convection
over the liquid surface within the so-called cone-jet transition
region [10]. Forces driving and opposing the fluid motion
emerge in this critical region, whose size is typically much
smaller than that of the electrospray device. Due to the local
character of electrospray, the device geometrical features and
associated lengths play a secondary role in this phenomenon.

Under the above conditions, one defines the char-
acteristic radial length do = [γ ε2

o/(ρK2)]1/3, axial veloc-
ity vo = [γ K/(ρεo)]1/3, electric relaxation time to = εi/K ,
electric field Eo = (γ 2ρK2/ε5

o )1/6 and current intensity
Io = γ ρ−1/2ε1/2

o in terms of the electrodynamic proper-
ties of the fluids exclusively. Five dimensionless parame-
ters can be formed with the first three characteristic quan-
tities introduced above and the liquid density and vis-
cosity: the relative permittivity β = voto/do = εi/εo, the
electrohydrodynamic Reynolds number δμ = ρvodo/μ0 =
[γ 2ρεo/(μ3K )]1/3, the dimensionless stress relaxation time
λs = λ̃s/to = λ̃s/(βdo/vo), the dimensionless retardation time
λr = λ̃r /̃λs, and the relative flow rate Qr = Q/Qo, where
Qo = vod2

o = γ εo/(ρK ).
The characteristic axial length L of the cone-jet transition

region in Newtonian electrospray can be estimated as L ∼
doQr [10], while the liquid velocity in that region scales as
vo. Therefore, the residence time tr in the cone-jet transi-
tion region scales as tr ∼ L/vo ∼ doQr/vo. The fluid particle
accelerates from a negligible velocity up to the jet speed
v j ∼ vo within the cone-jet transition region. Therefore, the
axial strain rate ε̇ in the critical region scales as ε̇ ∼ v j/L ∼
v0/(d0Qr ) [21].

The minimum flow rate stability limit is probably the
most relevant parameter region at the practical level, because
relatively monodisperse streams of droplets are produced
with their minimum size in that region. The Buckingham π

theorem [26] shows that any dimensionless number describ-
ing the steady cone-jet mode behavior must be a function
of the above-introduced governing parameters. In particu-
lar, Qrmin = Qrmin(β, δμ, λs, λr ), where Qrmin = Qmin/Qo and
Qmin is the minimum flow rate. In the Newtonian inviscid
(polarity-dominated) limit βδμ � 1, a simple scaling analysis
shows that Qrmin ∼ β [27]. Then, the residence time in the
cone-jet transition region becomes tr ∼ doβ/vo = to. There-
fore, and under the conditions mentioned above, the dimen-
sionless stress relaxation time λs = λ̃s/to can be interpreted
as the Deborah number, i.e., the stress relaxation time λ̃s

measured in terms of the residence time tr in the critical
cone-jet transition region. In addition, the axial strain rate
in that region scales as ε̇ ∼ v0/(d0β ) = t−1

o , and, therefore,
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FIG. 1. Sketch of the problem’s formulation. The rectangle (red
online) denotes the limits of the computational domain.

λs can also be regarded as the Weissenberg number, i.e., the
strain rate times the stress relaxation time.

When the radial and/or axial dimension of the cone-jet
transition region are commensurate with the Taylor meniscus
size, the latter may affect some features of the cone-jet mode.
In this case, one defines the diameter ratio � = 2Ri/do =
2[ρK2R3

i /(γ ε2
o )]1/3, where Ri is the radius of the triple contact

line anchored at the feeding capillary end. For � � 102,
the cone-jet mode stability can be influenced by the feeding
capillary size [28]. This may occur, for instance, in the cone-
jet mode of nanoelectrospray [29,30].

III. THE LEAKY-DIELECTRIC OLDROYD-B MODEL

In this section, we present the equations defining the
leaky-dielectric Oldroyd-B model and describe the numerical
method used to calculate both the base flows and their linear
stability. In this work, we restrict ourselves to the analysis of
the m = 0 mode, and, therefore, the model is axisymmetric.
Both the model and the numerical method are the natural
extensions of those recently used to study the cone-jet mode
of Newtonian electrospray [21].

Figure 1 represents the geometrical and electrical configu-
rations considered in the simulations. The red rectangle cor-
responds to the computational domain. A cylindrical capillary
is held at a constant voltage V . The capillary is brought face
to face up close to a planar grounded electrode located at a
distance H ′. A liquid is injected through the capillary at a
constant flow rate Q. The flow is fully developed inside the
capillary, so that there is a parabolic Hagen-Poiseuille velocity
profile upstream at a distance Ln from the capillary’s exit. The
triple contact line anchors at a distance Ri from the capillary
axis. The ambient medium is a perfect dielectric gas whose
dynamic effects are neglected. To analyze the global stability
of the jetting regime, we set a boundary in the downstream
direction and apply outflow (passive) boundary conditions at
that cutoff. The gravitational Bond number takes sufficiently
small values for the gravity effects to be inconsequential.
In what follows, all the quantities are made dimensionless
with the triple contact line radius Ri, the liquid density ρ,
the surface tension γ , and the applied voltage V , which
yields the characteristic time, velocity, pressure and electric

field scales tc = (ρR3
i /γ )1/2, vc = Ri/tc, pc = γ /Ri and Ec =

V/Ri, respectively. It must be noted that theses quantities
differ from those defined in Sec. II to describe the critical
cone-jet transition region because the present model considers
the entire fluid configuration.

The (dimensionless) velocity v(r, t ) = u(r, z, t )er +
w(r, z, t )ez and reduced pressure p(r, z, t ) fields are calculated
from the continuity and momentum equations:

∇ · v = 0, (2)

∂v
∂t

+ v · ∇v = −∇p + ∇ · T. (3)

The extra stress tensor T in the Oldroyd-B model can be seen
as the sum of the solvent contribution and that due to the
presence of polymers, which is given by the Maxwell model
[31]. The result is

(1 + λ∗
s G)T = Oh0(1 + λ∗

r G)[∇v + (∇v)T ] , (4)

where λ∗
s = λ̃s/tc is the stress relaxation time defined in terms

of the capillary time [32], G[A] the upper convected derivative
operator, Oh0 = μ0(ρRiγ )−1/2 the Ohnesorge number, λ∗

r =
λ∗

s μ
(s)/μ0 the dimensionless retardation time, and μ(s) the

solvent viscosity. In most viscoelastic liquids, the solution
viscosity considerably increases when the polymer is added
to the solvent. For this reason, we will assume that μ(s) � μ0

and, therefore, λ∗
r � 0.

In the leaky-dielectric model, the bulk net free charge is
assumed to be negligible, and, therefore, the electric potentials
φi and φo in both the inner (liquid) and outer (gas) domains
obey the Laplace equation

φi,o
zz + φi,o

rr + φi,o
r

/
r = 0. (5)

The subscripts r and z here and henceforth denote the partial
derivatives with respect to the corresponding spatial variables.

The free surface location is defined by the equation r =
F (z, t ). The boundary conditions at that surface are

∂F

∂t
+ Fzw − u = 0, (6)

p + FFzz − 1 − F 2
z

F
(
1 + F 2

z

)3/2 + n · T · n

= χ

2

[(
Eo

n

)2 − β
(
Ei

n

)2] + χ
β − 1

2
(Et )

2, (7)

t · T · n = χσEt , (8)

where n is the unit outward normal vector, χ = εoV 2/(Riγ )
is the electric Bond number, Ei and Eo stand for the inner and
outer electric field, respectively, t is the unit vector tangential
to the free surface meridians, and σ the superficial charge
density. Equation (6) is the kinematic compatibility condi-
tion, while Eqs. (7) and (8) express the balance of normal
and tangential stresses on the two sides of the free surface,
respectively. The right-hand sides of these equations are the
Maxwell stresses resulting from both the accumulation of free
electric charges at the interface and the jump of permittivity
across that surface.
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The electric field at the free surface and the surface charge
density are calculated as

Ei
n = Fzφ

i
z − φi

r√
1 + F 2

z

, Eo
n = Fzφ

o
z − φo

r√
1 + F 2

z

, (9)

Et = −Fzφ
o
r + φo

z√
1 + F 2

z

= −Fzφ
i
r + φi

z√
1 + F 2

z

, (10)

σ = χ
(
Eo

n − βEi
n

)
. (11)

It must be noted that the continuity of the electric potential
across the free surface, φi = φo, has been considered in
Eq. (10).

The free surface equations are completed by imposing the
surface charge conservation at r = F (z, t ),

∂σ

∂t
+ ∇s · (σv) = χαEi

n, (12)

where ∇s is the tangential intrinsic gradient along the free sur-
face, and α = K[ρR3

i /(γ ε2
o )]1/2 is the dimensionless electrical

conductivity.
As mentioned above, the Hagen-Poiseuille velocity profile

is prescribed at the entrance of the liquid domain z = 0:

u = 0, w = 2Q(1 − r2), (13)

where Q = Q/(πR2
i vc). At the capillary wall, we fix the

electric potential and impose no-slip boundary conditions, i.e.,

φi = φe = 1 and u = w = 0. (14)

The triple contact line is anchored at the end of the capillary:

F = 1 at z = Ln. (15)

The standard regularity conditions

φi
r = u = wr = 0 (16)

are prescribed on the symmetry axis, and the outflow condi-
tions

uz = wz = Fz = σz = 0 (17)

are considered at the right-hand end ze = H + Ln of the
computational domain.

The analytical solution for the far-field electric potential
[33],

φ1(r′, z′) = −Kv

log(4H ′)
log

{
[r′2 + (1 − z′)2]1/2 + (1 − z′)
[r′2 + (1 + z′)2]1/2 + (1 + z′)

}
,

(18)

is imposed at the boundary r = Re. Here, r′ and z′ are cylin-
drical coordinates with origin at the intersection between the
symmetry axis and the grounded planar electrode (see Fig. 1),
while Kv is a dimensionless constant which depends on H ′. A
logarithmic drop of voltage

φ2 = 1 − [1 − φ1(re, z′
e)] log r/ log Re, z′

e ≡ H ′ + Ln, (19)

is applied at the boundary z = 0 and 1 < r < Re. Finally, the
condition

φz = (φ1)z (20)

is imposed at the right-hand end z = ze of both the liquid and
gas computational domains.

The base flow of the steady cone-jet mode is calculated
as the solution of the above equations eliminating the partial
derivatives of the unknowns with respect to time. The simu-
lation allows one to obtain the total current intensity I as the
sum of the contributions due to the bulk conduction Ib and
surface convection Is. These contributions can be calculated
at any axial position z along the cone-jet as

Ib(z)=2παχ

∫ F (z)

0
Ei

z (r, z) r dr, Is(z) = 2πF (z)σ (z)vs(z),

(21)

where Ei
z is the axial component of the inner electric field, and

vs(z) is the free surface velocity. Both the free surface position
and current intensity have been calculated and compared with
experimental data for 1-octanol, showing good agreement
[20].

To calculate the linear axisymmetric global modes, one
assumes the temporal dependence

U (r, z; t ) = U0(r, z) + εδU (k)(r, z) e−iω(k)t (ε � 1). (22)

Here, U (r, z; t ) represents any hydrodynamic quantity,
U0(r, z) and δU (k)(r, z) stand for the base (steady) solution
and the spatial dependence of the kth eigenmode, respec-
tively, while ω(k) = ω(k)

r + iω(k)
i is the eigenfrequency. Both

the eigenfrequencies and the corresponding eigenmodes are
calculated as a function of the governing parameters. The
dominant eigenmode is that with the largest growth factor. If
that growth factor is positive, then the base flow is asymp-
totically unstable [23]. We restrict our study to the dominant
mode, whose eigenfrequency is ω = ωr + iωi.

The governing equations are formulated in terms of the
dimensionless numbers {Oh0, λ∗

s , λ∗
r , β, χ , α, Q} and those

characterizing the rest of boundary conditions. The parame-
ters of the first set can be combined to get the dimensionless
numbers {β, δμ, λs, λr , Qr} introduced in Sec. II; specifically,

δμ = α−1/3Oh1/2
0 , λs = αβ−1λ∗

s ,

λr = αβ−1λ∗
r , Qr = π αQ. (23)

The dimensionless conductivity α = βtc/to takes values much
greater than unity because the electric relaxation time to is
much smaller than the capillary one tc. This implies that
λs � λ∗

s . It must be noted that the effect of viscoelasticity in
electrospray is better quantified by the dimensionless relax-
ation time λs, because it measures the time for the polymer to
relax to its coiling state in terms of the residence time to in the
stretching region.

Most polymeric solutions exhibit zero-shear viscosities
much larger than those of their corresponding solvents. For
this reason, we will take λ∗

r � 0 in our calculations. As ex-
plained in Sec. II, the influence of the geometrical parameters
can be neglected if one takes into account both the locality
of the jet emission phenomenon and the secondary role of the
electrical potential. In particular, the results are not expected
to depend on the length H of the computational domain for
sufficiently large values of this parameter. We set H = 12
and verified that neither the base flow nor its eigenmodes
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FIG. 2. Base flows for β = 10, δμ = 2.29, χ = 7.92, Qr = 7.72,
λr = 0.0926λs, and λs = 0 (a) and 2.656 (λ∗

s = 0.108) (b). The lines
in the inner and outer domains correspond to the streamlines and
equipotential lines, respectively.

significantly varied when that parameter was considerably
increased. In addition, the length of the feeding capillary
was Ln = 1.5, the distance between the two electrodes was
H ′ = 20, and the radial distance of the outer boundary from
the symmetry axis was Re = 6.

We use the numerical method proposed by Herrada and
Montanero [34] to solve the model described in this section.
The application of that model to the electrospray configura-
tion, as well as its validation for Newtonian liquids, have been
recently described by Ponce-Torres et al. [21]. The inclusion
of the polymeric stresses does not modify any substantial
aspect of the numerical method. We refer interested readers
to that work for more details of the procedure.

The addition of elastic stresses limits the numerical stabil-
ity of the algorithm used to find the base flow solution. As
mentioned in Sec. II, the strain rate in the cone-jet transition
region of Newtonian electrospray scales as ε̇ ∼∼ v0/(d0Qr ).
This means that the polymeric stress increases in that critical
region as the flow rate decreases. This sets an upper limit to
the stress relaxation time for a fixed flow rate, and a lower
limit for the flow rate for a fixed stress relaxation time. In
addition, the retardation time somehow quantifies the energy
dissipation due to the solvent viscosity. Numerical instabilities
are damped out by the solvent viscous stresses, which sets a
lower limit for the retardation time too.

IV. RESULTS

In this section, we study the effects of viscoelasticity on
the electrospray cone-jet mode of 1-octanol (ρ = 827 kg/m3,
μ = 7.20 mPa s, γ = 23.5 mN/m, K = 9.0 × 10−7, β = 10,
δμ = 2.29), whose numerical simulation has been validated
experimentally [20,21]. This liquid corresponds to a mod-
erately low-viscosity (polarity-dominated) case. The feeding
capillary radius Ri = 550 μm is sufficiently large for the jet
emission to be regarded as a local phenomenon [21]. All
the simulations are conducted for the electric Bond number
χ = 7.92. In Figs. 2–7, we examine the effect of viscoelas-
ticity by considering the stress relaxation time λ̃s = 261 μs,
which is sufficiently large to produce noticeable effects, and
small enough for the liquid to be considered as a weakly
viscoelastic solution [35]. We take the retardation time value
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1 10 100

-1
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ω
r

ω
i
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FIG. 3. Real (a) and imaginary (b) part of the eigenvalue respon-
sible for instability as a function of Qr . The results were calculated
for β = 10, δμ = 2.29, χ = 7.92, λr = 0.0926λs, and λs = 0 (open
symbols) and λs = 2.656 (λ∗

s = 0.108) (solid symbols).

λ̃r = 24.2 μs, which is much smaller than λ̃s but sufficiently
large to damp out numerical instabilities. The influence of
viscoelasticity on the minimum flow rate stability limit is
studied in Fig. 8 for different stress relaxation times λs while
keeping constant the ratio λr/λs, i.e., for a fixed solution
viscosity.

There is a considerable difference between the flow pat-
terns of the Newtonian and viscoelastic cone-jet modes
(Fig. 2). When viscoelasticity is added to the electrosprayed
liquid, the meniscus shrinks significantly. For sufficiently
small flow rates, a recirculation cell appears in the cone. As
can be observed, that cell also shrinks in the non-Newtonian
case.

Figure 3 shows the real and imaginary parts of the eigen-
value responsible for the instability of the base flow as a
function of the flow rate Qr . In the Newtonian case, there
is an interval of flow rates for which the growth rates are
negative, which means that the system is asymptotically stable
in that interval. The maximum flow rate is roughly ten times
the minimum one. The loss of stability at the minimum and
maximum flow rates is caused by the same eigenmode. The
perturbation responsible for instability grows in amplitude
while oscillating with a frequency of the order of the capillary
time. We do not observe any bifurcation of the base flow
when the numerical solution crosses the stability limits. The
lowest flow rate explored for the non-Newtonian liquid was
limited by numerical instabilities, as explained in Sec. III.
For this reason, the minimum flow rate stability limit could
not be reached in this case. The dominant eigenmode in the
viscoelastic case changes for Qr � 10, which explains the
jump of the oscillation frequency at that flow rate. There is
little influence of viscoelasticity on both the maximum flow
rate and the oscillation frequency of the mode responsible for
the instability.

Fluid particles undergo an intense extensional flow when
crossing the cone-jet transition region, where the velocity
increases from very small values up to the jet speed. This
extensional flow stretches the polymers dissolved in the
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FIG. 4. (a) Free surface position F and strain rate ε̇ as a function
of the axial position z. (b) Components T (p)

zz and T (p)
rz of the polymeric

stress tensor and solvent contribution T (s)
zz as a function of the axial

position z. The results were calculated for β = 10, δμ = 2.29, χ =
7.92, Qr = 7.72, λr = 0.0926λs and λs = 2.656 (λ∗

s = 0.108).

liquid, which tend to relax to their coiling state on a timescale
given by λ∗

s . If this characteristic time is sufficiently large
as compared to the axial strain rate, then the stretch-to-
coil transition is prevented, and polymers keep on stretching
over the cone-jet region. In an uniaxial extensional flow,
this occurs for ε̇λ∗

s > 1/2. To examine this aspect of the
problem, we have measured the strain rate ε̇ and both the sol-
vent T (s)

zz = Ohs ∂w/∂z (Ohs = μs(ρRiγ )−1/2) and polymeric
T (p)

zz = Tzz − T (s)
zz contributions to the extra stress tensor along

the symmetry axis. Figure 4 shows the results for the case
considered in this section. As can be seen, ε̇λ∗

s > 1/2 in the
cone-jet transition region, which makes the polymer stress
sharply increase in that region. For z � 2.6, the strain rate
falls below that critical value mentioned above, and both T (p)

zz

and T (p)
rz decay exponentially. As can be observed, T (p)

rz takes
relatively small but non-negligible values. The existence of
a noticeable off-diagonal stress component of the polymeric
stress tensor has also been observed in the later stages of
Oldroyd-B filament thinning [36]. The contribution of the
solvent viscous stress is hardly noticeable due to the smallness
of the retardation time.

Figure 5 compares the tangential and normal components
of the inner and outer electric fields at the free surface for
the Newtonian liquid and its viscoelastic counterpart. In both
cases, Eo

n is around three times larger than βEi
n in the cone-jet

transition region, and, therefore, one can conclude that the
superficial charge is not fully relaxed to its local electrostatic
value within that region. The outer normal component Eo

n of
the electric field in the Newtonian cone-jet transition region
takes values significantly larger than those of the viscoelastic
case, which indicates that the energy transmitted by the dom-
inant shear electric stress to the liquid is larger in the absence
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FIG. 5. Free surface position F , bulk current intensity Ib and
surface current intensity Is as a function of the axial position z
[(a) and (c)]. Tangential Et and normal components Ei

n and Eo
n of

the inner and outer electric fields at the free surface [(b) and (d)]. The
results were calculated for β = 10, δμ = 2.29, χ = 7.92, Qr = 7.72,
λr = 0.0926λs, and λs = 0 (left) and 2.656 (λ∗

s = 0.108) (right).

of elasticity. This is linked to the more stretched shape taken
by the Newtonian liquid meniscus. The component Eo

n reaches
similar values downstream, which means that the superficial
charge density transported by the viscoelastic jet is essentially
the same as that convected by the Newtonian one.

In the 1D (slender) approximation, the momentum equa-
tion in the z-direction becomes [4]:

χ

2

[(
Eo

n

)2 − β
(
Ei

n

)2]
z︸ ︷︷ ︸

I

+χ
β − 1

2
[(Et )2]z︸ ︷︷ ︸

II

+ 2σEt

F︸ ︷︷ ︸
III

=
(

1

F

)
z︸ ︷︷ ︸

IV

+
( Q2

2F 4

)
z︸ ︷︷ ︸

V

+ 6OhsQ
F 2

(
Fz

F

)
z︸ ︷︷ ︸

VI

+ 1

F 2

[
F 2

(
T (p)

rr − T (p)
zz

)]
z︸ ︷︷ ︸

VII

. (24)

The terms of Eq. (24) have been grouped into electric (left-
hand side) and hydrodynamic (right-hand side) forces. The ad-
dends I, II, and III are generally referred to as the electrostatic,
polarization, and electric tangential forces per unit volume,
respectively [10]. The terms IV, V, VI, and VII correspond
to surface tension, inertia, solvent viscosity, and polymeric
stress, respectively.

Figure 6 shows the values taken by all the terms of the
1D model Eq. (24) as a function of the axial position z.
The electric tangential force (III) is the main driving force
and acts not only in the jet emission region but also along
the ejected liquid thread. As mentioned above, this force
takes considerably larger values in the Newtonian case. The
electrostatic suction (I) supplies much less energy, but it plays
a relevant role in shaping the cone-jet transition region to
produce the liquid ejection. It hinders the flow behind the
cone-jet transition region only in the absence of viscoelas-
ticity. Finally, the polarization force pushes the fluid in front
of the cone-jet transition region, while opposes the liquid
ejection behind that point in the two cases. Most of the work

043114-6



ELECTROSPRAY CONE-JET MODE FOR WEAKLY … PHYSICAL REVIEW E 100, 043114 (2019)

FIG. 6. [Graphs (a), (b), and (c)] Terms I–VII of the slenderness
model Eq. (24) as a function of the axial position z. [Graph (d)] Free
surface position F , bulk current intensity Ib and surface current inten-
sity Is as a function of the axial position z. The results were calculated
for β = 10, δμ = 2.29, χ = 7.92, Qr = 7.72, λr = 0.0926λs, and
λs = 0 (left) and 2.656 (λ∗

s = 0.108) (right).

done by the electric field on the Newtonian liquid converts into
kinetic energy. Polymers pull from the liquid while stretching
in the meniscus apex, and exert a resistant force throughout
the jet as they relax to their coiling state. The pulling exerted
by the dissolved polymers increases the liquid acceleration,
which flattens the meniscus. For this reason, the surface
tension constitutes the main energy sink in the viscoelastic
cone-jet transition region, and the 1D approximation provides
less accurate predictions in that region [see Fig. 6(c)]. In
fact, this model does not even contemplate the off-diagonal
polymeric stress T (p)

rz , which takes smaller but nonnegligible
values as compared to those of T (p)

zz (Fig. 4). The fact that the
maximum of |VII| exceeds the maximum of III reveals the
importance of the polymeric axial stress in this flow, despite
the smallness of the stress relaxation time.

Figure 7 shows the diameter dout at the outlet section and
the current intensity I transported by the liquid as a function of
the dimensionless flow rate Qr for the linearly stable configu-
rations. The diameter of the Newtonian cases is smaller than

FIG. 7. Jet diameter dout (a) and current intensity I (b) as a func-
tion of the dimensionless flow rate Qr . The results were calculated
for β = 10, δμ = 2.29, χ = 7.92, λr = 0.0926λs, and λs = 0 (open
symbols) and 2.656 (λ∗

s = 0.108) (solid symbols). The line in the
right-hand graph is the law I/Io = 2.1Q1/2

r .
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FIG. 8. Dimensionless flow rate Qr at the minimum flow rate
stability limit as a function of the stress relaxation time λs. The
results were calculated for β = 10, δμ = 2.29, χ = 7.92, and λr =
0.0926λs.

those of their viscoelastic counterparts, essentially because,
as mentioned above, the shear electric stress is larger in
the former case. The diameters do not scale as Q1/2

r in the
Newtonian case [10,37] because the jet is still accelerating
at the outlet section for large flow rates. On the contrary, the
current intensity transported by the Newtonian jet does follow
the scaling law I/Io ∼ Q1/2

r [10,37], while it considerably
deviates from that prediction when small viscoelasticity is
considered. The electric current convected by the viscoelastic
jet is smaller than that transported by its Newtonian counter-
part because the speed of the former is smaller than that of the
latter.

The minimum flow rate stability limit is a very attractive
parameter region of electrospray at the practical level because
it leads to the continuous production of the smallest droplets
while keeping a high degree of monodispersity. The effect
of viscoelasticity on the minimum flow rate stability limit
is shown in Fig. 8. The ratio λr/λs = μ(s)/μ0, and there-
fore the solution viscosity μ0, were kept constant in all the
simulations. Despite the smallness of the stress relaxation
time (λs = 0.5 corresponds to λ̃s = 49.2 μs), viscoelasticity
significantly reduces the minimum flow rate. This stabilizing
effect can be understood in terms of the polymeric force
appearing in the cone-jet transition region (Fig. 6). This force
collaborates with the incipient shear electric stress in pushing
the liquid throughout this critical cone-jet region, which helps
the fluid to overcome the resistant forces emerging in that
region. The polymeric force hinders the liquid motion beyond
the cone-jet transition region, where the fluid particle moves
faster driven by the shear electric stress. In this sense, one may
say that the liquid borrows energy from the polymeric stress
in the most unstable region and returns it when safely moving
downstream.

V. CONCLUSIONS

We analyzed theoretically the influence of viscoelasticity
on the steady cone-jet mode of electrospray for small stress
relaxation times. To this end, we numerically solved the
leaky-dielectric model and calculated both the base flow and
the eigenmodes characterizing its linear stability as a func-
tion of the governing parameters. We selected a well-known
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Newtonian electrospray realization and introduced polymeric
stresses modeled by the Oldroyd-B approximation. The stress
relaxation time was varied to examine the influence of those
stresses on the cone-jet mode stability.

When the stress relaxation time is of the order of the
residence time in the cone-jet region, fluid particles undergo
an extensional deformation in that region sufficiently intense
for the dissolved polymers to stretch continuously, preventing
their relaxation to the coiling state. As a consequence, the ax-
ial polymeric stress becomes much larger than that produced
by the solvent viscosity. This axial stress pulls from the liquid,
which accelerates much faster than in the Newtonian case.
This sharp acceleration makes the electrified liquid meniscus
shrink. The axial polymeric stress does not play a dominant
role in the final balance of energy because the kinetic energy
gained by the meniscus through the action of the stretching
polymers is lost in the jet region, where they eventually reach
their coiling state. The meniscus shrinkage reduces the outer
normal component of the electric field over the free surface,
and increases the resistant force offered by both the surface
tension and viscosity in the cone-jet transition region. These
effects collaborate in decreasing the speed of the emitted
jet with respect to that in the Newtonian case. The current
intensity transported by the viscoelastic liquid is significantly
smaller than that calculated in the Newtonian simulation,
especially for small flow rates. The fact that the liquid gains
kinetic energy from the polymeric stress in the most unstable
region seems to explain the decrease of the minimum flow rate
stability limit.

When a small amount of polymers is added to a Newto-
nian solvent, the liquid experiences two major changes: (i)
polymeric stresses arise when fluid particles are deformed
at sufficiently high rates, and (ii) the zero-shear viscosity
increases. To analyze the effect on electrospray of the first
factor exclusively, we compared numerical simulations with
and without polymeric stresses for the same values of the
Newtonian parameters, including the Reynolds number. The
conclusions might be different from those obtained when
comparing the electrospray realizations of the solvent and
the polymeric solution due to the decrease of the Reynolds
number caused by the presence of the polymers.

In the present work, the conduction of electrical charges
in the bulk is assumed isotropic. However, one may expect
that the presence of macromolecules significantly stretched
along the streamwise direction may limit the validity of

that assumption in the critical cone-jet transition region. It
must be noted that the inclusion of anisotropic and/or in-
homogeneous conductivity in the leaky-dielectric model can
violate the conservation of volumetric charge (∇ · j = 0, j
is the current density), which is automatically satisfied for
constant scalar conductivity (∇ · j = ∇ · (KE) = K∇ · E =
0). In other words, the inclusion of an electrical conductivity
linked to the state of the dissolved polymers at a given
point may require calculating the volumetric charge density
in the bulk even if the electric forces are neglected there.
The molecular origin of anisotropy that renders the liquid
mechanical response non-Newtonian is the same as the one
that would make the ionic and thermal mobilities of species
present in the liquid anisotropic: the presence of long poly-
meric chains highly aligned with the flow. One may argue
that if non-Newtonian deviations are accounted for in the
stress-strain relationship, then deviations from isotropy should
be considered in the rest of properties too. However, and given
the vast variety of liquid mixtures used in chemical processes
and applications, there can be a large range of these mixtures
that exhibit stronger mechanical deviations from isotropy than
those of electrical properties, which justifies our approach; for
example, the cases where ionic species are sufficiently small
or electrolytes are used as solvents.

Electrospray stretches violently the fluid particles in the
cone-jet transition region. As shown in this work, it can
produce Deborah numbers of the order of unity when acting
on viscoelastic liquids with stress relaxation times as small
as hundreds of microseconds. The residence time (stretching
rate) decreases (increases) with the electrical conductivity,
and, therefore, one can adjust this parameter to magnify
the viscoelastic character of the polymer solution. This of-
fers the opportunity of measuring the extensional rheological
properties of weakly viscoelastic liquids. For instance, it is
possible (and technically simple) to measure experimentally
the slenderness of the viscoelastic meniscus. Then, one can
compare it with that calculated numerically as a function of
the stress relaxation time to infer the value of this parameter.
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a b s t r a c t 

We study both theoretically and experimentally the whipping instability in axisymmetric gaseous flow fo- 

cusing realized in a converging-diverging nozzle. The lateral oscillation of both the tapering meniscus and 

emitted jet is explained in terms of the global linear instability of the lateral mode with the azimuthal 

number m = 1 . A comparison with previous experiments shows good agreement. The distance between 

the feeding capillary and the nozzle neck hardly affects the m = 1 stability limit for the conditions con- 

sidered in those experiments. We analyze the influence of the nozzle shape on the parameter conditions 

leading to whipping. As the nozzle convergence rate (the inverse of the length over which the diameter 

reduction takes place) increases, the flow becomes more stable under m = 1 perturbations. The above 

results are in marked contrast with those of the axisymmetric mode m = 0 . For the axisymmetric mode, 

the minimum flow rate increases with the nozzle convergence rate, while the capillary-to-neck distance 

has considerable influence on the jetting-to-dripping transition. We also conduct experiments with dif- 

ferent nozzles and capillary-to-neck distances to examine the effect of those factors on the stability of 

the jetting regime. The experiments allow us to distinguish between absolute whipping, in which both 

the tapering meniscus and the emitted jet oscillate, and convective whipping, in which the jet oscillates 

while the meniscus remains practically steady. Absolute whipping is observed for water and 1-cSt sili- 

cone oil focused with the nozzle with the smallest convergence rate and capillary-to-neck distance. The 

increase of the liquid viscosity stabilizes the liquid meniscus, producing the transition from absolute to 

convective whipping. In the high-viscosity case, the oscillation of the emitted jet far away from the dis- 

charge orifice is considerably affected by the shape of the nozzle in front of its neck. In fact, the increase 

of the convergence rate and capillary-to-neck distance eliminates the convective whipping as well. The 

reduction of surface tension enhances absolute whipping. We explain the appearance of the two types of 

whipping in terms of the flow pattern induced by the nozzle shape in front of the neck. 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction 

The production of microjets has enormous applications in very 

diverse fields such as biotechnology, analytical chemistry, phar- 

macy and food industry, and industrial engineering. These capil- 

lary structures are the natural gate to produce drops, emulsions, 

and capsules on the micrometer scale, in a continuous way, and 

with a relatively large degree of monodispersity ( Eggers and Viller- 

maux, 2008 ). The so-called tip streaming phenomenon allows for 

the reduction of the capillary jet diameter down to the microm- 

eter scale while keeping the size of the passages and orifices of 

the ejector on the scale of hundreds of microns ( Montanero and 

∗ Corresponding author. 

E-mail address: jmm@unex.es (J.M. Montanero). 

Gañán Calvo, 2020 ). Several tip streaming configurations can be 

used to produce very thin liquid jets ( Taylor, 1964; Eggers, 1997; 

Cohen et al., 2001; Collins et al., 2008; Castro-Hernández et al., 

2009; Anna and Mayer, 2006 ). In aerodynamic (gaseous) flow fo- 

cusing ( Gañán Calvo, 1998 ), the liquid is supplied across a feed- 

ing capillary at a flow rate of the order of a few microliters per 

minute. The feeding capillary is placed in front of a discharge ori- 

fice whose diameter is commensurate with that of the capillary. 

A high-speed gaseous current coflows with the liquid across the 

discharge orifice. The combination of the pressure drop and vis- 

cous shear stress caused by the gaseous current drives the liq- 

uid flow, stretching the meniscus attached to the feeding capil- 

lary. A thin jet tapers from the meniscus tip and exits the ejector 

together with the outer gaseous stream. The original plate-orifice 

flow focusing configuration ( Gañán Calvo, 1998 ) was modified by 

https://doi.org/10.1016/j.ijmultiphaseflow.2020.103367 

0301-9322/© 2020 Elsevier Ltd. All rights reserved. 
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DePonte et al. (2008) ten years later by replacing the plate with 

a borosilicate tube inside which the feeding capillary was intro- 

duced. The tube was ended by a fire-shaped nozzle to produce the 

same focusing effect as that of the plate orifice in the original con- 

figuration. DePonte et al. (2008) coined the expression “Gas Dy- 

namic Virtual Nozzle” (GDVN) to refer to this ejector. 

Gaseous flow focusing has found applications in very diverse 

fields. For instance, microparticles of complex structures have been 

produced by injecting coaxially two immiscible liquid streams 

( Gañán Calvo et al., 2013 ). Viscoelastic threads ( Ponce-Torres et al., 

2016; Hofmann et al., 2018; Vasireddi et al., 2019 ) for smooth 

printing and bioplotting ( Ponce-Torres et al., 2017 ) have been pro- 

duced by applying essentially the flow focusing principle. Ponce- 

Torres et al. (2019) have recently extruded fibers with diameters 

ranging from a few microns down to hundreds of nanometers 

with the gaseous flow focusing spinning method. A gaseous co- 

flow focusing process has been used to produce stimuli-responsive 

microbubbles that comprise perfluorocarbon suspension of silver 

nanoparticles in a lipid ( Si et al., 2016 ). In electro-flow focusing 

( Gañán Calvo et al., 2006 ), a relatively small voltage is applied to 

the liquid to charge the droplets, which make them perfect can- 

didates for surface sample desorption ( Forbes and Sisco, 2014a; 

2014b ). 

Among the several gaseous flow focusing applications, the se- 

rial femtosecond crystallography (SFX) is probably the most im- 

portant one. In fact, this technology has revolutionized the molec- 

ular determination of complex biochemical species by recording 

single flash diffraction patterns of many individual protein crys- 

tals ( Chapman et al., 2011 ). Most experiments in SFX have uti- 

lized a liquid microjet to place the sample into the beam focus. 

The jet must be perfectly steady to ensure a consistent interac- 

tion with the X-ray beam, which allows for efficient data collec- 

tion. The protein crystals are damaged by the beam, and therefore 

the jet must be sufficiently fast to ensure that the exposed sam- 

ple exits the interaction region before the next pulse strikes the 

jet Stan et al. (2016) . In fact, a fresh sample must be placed 

into the beam focus at a rate that matches the arrival of X-ray 

pulses. This constitutes a severe condition for, e.g., the European 

XFEL, which produces pulses at frequencies of the order of 10 6 

Hz ( Wiedorn et al., 2018 ). The X-ray pulse produces an explo- 

sion of the liquid in the interaction region, which must be located 

sufficiently far from the nozzle exit to avoid a rapid collection of 

sputtered material from the explosion. In addition, the jet must 

be as thin as possible to reduce the background diffraction signal. 

The simultaneous fulfillment of these two last conditions is a diffi- 

cult task because surface tension shortens the jet as the diameter 

decreases. In SFX, the jet is usually generated by aerodynamically 

focusing ( Gañán Calvo, 1998; DePonte et al., 2008; Zahoor et al., 

2018 ) a liquid stream with a GDVN-like ejector. The production of 

long and thin jets imposes severe constraints on the geometrical 

design of issuing nozzles ( DePonte et al., 2008; Beyerlein et al., 

2015; Piotter et al., 2018; Wiedorn et al., 2018 ). 

For a given geometrical configuration, the size of the focused 

jet can be reduced either by decreasing the liquid flow rate or by 

increasing the pressure drop applied to the gas stream. In the first 

case, one inevitably runs into an axisymmetric instability leading 

to the dripping regime ( Si et al., 2009; Vega et al., 2010 ). In the 

latter case, the steady jetting mode becomes unstable due to the 

growth of whipping (bending) oscillations ( Chigier and Reitz, 1996; 

Lasheras and Hopfinger, 20 0 0 ) of the capillary system. In the whip- 

ping instability, surface tension has a stabilizing effect, and the 

destabilizing factor is purely aerodynamic: a perturbation at the 

jet free surface causes the gas stream to accelerate as it passes 

a crest, lowering the pressure at that point and encouraging the 

crest to increase in size (as in wind-generated ripples on a liquid 

free surface). The analysis of the whipping instability entails cer- 

tain complexity even for a parallel liquid base flow. In fact, an ac- 

curate calculation of the perturbation growth rate requires the con- 

sideration of the gas viscosity even for small values of this param- 

eter because the existence of an outer boundary layer significantly 

affects the instability ( Gordillo and Pérez-Saborid, 2005 ). The prob- 

lem for non-parallel liquid flows (as those produced by flow fo- 

cusing) becomes much more complicated due to the cumbersome 

numerics. However, this analysis is highly relevant to optimize 

the production of both microdroplets and microfibers from jetting 

realizations. 

In the classical plate-orifice configuration, the whipping insta- 

bility is found in the jet beyond the discharge orifice, does not 

propagate upstream, and, therefore, the liquid meniscus remains 

perfectly steady (convective whipping). On the contrary, when the 

jet is focused by a nozzle (as happens in SFX) ( DePonte et al., 

2008 ), the liquid meniscus can also oscillate laterally (absolute 

whipping) ( Acero et al., 2012 ). In some cases, those oscillations 

make the liquid touch the inner wall of the nozzle, which consti- 

tutes a serious obstacle in applications. Acero et al. (2012) spec- 

ulated that the absence of absolute whipping in the plate-orifice 

configuration might be due to the radial character of the gaseous 

flow in front of the discharge orifice, which somehow stabilizes the 

meniscus under bending perturbations. Neither the origin of this 

phenomenon nor the way to eliminate it has been determined yet. 

In the linear global stability analysis ( Theofilis, 2011 ), we calcu- 

late the base flow characterizing the steady jetting mode of a cer- 

tain capillary system. Then, we interrogate the base flow about its 

response to small-amplitude perturbations ( Sauter and Buggisch, 

2005; Tammisola et al., 2012; Gordillo et al., 2014; Dharmansh and 

Chokshi, 2016; 2017 ). The system evolves asymptotically (i.e., for 

sufficiently large times) dominated by the mode with the largest 

growth rate of the eigenfrequency spectrum. If this growth rate is 

positive, then natural perturbations lead to the base flow instabil- 

ity. Cruz-Mazo et al. (2017) have shown that this occurs to axisym- 

metric perturbations in gaseous flow focusing for sufficiently large 

applied pressure drops and flow rates below a minimum value. In 

this work, we apply the same methodology to explain the whip- 

ping instability arising for sufficiently large pressure drops. We hy- 

pothesize that the lateral oscillation of the liquid meniscus and/or 

emitted jet observed in experiments ( Acero et al., 2012 ) corre- 

sponds to the growth of the dominant m = 1 linear mode. To the 

best of our knowledge, the non-axisymmetric ( m � = 0) global sta- 

bility analysis has not as yet been applied to any capillary sys- 

tems. In fact, previous studies of non-axisymmetric perturbations 

are restricted to local stability analyses, which assume that the 

base flow is quasi-uniform in the streamwise direction over a dis- 

tance of the order of the wavelength of the dominant perturba- 

tion ( Montanero and Gañán Calvo, 2020 ). This approximation is 

not valid to examine the dynamical response of the flow focusing 

meniscus. 

In this work, we will study the appearance of the whipping 

instability in gaseous flow focusing both theoretically and experi- 

mentally. In the numerical analysis, the steady base flow will be 

calculated by solving the non-linear, steady Navier-Stokes equa- 

tions. Then, the linear eigenmodes will be obtained to examine the 

response of that flow to small-amplitude perturbations. The pa- 

rameter conditions leading to whipping are assumed to be those 

for which the m = 1 dominant eigenmode grows on time. In the 

experimental study, we will determine the parameter conditions 

for which convective and absolute whipping come up. We will 

consider different nozzle shapes and capillary-to-neck distances 

both in the global stability analysis and in the experiments. We 

will focus on the nozzle convergence rate, defined as the inverse 

of the distance along which the diameter reduces to its mini- 

mum value. The results will show that whipping is suppressed 

as the convergence rate increases, which explains why whipping 
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Fig. 1. Axisymmetric gaseous flow focusing. The geometrical configuration corre- 

sponds to that used in the experiments by Acero et al. (2012) . The values of the 

main parameters are R 1 � 75 μm, D � 200 μm, and H � 440 μm. 

is much less common in the classical plate-orifice configuration 

( Gañán Calvo, 1998 ). 

The paper is organized as follows. Section 2 presents the gov- 

erning equations and briefly describes the numerical method. The 

experimental procedure is explained in Section 3 . Section 4 shows 

both the theoretical and experimental results. The paper closes 

with some concluding remarks in Section 5 . 

2. Theoretical method 

The gaseous flow focusing configuration considered in this pa- 

per is shown in Fig. 1 . A liquid of density ρ� and viscosity μ� 

is injected through a feeding capillary of radius R 1 at a constant 

flow rate Q . The feeding capillary is located inside a converging- 

diverging nozzle at a distance H from the nozzle neck, whose di- 

ameter is D . A pressure drop �p is applied to a gas stream of den- 

sity ρg and viscosity μg . The gas stream stretches the liquid menis- 

cus that hangs on the edge of the capillary end due to the action 

of the surface tension σ . In the steady jetting regime, the menis- 

cus tip emits a liquid microjet, which crosses the nozzle coflowing 

with the outer gas stream. 

In this section, all the variables are made dimensionless with 

the capillary radius R 1 , the liquid density ρ� , and the surface ten- 

sion σ , which yields the characteristic time, velocity and pressure 

scales t c = (ρ� R 
3 
1 
/σ ) 1 / 2 , v c = R 1 /t c , and p c = σ/R 1 , respectively. 

The velocity v ( j) (r, z, θ ; t) = U 

( j) (r, θ, z; t) e r + V ( j) (r, θ, z; t) e θ + 

W 

( j) (r, θ, z; t) e z and pressure p ( j ) ( r, θ , z ; t ) fields verify the Navier- 

Stokes equations: 
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In the above equations, ρ = ρg /ρ� and μ = μg /μ� are the density 

and viscosity ratios, δkm 

is the Kronecker delta, the superscripts 

j = � and g refer to the liquid and gas phases, respectively, the sub- 

scripts t, r , and z denote the partial derivatives with respect to the 

corresponding variables, and Oh = μ� (ρ� σR 1 ) 
−1 / 2 is the Ohnesorge 

number. It is worth noting that, although the density and viscosity 

ratios take very small values in gaseous flow focusing, they may 

significantly affect the lateral (whipping) instability of the steady 

jetting regime ( Gordillo and Pérez-Saborid, 2005; Herrada et al., 

2010 ). 

The Navier-Stokes equations are integrated considering the 

kinematic compatibility condition at the free surface position r = 

F (θ, z; t) : 

F t − U 

( j) + 

F θ
F 

V 

( j) + F z W 

( j) = 0 . (5) 

The balance between the normal and tangential stresses on the 

two sides of the free surface reads 
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n , τ (� ) 
t 1 
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t 1 

, τ (� ) 
t 2 

= τ (g) 
t 2 

, (6) 

where τ ( j) 
n , τ ( j) 

t1 
and τ ( j) 

t2 
are the sum of capillary pressure, hydro- 

static pressure and viscous stress on the two sides of the free sur- 

face, and the subindexes n, t 1 and t 2 denote the normal and two 

tangential directions, respectively. These stresses are given by the 

expressions 

τ ( j) 
n = p ( j) − ∇ · e n − 2 μδ jg Oh 

C 2 n 

{
U 

( j) 
r + F z 

(
F z W 

( j) 
z − U 

( j) 
z − W 

( j) 
r 

)

− F θ
F 

[ 

− F θ
F 2 

(
U 

( j) + V ( j) 
θ

)
+ 

U 

( j) 
θ

F 
+ V ( j) 

r − V ( j) 

F 
− F z 

( 

V ( j) 
z + 

W 

( j) 
θ

F 

) ] } 

, 

(7) 

τ ( j) 
t1 

= 

μδ jg Oh 

C n C t 

{
2 F z 

(
U 

( j) 
r − W 

( j) 
z 

)
+ 

(
1 − F 2 z 

)(
W 

( j) 
r + U 

( j) 
z 

)

−F θ
F 

[ 

V 

( j) 
z + 

W 

( j) 
θ

F 
+ F z 

( 

U 

( j) 
θ

F 
+ V 

( j) 
r − V 

( j) 

F 

) ] } 

, (8) 

τ ( j) 
t2 

= 

μδ jg Oh 

C 2 n C t 

{ 

2 F θ
F 

[ 

U 

( j) 
r −

(
1 + F 2 z 

)U 

( j) + V 

( j) 
θ

F 

+ F z 
(
F z W 

( j) 
z − U 

( j) 
z − W 

( j) 
r 

)]
+ 

(
1 + F 2 z − F 2 

θ

F 2 

)
[ 

U 

( j) 
θ

F 
+ V 

( j) 
r − V 

( j) 

F 
− F z 

( 

V 

( j) 
z + 

W 

( j) 
θ

F 

) ] } 

, (9) 

where C n , C t , C θ are functions of the instantaneous free surface 

shape given by the equations 
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In addition, e n = 
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is the local mean curvature. The anchorage condition F = 1 is im- 

posed at the edge of the feeding capillary, while the no-slip bound- 

ary conditions v = 0 is prescribed on all the solid surfaces. Periodic 

boundary conditions in the angular direction are imposed for all 

the variables. 

We impose the Hagen-Poiseuille velocity distribution, U 

(� ) = 0 

and W 

(� ) = 2 v e (1 − r 2 ) ( v e = Q/ (πR 2 
1 
v c ) ), and a uniform velocity 

profile at the inlet sections z = 0 of the liquid and gas domains, 

respectively. We set uniform pressures at the outlet sections of the 

gas and liquid domains. The liquid outlet pressure equals that of 

the gas plus the capillary pressure. The pressure drop �p applied 

to the gas stream is calculated as the difference between the value 

averaged over the inlet section and that imposed at the outlet sec- 

tion. 

The steady and axisymmetric base flow is characterized by the 

velocity and pressure fields, v b (r, z) = U b (r, z) e r + W b (r, z) e z and 

p b ( r, z ), as well as by the distance F b ( z ) between a surface element 

and the z axis. To calculate the linear global modes, one assumes 

the spatio-temporal dependence 

U(r, θ, z; t) = U b (r, z) + ε ˆ U (r, z) e −iωt+ imθ , (12) 

V (r, θ, z; t) = ε ˆ V (r, z) e −iωt+ imθ , (13) 

W (r, θ, z; t) = W b (r, z) + ε ˆ W (r, z) e −iωt+ imθ , (14) 

p(r, θ, z; t) = p b (r, z) + ε ˆ p (r, z) e −iωt+ imθ , (15) 

F (θ, z; t) = F b (z) + ε ˆ F (z) e −iωt+ imθ , (16) 

where ε � 1, { ̂  U , ̂  V , ˆ W , ˆ p , ̂  F } stand for the eigenmode spatial de- 

pendence of the corresponding quantities, while ω = ω r + iω i is 

the eigenfrequency and m is the azimuthal wave number. Both the 

eigenfrequencies and the corresponding eigenmodes are calculated 

as a function of the governing parameters for m = 0 and 1. The 

dominant eigenmode is that with the largest growth rate ω i . If that 

growth rate is positive, the base flow is unstable under the corre- 

sponding axisymmetric ( m = 0 ) or lateral ( m = 1 ) perturbation. 

The global linear stability analysis describes the response of 

the base flow to small-amplitude perturbations. If the base flow 

is linearly unstable, the dominant mode grows exponentially with 

time producing perturbations that leave the linear regime. The 

present stability analysis does not allow one to predict the sys- 

tem’s response in the non-linear phase. However, the growth of an 

axisymmetric dominant mode is expected to lead to the jetting- 

to-dripping transition. On the contrary, the growth of the m = 1 

eigenmode may be saturated by the non-linear terms of the hydro- 

dynamic equations within the experimental field of view. In this 

case, the linear instability will lead to finite-amplitude lateral os- 

cillations of the liquid system (whipping regime). It is not possible 

to safely predict the appearance of either convective or absolute 

whipping in the non-linear regime from the linear stability analy- 

sis. For this reason, we will not distinguish between those whip- 

ping modes in Section 4 . 

The theoretical model was solved with a variation of the nu- 

merical method described by Herrada and Montanero (2016) . The 

base flow and the corresponding eigenmodes are calculated with 

the boundary fitted method ( Thompson and Warsi, 1982 ). The hy- 

drodynamic equations are discretized in the transformed radial di- 

rection η using n � η = 13 and n 
g 
η = 40 Chebyshev collocation points 

( Khorrami, 1989 ) in the liquid and gas domains, respectively. The 

transformed axial direction ξ was discretized using fourth-order fi- 

nite differences and n � 
ξ

= n 
g 

ξ
= 1201 equally spaced points. The grid 

points accumulate near the free surface ( Fig. 2 ) where the gradi- 

ents of the hydrodynamic quantities are expected to increase. The 

Table 1 

Physical properties of the liquids considered in our study. 

ρ� (kg/m 

3 ) μ� (mPa · s) σ (mN/m) Oh 

Distilled water 998 1.00 72 0.0118 

1-cSt silicone oil 818 0.818 17 0.0217 

5-cSt silicone oil 917 4.60 19 0.11 

100-cSt silicone oil 961 96 21 2.14 

accumulation of grid points on the outer side of the free surface 

is important to accurately integrate the gaseous boundary layer, 

which plays an important role in the calculation of the m = 1 

mode ( Gordillo and Pérez-Saborid, 2005 ). We have verified that 

neither the base flow nor the eigenvalues characterizing the lin- 

ear modes changed significantly when the number of grid points 

was increased ( Fig. 3 ). More details of the numerical method can 

be found elsewhere ( Herrada and Montanero, 2016 ). 

3. Experimental method 

Three flow focusing ejectors were used in the experiments. In 

each of these ejectors, a tube of radius R 1 = 100 μm was coaxi- 

ally located inside a converging-diverging nozzle. We used three 

nozzles with different shapes but with the same neck diameter 

D = 220 μm. These nozzles were fire-shaped from cut-end borosil- 

icate capillaries (Hilgenberg Gmbh) and optically characterized by 

the method described by Muñoz Sánchez et al. (2019) . Fig. 4 shows 

the shapes of the nozzles and the inner capillary located at a dis- 

tance H = 450 μm from the nozzle neck. Nozzles 1 and 2 were fab- 

ricated from capillaries of OD 3.3 ± 0.1 mm and ID 2.8 ± 0.1 mm at 

different heating positions. Nozzle 1 was heated deep in the flame 

for a short time, while Nozzle 2 was heated in an outer region 

for a longer time. As can be observed, the nozzles have practically 

the same neck diameter and shape in the diverging part. However, 

they exhibit significantly different shapes in front of the neck. In 

Nozzle 1, the diameter reduction spreads over a long region. The 

shape of Nozzle 2 is closer to that of the plate-orifice configuration 

because the diameter reduction occurs over a shorter length. The 

diameter reduction is large for these two nozzles. For this reason, 

it involved a large amount of molten material, and, consequently, 

the necks are long. Nozzle 3 was fabricated from a thinner capil- 

lary (OD 2.0 ± 0.1 mm, ID 1.6 ± 0.1 mm) and at an outer heating 

position. The diameter reduction is smaller in this case, and, there- 

fore, the neck is considerably shorter. The three flow focusing ejec- 

tors used in the present study are expected to produce an intense 

focusing effect, which confers practical relevance upon our results. 

In our experiments, the liquid was injected at a constant flow 

rate Q through the feeding tube by a syringe pump KDS120 (kdSci- 

entific). Air was injected across the nozzle with a constant pressure 

drop �p . We observed the emitted jet using a CCD camera (AVT 

Stingray F-125B) equipped with optical lenses and LED backlight. 

The camera exposure time was reduced to 4 μs to acquired sharp 

images. The optical magnification was 1.295 μm/pixel. A three-axis 

translation stage allowed for proper alignment and focusing. All 

the elements were mounted on a vibration isolation board. 

We examined the behavior of distilled water, 1-cSt silicone oil, 

and 100-cSt silicone oil to analyze the influence on the stability 

map of both the surface tension and liquid viscosity. The values 

of the physical properties of the liquids considered in our study 

are displayed in Table 1 . The table also shows the physical prop- 

erties of 5-cSt silicone oil considered in the theoretical analysis of 

Section 4 , and the value of the Ohnesorge number calculated with 

the radius R 1 = 100 μm of the feeding capillary. 

The experimental sequence consisted of the following steps. 

The pressure drop was applied to the air stream. The liquid was 

injected at a sufficiently large flow rate to establish the jetting 
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Fig. 2. Details of the grid used in the simulations. 

Fig. 3. (Left) Streamlines of the base flow for the nozzle considered in Section 4.1 , H = 440 μm, Q = 4 . 2 ml/h, and �p = 154 mbar. (Right) Spectrum of eigenvalues for 

m = 1 . The solid and open symbols correspond to ( n � 
ξ

= n g 
ξ

= 1201 , n � η = 11 , n g η = 31 ) and ( n � 
ξ

= n g 
ξ

= 1201 , n � η = 15 , n g η = 40 ), respectively. 

Fig. 4. Inner shape of Nozzles 1, 2, and 3. The grey region shows the position of 

the feeding tube for H = 450 μm. 

regime. Then, the flow rate Q was progressively reduced to de- 

termine the values corresponding to the transitions between the 

different regimes. This sequence was repeated for applied pressure 

drops in the interval 50 ≤ �p ≤ 300 mbar. 

The images acquired in the experiments were analyzed to de- 

termine the regime adopted by the system for each pair of values 

�p and Q . As explained in the Introduction, two types of whip- 

ping instabilities were distinguished ( Acero et al., 2012 ): convec- 

tive whipping in which the tapering meniscus remains stable and 

the emitted jet oscillates laterally, and absolute whipping in which 

both the meniscus and the jet oscillate. Due to the difficulties in- 

herent to the experiment, we adopted the following simple crite- 

rion to identify the above-mentioned regimes. Absolute whipping 

occurs if some visible section of the meniscus (see the circle in 

Fig. 5 a) oscillates with an amplitude larger than the jet radius. 

Convective whipping takes place if this oscillation occurs only be- 

Fig. 5. Absolute whipping (a), convective whipping (b), and jetting (c) in experi- 

ments with water. The red circles in (a) indicates the oscillation of the tapering 

meniscus. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

yond the discharge orifice ( Fig. 5 b). Finally, jetting occurs if neither 

of these conditions applies ( Fig. 5 c). 

4. Theoretical results 

4.1. Comparison with previous experiments 

As can be observed from the comparison between Figs. 3 -left 

and 4 , the focusing geometry in our experiments is more compli- 

cated than that considered by Acero et al. (2012) . We chose this 

geometry to enhance the focusing effect produced by the gaseous 

stream in the neck, which makes the results more interesting at 

the practical level. However, the mesh generation method used 

in the numerical simulations fails to adapt to the solid shapes 

shown in Fig. 4 . For this reason, we will limit the comparison 
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Fig. 6. Stability map obtained from the experiments conducted by 

Acero et al. (2012) for 5-cSt silicone oil (open symbols). The open diamonds, 

squares, and triangules correspond to the jetting-to-dripping, jetting-to-whipping, 

and whipping-to-dripping transitions in the experiments. The black and red 

solid circles show the marginally stable flows under m = 0 and 1 perturbations, 

respectively, calculated numerically for H = 350 μm. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 7. Marginally stable flows under m = 0 (black symbols) and 1 (red symbols) 

perturbations calculated numerically for 5-cSt silicone oil focused with the nozzle 

used by Acero et al. (2012) . The circles and triangles correspond to H = 350 and 

440 μm, respectively.. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

between theory and experiments to the geometry examined by 

Acero et al. (2012) . 

In this section, we assess the accuracy of the linear stability 

analysis by comparing its predictions with the experimental results 

of Acero et al. (2012) . The numerical domain is that considered by 

Cruz-Mazo et al. (2017) (see Fig. 4 of that reference), which ap- 

proximately coincides with the experimental configuration ( Fig. 1 ). 

The base flow was calculated for a given flow rate and different 

applied pressure drops. The example in Fig. 3 shows how the drag 

force exerted by the outer stream causes a recirculation pattern 

in the liquid meniscus. The existence of this pattern prevents one 

from safely using 1D approximations or local stability analysis in 

this problem. We calculated the spectrum of eigenvalues of the 

modes m = 0 and 1 for each of the base flows. The transition from 

jetting to dripping (whipping) takes place when the growth rate 

of the dominant m = 0 ( m = 1 ) mode becomes positive. As can be 

observed in Fig. 3 , ω r � = 0 in that case, which means that the in- 

stability has an oscillatory character. 

Fig. 6 shows the stability map obtained from the experiments of 

Acero et al. (2012) for 5-cSt silicone oil. The figure also shows the 

marginally stable numerical realizations under m = 0 and m = 1 

perturbations. In all the cases analyzed, the mode m = 2 was sta- 

ble. Three regimes are distinguished: (i) dripping, (ii) whipping in 

which only the jet or both the jet and the tapering meniscus os- 

cillate laterally, and (iii) jetting in which both the tapering menis- 

cus and the jet are stable. As explained in Section 2 , we here do 

not make a distinction between convective and absolute whipping 

owing to the inability of the linear stability analysis to predict 

the type of whipping that prevails in the non-linear response of 

the system. The results for H = 350 μm agree well with the ex- 

Fig. 8. Magnitude of the free surface perturbation amplitude, | ̂ F (z) | , corresponding 

to the mode m = 1 for the marginally stable flows in the simulations. The results 

have been normalized with the maximum value for each case. The labels indicate 

the values of the capillary-to-neck distance and flow rate measured in μm and ml/h, 

respectively. The vertical dashed lines show the positions of the nozzle neck for the 

two values of H considered. 

Fig. 9. Sketch of the computational domain. 

perimental data, although there is a small region of whipping in 

the experiments which has not been detected by the global sta- 

bility analysis. The value of H is slightly smaller than that mea- 

sured in the experiments ( H = 440 μm), which may be attributed 

to an error in the measurement of H caused by the optical distor- 

tion produced by the significant curvature of the converging part 

of the micronozzle. In fact, Acero et al. (2012) conducted their ex- 

periments for a large value of H . Montanero et al. (2011) showed 

that the flow rate at the jetting-to-dripping transition is very sensi- 

tive to H as this parameter approaches its maximum value. There- 

fore, small errors in H can lead to significant errors in the crit- 

ical flow rate. Another source of discrepancy is the deviation of 

the nozzle and feeding capillary numerical shapes from their ex- 

perimental counterparts. In particular, the feeding capillary in the 

simulations has zero thickness while in the experiment both the 

thickness and shape of the capillary end may play a significant 

role. In the global stability analysis, we considered two values of 

the capillary-to-neck distance H ( Fig. 7 ). As can be observed, the 

value of H considerably affects the instability transition for m = 0 

( Montanero et al., 2011 ), while it hardly alters the flow stability 

under the m = 1 perturbation. 

We now analyze the eigenmodes m = 1 responsible for the 

whipping instability. We show in Fig. 8 the magnitude | ̂  F (z) | of 

the free surface perturbation amplitude. This amplitude monoton- 

ically grows as the distance from the feeding capillary increases. 

The function | ̂  F (z) | exhibits approximately the same shape in all 

the cases, although they probably correspond to experimental re- 

alizations of convective and absolute whipping. 

4.2. Effect of the nozzle shape 

Acero et al. (2012) hypothesized that the appearance of whip- 

ping in GDVN ejectors is linked to the axial component of the gas 

flow induced by the nozzle shape in front of the neck. To analyze 

the validity of this hypothesis, in this section we study the influ- 

ence of an increase in the convergence rate of the focusing nozzle 
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Fig. 10. Stability limits under m = 0 (circles) and 1 (triangles) perturbations in the 

simulations. The results were obtained for 5-cSt silicone oil focused by air. The noz- 

zle shape is given by the expression (17) with α = 0 . 045 (black symbols), 0.05 (red 

symbols), and 5 (blue symbols). The whipping instability for α = 5 was not found. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 11. Magnitude of the free surface perturbation amplitude, | ̂ F (z) | , corresponding 

to the mode m = 1 for the marginally stable flows in the simulations. The results 

have been normalized with the maximum value for each case. The labels indicate 

the values of the flow rate measured in ml/h. The vertical dashed line shows the 

position of the nozzle neck. 

on the flow stability under m = 1 perturbations. This could have 

been done with the geometrical model used in Section 4.1 . How- 

ever, the mesh generation method used in our numerical simula- 

tions fails to adapt to that model when the nozzle convergence 

is increased. For this reason, we conducted numerical simulations 

with the (simpler) nozzle shape given by the expression ( Fig. 9 ) 

S(z) = R o − (R o − D/ 2) exp [ −α(z − L l ) 
2 ] , (17) 

where all the distances have been made dimensionless with the 

capillary radius R 1 . In these simulations, we considered 5-cSt sil- 

icone oil focused by air. The values of the geometrical parame- 

ters R o , D , and L l were the same as those in Section 4.1 , while 

the capillary-to-neck distance was H = 350 μm ( H/R 1 = 4 . 55 ). To 

analyze the effect of the convergence rate on the base flow sta- 

bility, we carried out simulations for α = 0 . 045 , 0.05, and 5. As 

α increases, the nozzle shape approaches that of the plate-orifice 

configuration. 

The effect of the nozzle convergence rate α on the whipping 

instability can be clearly appreciated in Fig. 10 . As α increases, 

the pressure drop necessary to trigger the whipping instability in- 

creases. In fact, a small increase of α causes a significant increase 

in the critical pressure drop for the same liquid flow rate. We 

have not found whipping instability for α = 5 . The nozzle shape 

also affects the minimum flow rate leading to the growth of the 

dominant m = 0 mode (dripping). The focusing orifice thickness 

increases as α decreases, which generally enhances the focusing 

effect and reduces the minimum flow rate. Interestingly, the de- 

pendency of the minimum flow rate with respect to α is not 

monotonous. In fact, the stabilizing effect mentioned above is not 

observed when α decreases from 0.05 to 0.045, or when α de- 

creases from 5 to 0.045 for �p � 200 mbar. The axial dependence 

Fig. 12. Experimental stability regions for water focused with air. The black and red 

symbols correspond to H = 450 and 550 μm, respectively. Neither convective nor 

absolute whipping was observed for H = 550 μm. The insets show the shape of the 

nozzle and the position of the feeding capillary for the two values of H considered. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 13. Experimental stability regions for water focused with air with Nozzles 1, 

2 and 3. In all the cases, H = 450 μm. Nozzles 2 and 3 show neither absolute nor 

convective whipping. The insets show the shape of the nozzle and the position of 

the feeding capillary. 

of the free surface perturbation ( Fig. 11 ) is very similar to that 

found for the nozzle considered in Section 4.1 . 

The neutral stability curve m = 0 for α = 0 . 045 and 0.05 is 

shown to extend all the way into the region where the mode 

m = 1 becomes unstable. This means that there are parameter con- 

ditions for which both the varicose and whipping modes are unsta- 

ble. In the linear regime, growing modes do not interfere with each 

other. If the growth rates of those modes are sufficiently different 

from each other, varicose (whipping) instability will be observed if 

the mode m = 0 ( m = 1 ) is the dominant one. If the growth rates 

take similar values, then both instabilities can become noticeable 

at the same time. This behavior can probably be extrapolated to 

the nonlinear regime. In that case, we expect to observe dripping 

from a straight liquid thread, whipping, or dripping from a bend 

thread depending on the relative values of the axisymmetric and 

whipping growth rates. This extrapolation must be done with cau- 

tion because of the interference between growing linear modes in 

the nonlinear regime. 

5. Experimental results 

In this section, we analyze experimentally the role played by 

both the capillary-to-neck distance and the nozzle shape on the 

stability of the steady jetting regime produced by a GDVN ejec- 

tor. As explained in Section 3 , we here distinguish the experimen- 

tal realizations where both the tapering meniscus and emitted jet 

oscillated (absolute whipping) from those in which the instabil- 

ity affected only the jet (convective instability) ( Fig. 5 ). Fig. 12 

shows the stability regions in the Q − �p parameter plane for dis- 

tilled water focused by air in Nozzle 1 (see Section 3 ) and two 
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Fig. 14. Experimental stability regions for 100-cSt silicone oil focused with air. a) Effect of the nozzle shape for H = 450 μm. Nozzles 2 and 3 show neither absolute nor 

convective whipping. b) Effect of the distance H for Nozzle 1. Neither convective nor absolute whipping was observed for H = 550 μm. The insets show the shape of the 

nozzle and the position of the feeding capillary. 

Fig. 15. Experimental stability regions for 1-cSt silicone oil focused with air. a) Effect of the nozzle shape for H = 450 μm. Nozzles 2 and 3 show neither absolute nor 

convective whipping. b) Effect of the distance H for Nozzle 1. Neither convective nor absolute whipping was observed for H = 550 μm. The insets show the shape of the 

nozzle and the position of the feeding capillary. 

different values of H . The black lines/symbols correspond to the 

shortest distance H = 450 μm, and separate the parameter regions 

where jetting (J), dripping (D) and absolute whipping (AW) were 

observed. The red line/symbols show the jetting-to-dripping tran- 

sition for H = 550 μm. The figure shows the critical role played 

by the air speed in the absolute whipping instability. When the 

pressure drop �p is sufficiently large and the distance H takes the 

smallest value, the outer stream causes the meniscus oscillation. 

This phenomenon disappears when the feeding capillary is moved 

away from the nozzle neck because the gap between the capil- 

lary and the nozzle increases, and, consequently, the axial speed 

of the air stream surrounding the meniscus decreases. In addition, 

the reduction of the air speed slightly increases the flow rate at 

the jetting-to-dripping transition for most of the applied pressure 

drops. 

Absolute whipping can also be prevented by selecting ap- 

propriately the shape of the nozzle. This can be done with 

the fire-shaping method recently developed by Muñoz Sánchez 

et al. (2019) . Fig. 13 shows the stability regions obtained for dis- 

tilled water, H = 450 μm, and Nozzles 1, 2 and 3, whose necks have 

the same diameter. Nozzles 1 and 2 have different conver gence 

rates (distances along which the diameter reduction takes place) 

but practically the same shape beyond the neck (see Fig. 4 ). The ra- 

dial component of the velocity field in front of the neck of Nozzle 

2 is expected to be larger than its counterpart in Nozzle 1. In fact, 

the flow pattern in Nozzle 2 must be similar to that of the classi- 

cal plate-orifice configuration ( Gañán Calvo, 1998 ). As suggested by 

the stability analysis ( Section 4.2 ), whipping is suppressed in Noz- 

zle 2. Nozzle 3 is considerably smaller than the other two nozzles. 

Consequently, the capillary is located farther away from the noz- 

zle inner wall for the same H . In this case, the axial component of 

the air velocity around the liquid meniscus is smaller, and absolute 

whipping is not observed. 

To examine the influence of the liquid viscosity on the jetting 

stability, we conducted experiments with 100-cSt silicone oil. In 

graph (a) of Fig. 14 , we compare the stability regions for the three 

nozzles. Absolute whipping occupies a very narrow region in the 

stability map. Convective whipping (CW) arises when sufficiently 

large pressure drops are applied to Nozzle 1. One can conclude 

that viscosity stabilizes the liquid meniscus in Nozzle 1 but not the 

emitted jet. Interestingly, and contrary to what happens to water, 

convective whipping disappears for Q � 10 ml/h. Nozzles 2 and 3 

show neither absolute nor convective whipping. Surprisingly, the 

nozzle shape in front of the neck affects the response of the jet 

far away from the discharge orifice (convective whipping). A plau- 

sible explanation for this counter-intuitive observation is that the 

meniscus slightly oscillates for large viscosity in Nozzle 1. This os- 

cillation is convected and amplified downstream by the emitted 

jet. This would explain (i) the transition from absolute to convec- 

tive instability as the viscosity increases, and (ii) the fact that con- 

vective instability is affected by the nozzle shape in front of the 

neck. In all the cases, the jetting-to-dripping transition takes place 

at flow rates much smaller than those for water. These critical flow 

rates hardly depend on the applied pressure drop. In graph (b) of 

Fig. 14 , we compare the results for Nozzle 1 and two capillary-to- 

neck distances: H = 450 μm (black symbols) and 550 μm (red sym- 

bols). The increase of the distance H reduces the air axial velocity 

at the jet emission point, which eliminates the whipping instabil- 

ity. Overall, the liquid viscosity stabilizes the tapering meniscus by 

reducing the flow rate leading to the jetting-to-dripping transition, 

and by practically suppressing the absolute whipping. However, the 

minimum values of the applied pressure drop that trigger the con- 
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vective whipping are considerably smaller than their counterparts 

in the low-viscosity case. 

The role of the surface tension is examined in Fig. 15 , which 

shows the results for 1-cSt silicone oil. This liquid has the same 

kinematic viscosity of water but a surface tension more than four 

times smaller than that of water. The main effect of the surface 

tension reduction is the enhancement of the absolute whipping in 

Nozzle 1. As explained in the Introduction, whipping arises when 

the difference between the pressures in the ridges and valleys of 

the deformed interface overcomes the stabilizing effect of the sur- 

face tension. Therefore, the reduction of the surface tension fa- 

vors the whipping instability. The Weber number We g = ρg (V g −
V � ) 

2 R i /σ compares the dynamic pressure associated with the gas 

velocity V g relative to that of the liquid V � versus the capillary 

pressure σ / R i in the tapering meniscus. In flow focusing, V � � V g , 

ρg V 
2 
g ∼ �p, and thus We g ~ �pR i / σ . The comparison of Figs. 13–

15 shows that the critical applied pressure for the whipping insta- 

bility in Nozzle 1 has roughly decreased in the same proportion as 

the surface tension, which indicates that the critical Weber num- 

ber takes similar values with the two liquids. The whipping in- 

stability practically prevents one from focusing low-viscosity, low- 

surface tension liquids with Nozzle 1. In fact, the absolute whip- 

ping observed with 1-cSt silicone oil made the tapering meniscus 

touch the inner wall of Nozzle 1, which continuously interrupted 

the liquid ejection in many experiments. 

6. Conclusions 

We studied the whipping instability of the tip streaming flow 

produced when a liquid stream is focused by a gaseous current in- 

side a converging-diverging nozzle (GDVN ejector). We conducted 

the global linear stability analysis of that flow for both axisym- 

metric m = 0 and lateral m = 1 perturbations. For this purpose, the 

steady base flow was numerically calculated by solving the non- 

linear Navier-Stokes equations. Then, we obtain the linear eigen- 

modes describing the response of that flow to small-amplitude 

perturbations. The parameter conditions leading to dripping and 

whipping are assumed to be those for which the growth rate 

of the m = 0 and m = 1 dominant eigenmode becomes positive, 

respectively. The comparison with previous experimental results 

( Acero et al., 2012 ) shows good agreement for both the jetting- 

to-dripping and jetting-to-whipping transitions. Under the condi- 

tions considered in those experiments, the capillary-to-neck dis- 

tance affects the jetting-to-dripping transition but has a negligible 

effect on the whipping instability. We also examined the influence 

of the nozzle shape on the jetting stability. Attention was paid to 

the nozzle convergence rate, defined as the inverse of the distance 

along which the diameter reduces to its minimum value. The re- 

sults show that whipping is suppressed as the convergence rate 

increases, which explains why whipping is much less common in 

the classical plate-orifice configuration ( Gañán Calvo, 1998 ). 

We also examined experimentally the influence of the ejector 

geometry on the jetting stability. To this end, nozzles that dif- 

fered only in the convergence rate were fabricated ( Muñoz Sánchez 

et al., 2019 ). The experiments allowed us to distinguish to types 

of lateral instabilities: absolute and whipping instabilities de- 

pending on whether the meniscus oscillates or not, respectively 

( Acero et al., 2012 ). Absolute whipping was clearly observed only 

when water was focused in the nozzle with the smallest conver- 

gence rate and capillary-to-neck distance. The increase of the noz- 

zle convergence rate and capillary-to-neck distance eliminated the 

whipping instability. Viscosity practically suppressed the menis- 

cus oscillation and induced the transition from absolute to convec- 

tive whipping. The increase of the convergence rate and capillary- 

to-neck distance eliminated the whipping instability in the high- 

viscosity case as well. The reduction of the surface tension de- 

creased roughly in the same proportion the critical pressure drop 

for absolute whipping. 

Flow focusing, as most tip streaming microfluidic realizations 

( Montanero and Gañán Calvo, 2020 ), consists of two markedly dif- 

ferent fluidic structures: a non-slender confined tapering meniscus 

and almost cylindrical emitted jet flying in a discharge environ- 

ment. The steady jetting mode requires the stability of both struc- 

tures. The theoretical and experimental results presented in this 

work show the complexity of the whipping phenomenon in flow 

focusing, as already pointed out by Acero et al. (2012) . The sta- 

bility map strongly depends on many parameter conditions, which 

prevents one from drawing general conclusions. For instance, the 

capillary-to-neck distance seems not to affect the whipping insta- 

bility under the conditions considered in Fig. 6 , while it plays a sig- 

nificant role in the present experiments [ Figs. 12 and 14 (b)]. There 

are also counter-intuitive results. For example, the liquid viscosity 

eliminates the whipping instability and enables the jetting regime 

for Q � 10 ml/h ( Fig. 14 ). Another example is that the shape of 

the converging part of the nozzle has a considerable effect on the 

response of the liquid jet far away from the discharge orifice. This 

last result can be understood if we assume that convective whip- 

ping does not take place because of the wind-induced destabiliza- 

tion of the jet downstream, but due to the convection and ampli- 

fication of lateral waves emitted by small-amplitude oscillations of 

the liquid meniscus. Overall, we can probably conclude that ejec- 

tor shapes closer to the plate-orifice configuration are less prone 

to producing whipping. 
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We consider the stability of flux-driven flow through a long planar rigid channel, where
a segment of one wall is replaced by a pre-tensioned hyperelastic (neo-Hookean) solid
of finite thickness and subject to a uniform external pressure. We construct the steady
configuration of the nonlinear system using Newton’s method with spectral collocation
and high-order finite differences. In agreement with previous studies, which use an
asymptotically thin wall, we show that the thick-walled system always has at least
one stable steady configuration, while for large Reynolds numbers the system exhibits
three co-existing steady states for a range of external pressures. Two of these steady
configurations are stable to non-oscillatory perturbations, one where the flexible wall
is inflated (the upper branch) and one where the flexible wall is collapsed (the lower
branch), connected by an unstable intermediate branch. We test the stability of these steady
configurations to oscillatory perturbations using both a global eigensolver (constructed
based on an analytical domain mapping technique) and also fully nonlinear simulations.
We find that both the lower and upper branches of steady solutions can become unstable to
self-excited oscillations, where the oscillating wall profile has two extrema. In the absence
of wall inertia, increasing wall thickness partially stabilises the onset of oscillations, but
the effect remains weak until the wall thickness becomes comparable to the width of
the undeformed channel. However, with finite wall inertia and a relatively thick wall,
higher-frequency modes of oscillation dominate the primary global instability for large
Reynolds numbers.
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1. Introduction

Human physiology includes a wide number of examples of fluid flow through
flexible-walled conduits including blood flow through the circulation (from rapid flow
in the heart and large arteries to slow viscous flows through the capillaries), air flow
through the lungs and upper airways, urine flows in the excretory system and peristaltic
flows through the colon. In some circumstances these flows can exhibit instability, where
the flow can interact with the flexible wall in a non-trivial way. Of particular interest
in this study is the onset of self-excited oscillations, where the flow and the wall can
spontaneously transition to an oscillatory limit cycle; in some cases this oscillation can
even become chaotic. These oscillations manifest in physiological problems such as blood
pressure measurement in the form of audible Korotkoff noises (Bertram, Raymond &
Butcher 1989), and wheezing in the lung airways (Gavriely et al. 1989).

Self-excited oscillations in flexible-walled vessels can be studied experimentally using a
Starling resistor, a deceptively simple device featuring liquid flow driven through a section
of externally pressurised flexible tubing mounted between two rigid pipes. Originally used
as a flow resistor in cardiac experiments (Knowlton & Starling 1912), it has since become a
canonical experiment for investigating fluid–structure interaction in its own right. In these
experiments flow is driven using either a prescribed pressure or a prescribed flow rate, and
the choice of set-up heavily influences the structure of the resulting oscillations. Results
from the experiments are well summarised elsewhere (e.g. Bertram 2003; Grotberg &
Jensen 2004; Heil & Hazel 2011), but we note that these self-excited oscillations occur
in distinct frequency bands (Bertram, Raymond & Pedley 1990), and exhibit complicated
nonlinear limit cycles which can be characterised using the methods of dynamical systems
(Bertram, Raymond & Pedley 1991). Note that these experiments are typically conducted
with relatively thick-walled tubes. For example, Bertram et al. (1990, 1991) used tubes of
wall thickness to baseline radius ratio of 0.3, while Bertram & Castles (1999) used tubes
with a thickness to radius ratio of 0.37.

There have been a number of theoretical studies of the Starling resistor set-up in
an attempt to explain the underlying mechanisms leading to these different families of
oscillation. Formulation of the full three-dimensional fluid structure interaction problem in
a collapsible tube involves coupling unsteady Newtonian flow to a fully deformable elastic
tube. While most theoretical models treat the tube wall as a thin shell, slightly reducing
the complexity of the system, these models still require vast computational resources to
resolve the unsteady oscillatory flow (Heil & Boyle 2010). Some analytical progress can
be made in the limit of large membrane tension (where oscillations are high frequency,
Whittaker et al. 2010), but this formulation is restricted to a state where the tube wall is
almost uniform that has not yet been realised experimentally.

The flexible tubing used in Starling resistor experiments is typically much thicker than
is appropriate to model using thin shell theory. To date, the only theoretical studies
which incorporate a thick-walled tube have been restricted to steady flow configurations
(Marzo, Luo & Bertram 2005; Zhang, Luo & Cai 2018). In this paper we seek to address
the stability of flow in a Starling resistor analogue with a thick hyperelastic wall, and
investigate the role of wall thickness in promoting or inhibiting instability.

Given the computational difficulty and expense of full three-dimensional unsteady
models, theoretical study has often focused on empirical lumped parameter or
cross-sectionally averaged models for flow in collapsible tubes (e.g. Shapiro 1977;
Bertram & Pedley 1982; Jensen 1990; Armitstead, Bertram & Jensen 1996), which have
replicated many of the features noted in Starling resistor experiments, such as non-uniform
steady profiles and spontaneous transition to self-excited oscillations in distinct
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Flexible channel flow with a hyperelastic wall

oscillation frequencies. However, the flow field in these models is still approximate and
misses many of the subtleties of flow separation and energy dissipation.

To make progress in understanding the mechanisms of instability driving self-excited
oscillations, a compromise system is needed which is less complicated than fully
three-dimensional flow, but reduces the number of empirical assumptions needed for
the lumped models. Pedley (1992) proposed a two-dimensional analogue of the Starling
resistor, consisting of a planar rigid channel where a section of one wall has been
replaced by a flexible sheet. This set-up has since become the subject of a wide variety
of computational (e.g. Luo & Pedley 1995, 1996, 1998, 2000; Heil 2004) and theoretical
studies (e.g. Jensen & Heil 2003; Guneratne & Pedley 2006; Stewart et al. 2010;
Pihler-Puzović & Pedley 2013). Despite reduced computational cost compared with the
three-dimensional tube system, a full exploration of the parameter space for this collapsible
channel analogue has not yet been attempted, although progress toward quantifying the
mechanisms of instability has been made in various regions of the parameter space.
For example, in the case of prescribed upstream flux (the subject of this study), Xu,
Billingham & Jensen (2014) quantified the mechanism driving ‘sawtooth’ oscillations in
the asymptotic limit of a long downstream rigid section, where the nonlinear oscillation
is driven by the resonance of two distinct modes of perturbation (mode-1 and mode-2) of
similar frequency and the same wavelength, coupled by sloshing flow in the downstream
rigid section. Furthermore, Huang (2001) simplified the flux-driven collapsible channel
system by imposing an external pressure gradient on the flexible wall, which facilitated
decomposition of the oscillatory flow into a sum of sinusoidal modes. This analysis
reveals an alternative mechanism of oscillatory instability, driven by an imbalance between
(unstable) downstream propagating waves (which transfer energy from the flow to the wall)
and (stable) upstream propagating waves (which transfer energy back from the wall to the
fluid).

Further insights into the mechanisms of instability in these collapsible channel flows
have been obtained using approximate one-dimensional models of the asymmetric channel
system (derived using a flow-profile assumption, Stewart, Waters & Jensen 2009; Stewart
et al. 2010; Xu, Billingham & Jensen 2013; Xu et al. 2014; Xu & Jensen 2015;
Stewart 2017). In particular, a detailed exploration of the parameter space for flux-driven
oscillations with constant external pressure was presented by Stewart (2017), where he
found that when the fluid is inviscid, steady states only exist above a critical value of
the membrane tension (for all other parameters held fixed), with a stable branch and an
unstable branch (where the unstable branch is more collapsed than the stable branch).
This critical point appears to be an organising centre of the dynamical system, in that
many of the unsteady features of the system originate close to this point (such as the
neutral curves for the two different families of self-excited oscillations). The importance
of the critical point for inviscid steady states has previously been elucidated by Xu et al.
(2013), who used an external pressure gradient. Stewart (2017) also described another
branch of steady solutions maintained by viscous effects, which becomes increasingly
collapsed as the wall tension is reduced. As the Reynolds number increases this viscous
branch of steady solutions merges with one of the (essentially) inviscid branches. When
the viscous branch merges smoothly with the stable inviscid branch then the stable
steady state is unique. However, the other possibility is that the viscous branch merges
with the unstable inviscid branch in a limit point bifurcation, where the system then
exhibits three co-existing steady states across a narrow region of the parameter space:
the stable inviscid solutions become the upper branch, the unstable inviscid solutions
become the intermediate branch and the stable viscous solutions become the lower branch.
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Stewart (2017) also showed that the lower branch of steady solutions can become
unstable to two distinct families of self-excited oscillation, with high and low frequency,
respectively. However, in addition to the flow-profile assumption, this study considered
the flexible wall to be a thin (massless) pre-stressed membrane with no bending rigidity.
To overcome these simplifications, this study revisits the predictions of Stewart (2017) by
modelling the flexible wall as a pre-tensioned hyperelastic solid, using the finite element
method to compute the fully two-dimensional steady wall and flow profiles, and test their
stability to time-dependent perturbations using a fully two-dimensional eigensolver. Our
new model includes the wall thickness and wall mass as explicit parameters, and we
investigate their influence on the predictions below.

Another approach for theoretical modelling of this collapsible channel system has very
recently been presented by Wang, Luo & Stewart (2021a,b), who treat the flexible wall
as an asymptotically thin beam with resistance to both bending and stretching but with
no pre-tension (based on an earlier model by Cai & Luo 2003; Luo et al. 2008). Using
fully nonlinear simulations of this model, they identified a similar three-branch steady
system for some parameters, showing that both the upper and lower branches of oscillation
could (independently) become unstable to self-excited oscillations (Wang et al. 2021a)
and these families of oscillations could merge together for low external pressures (Wang
et al. 2021b). In this case the upper branch instability is restricted to a region in the near
neighbourhood of that which exhibits multiple steady states (Wang et al. 2021b). In this
study we also isolate a family of upper branch instabilities, but show that these are not
limited to the region with multiple steady states but are instead unstable well away from
the region of parameter space which exhibits instabilities of the lower steady branch (see
§ 3.4 below).

The role of wall mass in the onset of self-excited oscillations in flexible-walled vessels
has already been considered for the flexible wall modelled as a thin membrane. For
example, in the asymmetric channel system, Luo & Pedley (1998) coupled the heavy
membrane to fully two-dimensional (unsteady) flow, showing that increasing the wall
mass expands the region of parameter space where the system exhibits the primary
global instability, and also results in an additional high-frequency oscillatory mode
(superimposed on the fundamental mode) which eventually grows to dominate the
lower-frequency mode. Also, Pihler-Puzović & Pedley (2014) investigated this channel
system using interactive boundary layer theory, showing that wall mass drives an
oscillatory instability which is always unstable in the presence of a cross-stream pressure
gradient across the core flow (the system is always neutrally stable with no cross-stream
gradient). Finally, Walters, Heil & Whittaker (2018) considered the role of wall mass in a
thin shell model of flow in a collapsible tube in the limit of large pre-stress (where the tube
is almost uniform), finding that wall inertia destabilises the primary mode of instability of
the system while also lowering the corresponding oscillation frequency.

In this paper we consider the planar channel analogue of the Starling resistor introduced
by Pedley (1992), and propose a new numerical method to solve the combined fluid
and solid problem based on that developed by Snoeijer et al. (2020) (which already
has application to viscoelastic fluids, Eggers, Herrada & Snoeijer 2020). The model
formulation is described in § 2, highlighting the novel features of the numerical method.
In particular, we treat the elastic solid as a pre-tensioned hyperelastic material of uniform
initial thickness with non-negligible density and subject to a uniform external pressure.
We validate this numerical method against the steady predictions of Heil (2004), who
considered an identical set-up with a thin shell model for the wall (§ 3.1), use unsteady
simulations to examine the transition between the upper and lower branches of steady
solutions (§ 3.2), examine the onset of self-excited oscillations from these steady solutions
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Flexible channel flow with a hyperelastic wall
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Figure 1. Sketch of the flow geometry considered in this study.

(§ 3.3), before using our new model to examine the role of membrane pre-tension (§ 3.4),
the dynamics of oscillations growing from the upper branch of steady solutions (§ 3.5) as
well as the role of wall thickness (§ 3.6) and wall inertia (§ 3.7) on the nonlinear steady
solutions and the accompanying onset of oscillation.

2. Model formulation

We consider the configuration sketched in figure 1, where an incompressible Newtonian
fluid is flowing through a planar rigid (two-dimensional) channel of uniform internal width
h. An interior section of length L is removed from the upper wall of the channel and
replaced by a pre-tensioned elastic solid of (initially) uniform thickness e, subject to a
passive external gas at uniform pressure, Pext. This elastic wall can be deformed by the load
of the external gas and by the fluid traction. The rigid sections upstream and downstream of
the compliant segment are of length L1 and L2, respectively. In this case the flow is driven
by a prescribed upstream flux q, while the fluid pressure at the downstream end of the
channel can be set to zero without loss of generality. The stability of this fluid–structure
interaction problem has already been studied extensively using reduced models for the
elastic wall (e.g. Luo & Pedley 1996; Jensen & Heil 2003; Luo et al. 2008; Stewart 2017).
In this work, we model the wall as a continuum hyperelastic solid of finite thickness, with
no simplifications or reductions. Our formulation is based on first-order elasticity (elastic
strain energy function dependent on the strain tensor), which places some restrictions on
the boundary conditions that can be imposed.

2.1. Equations of motion
The fluid domain Ω1 is described by the planar coordinates x = xex + yey, where x
parametrises the lower wall of the channel, with x = 0 at the intersection between the
upstream rigid segment and the compliant segment, while y parametrises the direction
normal to the entirely rigid wall pointing into the fluid (in the plane of the channel). The
solid domain Ω2 is measured relative to a reference configuration parametrised by the
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coordinates X = Xex + Yey, where X parametrises the lower surface of the flat wall and Y
parametrises the direction pointing into the wall (in the plane of the channel).

The conservation of mass and momentum equations in the fluid (i = 1) and solid (i = 2)
subdomains are given by

∇ · vi = 0, (i = 1, 2), (2.1a)

ρi

(
∂vi

∂t
+ (vi · ∇) vi

)
= ∇ · σ i, (i = 1, 2), (2.1b)

where ρi is the density, I is the identity tensor, vi the velocity field and σ i is the stress tensor
of material i (i = 1, 2). Each stress tensor depends on the characteristics of the material
through a constitutive model. In region 1 we consider an incompressible Newtonian fluid,
where this stress tensor takes the form

σ 1 = −p1I + η1
(∇v1 + ∇vT

1
)
, (2.1c)

where p1 is the fluid pressure and η1 is the fluid viscosity. In region 2 we consider a
neo-Hookean (hyperelastic) solid which has a pre-stress, σ

(0)
2p , in the initial undeformed

state, where the stress tensor is given by (Snoeijer et al. 2020)

σ 2 = −p2I + μ2

(
F · F T − I

)
+ F · σ

(0)
2p · F T, (2.1d)

where p2 is the solid pressure, μ2 is the elastic shear modulus, x(X , t) is the position
of a material point after deformation of the solid and F = ∂x/∂X is the deformation
gradient tensor. In the initial state, x = X and F · F T = I . To make a connection between
the Eulerian formulation for the conservation of mass and momentum equations for the
solid ((2.1) with i = 2) and the Lagrangian formulation for the elastic stress, we need to
determine the deformation generated by transport by the solid velocity v2. This is achieved
using the inverse Lagrangian map X (x, t) (Kamrin, Rycroft & Nave 2012), which satisfies

∂X
∂t

+ v2 · ∇X = 0, (2.1e)

because the reference coordinates are invariant under the flow.
Given the bi-dimensionality of the problem, the material points can be expressed in

Cartesian coordinates and so the velocity vectors can be written as

vi = vyiey + vxiex, (i = 1, 2), (2.1f )

while the stress tensors can be written as

σ = σyyey ⊗ ey + σyxey ⊗ ex + σxyex ⊗ ey + σxxex ⊗ ex, (2.1g)

and finally the deformation tensor in the solid can be written as

F = ∂y
∂Y

ey ⊗ ey + ∂y
∂X

ey ⊗ ex + ∂x
∂Y

ex ⊗ ey + ∂x
∂X

ex ⊗ ex. (2.1h)

In the undeformed position the elastic solid is subject to an initial longitudinal tension, To,
and therefore the initial stress is σ

(0)
2p = (T0/e)ex ⊗ ex.
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Flexible channel flow with a hyperelastic wall

For the elastic domain, it is convenient to replace the incompressibility equation based
on the velocity field ((2.1a) with i = 2) by a constraint involving the deformation tensor F
(Snoeijer et al. 2020) in the form

det(F ) =
(

∂y
∂Y

∂x
∂X

− ∂y
∂X

∂x
∂Y

)
= 1. (2.1i)

To impose the upstream flux boundary condition for the liquid, we impose a Poiseuille
profile at the channel entrance, x = −L1, in the form

v1x = 6q
h3 y(h − y), v1y = 0, (x = −L1, 0 � y � h). (2.1j)

At the channel exit, x = L + L2, we impose zero fluid pressure, p1 = 0. Along the entirely
rigid wall we apply no-slip conditions in the form

vx1 = vy1 = 0, ( y = 0, −L1 � x � L + L2). (2.1k)

Similarly, along the rigid parts of the upper wall we apply no-slip boundary conditions in
the form

vx1 = vy1 = 0, ( y = h, −L1 � x � 0, x � L). (2.1l)

We assume that the flexible surface (where the elastic solid and the fluid interact) can be
written as a function of x (i.e. the surface does not overturn or expand beyond the range
0 � x � L), so that y = h1(x, t). Across this interface we impose that the velocity field
must be continuous, in the form

vx1 = vx2, vy1 = vy2, ( y = h1, 0 � x � L), (2.1m)

and impose a balance of normal and tangential stresses between the solid and the fluid, in
the form

n1 · (σ 1 − σ 2) · n1 = 0, t1 · (σ 1 − σ 2) · n1 = 0, (2.1n)

where

n1 = ey − exh1,x

(1 + h2
1,x)

1/2
, t1 = ex + eyh1,x

(1 + h2
1,x)

1/2
, (2.1o)

are normal and tangential vectors to the surface y = h1(x, t), respectively, and the subscript
x represents a derivative with respect to x. In this first-order elasticity approach we enforce
no deformation along the surfaces where the elastic material is adhered to the rigid walls
(i.e. the displacement of the solid is clamped along two edges of the rectangle in contact
with the rigid walls), in the form

v2x = v2y = 0, Y = y, X = x, (x = 0, x = L with h � y � h + e). (2.1p)

However, our approach does not replicate the resistance to bending of a classical
Euler–Bernoulli beam. This would require second-order (or strain gradient) elasticity,
where the elastic strain energy function is assumed to depend on both the strain tensor
and the strain gradient tensor (Bertram & Forest 2020). In that case one must impose
additional constraints on the contact between the beam and the rigid wall e.g. conditions
on the derivatives of displacement, such as prescribed slope or torque. Finally, we denote
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the external surface of the flexible wall as y = h2(x, t), (0 � x � L) and impose that the
normal and tangential elastic stresses are balanced with the external pressure, in the form

n2 · (σ 2 − PextI) · n2 = 0, t2 · (σ 2) · n2 = 0, (2.1q)

where

n2 = ey − exh2,x

(1 + h2
2,x)

1/2
, t2 = ex + eyh2,x

(1 + h2
2,x)

1/2
, (2.1r)

are normal and tangential vectors to the surface y = h2(x, t).

2.2. Mapping technique
The numerical technique used in this study is a variation of that developed by Herrada
& Montanero (2016) for interfacial flows and extended by Snoeijer et al. (2020) to
apply to hyperelastic solids. The spatial domain occupied by the fluid, Ω1(t), is mapped
onto a rectangular domain (parametrised by Cartesian coordinates ξ1 and χ1, where ξ1
parametrises the lower rigid wall and χ1 parametrises the channel inlet) by means of a
non-singular mapping

y = f1(ξ1, χ1, t), x = g1(ξ1, χ1, t), [−L1 � ξ1 � L + L2] × [0 � χ1 � 1], (2.2)

where the shape functions f1 and g1 are obtained as part of the solution. In order to capture
large anisotropic deformations, the following quasi-elliptic transformation (Dimakopoulos
& Tsamopoulos 2003) was applied:

g22
∂2f1
∂ξ2

1
+ g11

∂2f1
∂χ2

1
− 2g12

∂2f1
∂ξ1∂χ1

= Q, (2.3a)

g22
∂2g1

∂ξ2
1

+ g11
∂2g1

∂χ2
1

− 2g12
∂2g1

∂ξ1∂χ1
= 0, (2.3b)

where the coefficients take the form

g11 =
(

∂g1

∂ξ1

)2

+
(

∂f1
∂ξ1

)2

, g22 =
(

∂g1

∂χ1

)2

+
(

∂f1
∂χ1

)2

, g12 = ∂g1

∂χ1

∂g1

∂ξ1
+ ∂f1

∂χ1

∂f1
∂ξ1

,

(2.4a–c)
with

Q = −
(

∂D1

∂χ1

∂f1
∂ξ1

− ∂D1

∂ξ1

∂f1
∂χ1

)
J

D1
, J = ∂g1

∂χ1

∂f1
∂ξ1

− ∂g1

∂ξ1

∂f1
∂χ1

, (2.5a,b)

and

D1 = εp

√√√√[(
∂f1
∂ξ1

)2

+
(

∂g1

∂ξ1

)2
]/ [(

∂f1
∂χ1

)2

+
(

∂g1

∂χ1

)2
]

+ (1 − εp). (2.6)

In the above expressions, εp is a free parameter between 0 and 1 where the case εp = 0
corresponds to the classical elliptical transformation. All the simulations in this work were
conducted using εp = 0.2. Although there is no overturning in the wall profiles for the
cases analysed in this work, this transformation of the liquid domain facilitates the analysis
of more complicated geometries. For example, it has been successfully used to describe
pinch-off in pendant drops (Ponce-Torres et al. 2020).
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Flexible channel flow with a hyperelastic wall

The spatial domain occupied by the elastic solid in the current stage, Ω2(t), and in the
initial stage, Ω2o, are also mapped onto rectangular domains (parametrised by Cartesian
coordinates ξ2 and χ2, where ξ2 parametrises the lower surface of the flexible wall and
χ2 parametrises the edges in contact with the rigid segments of the channel) by means of
non-singular mappings in the form

y = f2(ξ2, χ2, t), x = g2(ξ2, χ2, t),

Y = F2(ξ2, χ2, t), X = G2(ξ2, χ2, t), [0 � ξ2 � L] × [0 � χ2 � 1],

}
(2.7)

where again the functions f2, g2, F2 and G2 should be obtained as a part of the solution.
To determine these functions, the following equations have been used:

g2 = ξ2, (2.8a)

F2 = h + eχ2. (2.8b)

Note that (2.8a) guarantees that the discretisation used for the variable ξ2 is automatically
applied to variable x. Finally, (2.8b) indicates that at the initial stage the elastic part of the
upper channel wall is a perfect rectangle of uniform width e.

Some additional boundary conditions for the shape functions are needed to close the
problem. At the channel entrance, we impose

g1 = −L1, f1 = hχ1, (x = ξ1 = −L1), (2.9a)

while at the channel exit, we use

g1 = L + L2, f1 = hχ1, (x = ξ1 = L + L2). (2.9b)

On the lower wall, we impose

g1 = ξ1, f1 = 0, ( y = χ1 = 0), (2.9c)

while on the rigid parts of the upper channel wall, we use

g1 = ξ1, f1 = h, (−L1 � x = ξ1 � 0, x = ξ1 � L, y = h). (2.9d)

At the flexible surface, we also impose

f1 = f2, g1 = g2, (0 � x = ξ1 = ξ2 � L, y = h1(x, t), χ1 = 1, χ2 = 0). (2.9e)

Finally, we enforce no displacement of the elastic solid along the two edges of the rectangle
in contact with the rigid walls, in the form

g2 = G2 = ξ2, f2 = F2 = h + eχ2,

(x = ξ2 = 0, x = ξ2 = L, h � y � (h + e), 0 � χ2 � 1).

}
(2.9f )

Figure 2 shows an example of the mappings used in this work. The green (magenta) lines
represent the liquid (solid) mesh in the real space (bottom panel) and in the computational
domain (top panel). The unknown variables in the liquid domain are f1, g1, p1, v1x and v1y
while the unknown variables in the solid domain are f2, g2, p2, v2x, v2y, F2 and G2. All
the derivatives appearing in the governing equations are expressed in terms of χ , ξ and t.
These mappings are applied to the governing equations (2.1) and the resulting equations
are discretised in the χ -direction with nχ1 and nχ2 Chebyshev spectral collocation points
in the liquid and solid domains, respectively. Conversely, in the ξ -direction we use
fourth-order finite differences with nξ1 and nξ2 equally spaced points in the liquid and solid
domains, respectively. The results presented in this work were carried out using nξ1 = 641,
nξ2 = 201, nχ1 = 19 and nχ2 = 14. In the Appendix we demonstrate that the eigenvalues
characterising the linear modes do not change significantly when the number of grid points
is increased.
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M.A. Herrada, S. Blanco-Trejo, J. Eggers and P.S. Stewart

Elastic solid
Rigid solid

Reference elastic solid

Fluid

x
y

X
Y

y = f2 (ξ2, χ2, t), x = g2 (ξ2, χ2, t) y = f1 (ξ1, χ1, t), x = g1 (ξ1, χ1, t)

Y = F2 (ξ2, χ2, t), X = G2 (ξ2, χ2, t)

χ1

ξ1

χ2

ξ2

Figure 2. Computational subdomains and grids for the original and mapped variables.

2.3. Steady solutions
Steady solutions of the nonlinear equations (2.1) with all variables independent of time are
obtained by solving all equations simultaneously (a so-called monolithic scheme) using
a Newton–Raphson technique. One of the main characteristics of this procedure is that
the elements of the Jacobian matrix J ( p,q) of the discretised system of equations are
obtained by combining analytical functions and collocation matrices. This allows us to
take advantage of the sparsity of the resulting matrix to reduce the computation time on
each Newton step.

We denote the steady solution of the system with the subscript b. We trace the steady
solutions as a function of the model parameters and quantify using the minimal and
maximal positions of the lower surface of the flexible wall, denoted as

ĥmin = min
x

(
h1b

h

)
and ĥmax = max

x

(
h1b

h

)
. (2.10a,b)

2.4. Small amplitude perturbations
To test the stability of a given steady state we calculate the linear two-dimensional global
modes by assuming the temporal dependence

Ψ (x, y; t) = Ψb(x, y) + ε δΨ (x, y)e−iωt, (ε � 1), (2.11)

where Ψ (x, y; t) represents any dependent variable while Ψb(x, y) and δΨ (x, y) denote
the base (steady) solution and the spatial dependence of the eigenmode for that
variable, respectively, while ω = ωr + iωi is the frequency (an eigenvalue). Both the
eigenfrequencies and the corresponding eigenmodes are calculated as a function of the
governing parameters. The dominant eigenmode is that with the largest growth factor ωi.
If that growth factor is positive, the base flow is asymptotically unstable.

As explained by Herrada & Montanero (2016), the numerical procedure used to
solve the steady problem can be easily adapted to solve the eigenvalue problem which
determines the linear global modes of the system. In this case, the temporal derivatives are
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Flexible channel flow with a hyperelastic wall

computed assuming the temporal dependence (2.11). The spatial dependence of the linear
perturbation δΨ (q) is the solution to the generalised eigenvalue problem J ( p,q)

b δΨ (q) =
iωQ( p)

b δΨ (q), where J ( p,q)
b is the Jacobian of the system evaluated with the basic solution

Ψ
(q)
b , and Q( p,q)

b accounts for the temporal dependence of the problem. This generalised
eigenvalue problem is solved using MATLAB eigs function.

2.5. Fully nonlinear dynamical simulations
The numerical method can be extended to compute unsteady solutions of the full nonlinear
equations (2.1). Temporal derivatives are discretised using second-order backwards
differences and at each time step the resulting system of (nonlinear algebraic) equations is
solved using the Newton–Raphson technique (as in § 2.3). Simulations employ the same
mesh as the steady simulations with a fixed timestep of t = 0.0125 required to capture
the strong oscillations observed in the fully saturated nonlinear regime (this translates into
approximately 640 timesteps per period for the oscillation shown in figure 12 below). We
have verified that the nonlinear predictions are unchanged when the timestep is reduced to
t = 0.0075. Given the large number of timesteps required, these simulations are much
more computationally expensive than the global stability eigensolver and so only two
relevant cases will be considered to support the global stability analysis (see figures 6
and 12 below). For example, the nonlinear simulation described in § 3.5 takes more than
one week to reach the corresponding nonlinear limit cycle, while for the same machine the
computation of the eigenvalues takes just a few minutes.

2.6. Control parameters
To non-dimensionalise the system we scale all lengths on the baseline channel width h,
velocities on the mean inlet speed q/h, time on h2/q, the fluid stress on the viscous scale
η1q/h2 and the solid stress on the elastic shear modulus μ2. The solutions are characterised
by the dimensionless profile of the interface between fluid and solid ĥb1 = hb1/h, the
dimensionless frequency ω̂ = ωq/h2 and the dimensionless eigenfunction profile of the
surface between the fluid and the solid, denoted δ̂h1 = (δh1)/h. As is conventional in this
literature, a wall profile is termed as mode-n if δ̂h1 has n extrema across the compliant
segment. The resulting problem is governed by six dimensionless parameters,

Re = ρ1q
η1

, Q = η1q
h2μ2

, p̂ext = Pext

μ2
, T̂0 = T0

hμ2
, ê = e

h
, ρ̂ = ρ2q2

h2μ2
,

(2.12a–f )

representing the Reynolds number, the ratio of the viscous stresses in the fluid to the
elastic shear stresses in the wall, the dimensionless external pressure, the dimensionless
longitudinal pre-tension, the dimensionless thickness of the flexible wall and the ratio
between the inertial and the elastic forces in the solid. The dimensionless system also
involves three geometrical factors,

L̂1 = L1

h
, L̂ = L

h
, L̂2 = L2

h
, (2.13a–c)

which will be held constant throughout this study.
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M.A. Herrada, S. Blanco-Trejo, J. Eggers and P.S. Stewart

3. Results

In this section we predict the stability of flow through a flexible-walled channel with a
hyperelastic wall. We first validate our model against published results for steady flow
through channels with thin flexible walls presented by Heil (2004) (§ 3.1) and then
examine the unsteady transition from beyond the upper branch limit point to the lower
branch of steady solutions (§ 3.2). We then consider the onset of self-excited oscillations
associated with these steady states across the parameter space spanned by Reynolds
number and external pressure (§ 3.3), before examining the role of wall pre-tension (§ 3.4),
the nonlinear limit cycles of oscillations which grow from the upper branch of steady
solutions (§ 3.5), as well as the role of wall thickness (§ 3.6) and the role of wall inertia
(§ 3.7) in the onset of these oscillations. Following Heil (2004), in all simulations we hold
L̂1 = 1, L̂ = 5, L̂2 = 10 and fix the fluid–structure interaction parameter as Q = 0.01,
indicating that elastic stresses dominate viscous stresses. In the results below we vary
the Reynolds number Re, external pressure p̂ext, the wall pre-tension T̂0 (§ 3.4), the wall
thickness ê (§ 3.6) and the wall inertia parameter ρ̂ (§ 3.7).

3.1. Steady flow with thin flexible walls
We first compare the predictions from our numerical method against the predictions of
Heil (2004), who studied the flow through the geometry shown in figure 1 but where his
elastic wall was modelled using (geometrically nonlinear) shell theory, intended to capture
large displacements in the elastic solid. Our choice of non-dimensionalisation is identical
to Heil (2004), with the exception that he defines a membrane pre-stress σ0, which is
related to our membrane pre-tension parameter through

σ0 = T̂0

ê
. (3.1)

To compare with the predictions of Heil (2004), we consider a small wall thickness
ê = 0.01. We then use pre-tension T̂0 = 10 to ensure that σ0 = 1000, as used by Heil
(2004). Since the inertia of the solid was neglected in that work we also set ρ̂ = 0 in our
simulations in this section (we consider non-zero wall inertia in § 3.7 below).

In order to compare the predictions of our model with those of Heil (2004), in figure 3 we
illustrate the steady flow field computed using our method (figure 3a) and the steady flow
field obtained using the model of Heil (2004) (figure 3b). We observe excellent quantitative
agreement between the two approaches, not only in the pressure distribution but also in
the streamlines, where both exhibit a recirculating flow separation region downstream of
the point of strongest wall collapse. Quantitatively, we compute the relative error in the
maximal (minimal) fluid pressure as 0.2028 % (0.2089 %) between our approach and the
data from Heil (2004) for these parameter values.

Following Heil (2004), in figure 4 we characterise the steady solutions of the system
by the minimal (ĥmin) and maximal (ĥmax) channel width as a function of the model
parameters. Similar to previous studies in collapsible channels (Luo & Pedley 2000;
Heil 2004; Stewart 2010, 2017) and collapsible tubes (Heil & Boyle 2010), we find
that for sufficiently large Reynolds numbers the system can admit multiple steady
solutions at the same point in parameter space. For example, figure 4(a) shows that the
minimum dimensionless channel width (ĥmin), when plotted as a function of the external
pressure, p̂ext, lies on a curve with three branches connected by two limit points (or fold
bifurcations), where these three branches are labelled I, II and III. In order to quantify
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Flexible channel flow with a hyperelastic wall
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x̂
Figure 3. Streamlines and pressure contours for the steady solution computed at fixed Reynolds number (Re =
500) and fixed external pressure (p̂ext = 3.204) obtained from: (a) the present model; (b) the model of Heil
(2004). Here, T̂0 = 10, ê = 0.01 and ρ̂ = 0.

the difference between our results and those of Heil (2004), figure 4(b) compares our
prediction of the intermediate and lower steady branches as a function of external pressure
with those depicted in figure 4 of Heil (2004) (for the same parameter values). We
observe excellent quantitative agreement, although the two approaches do diverge slightly
for larger external pressures when the channels are significantly more collapsed, which
we attribute to the increased prominence of the differences between the wall models.
Furthermore, we also produce the same plot for a smaller Reynolds number (Re = 250)
for which the wall profile is unique for all external pressures. Again we see excellent
quantitative agreement between the models, with a slight divergence as the channel
becomes increasingly collapsed.

Along branch I (solid black line in figure 4), whose points correspond to a flow
field like the one depicted in figure 5(a), where the wall is entirely bulged outwards:
this branch was termed the upper branch of steady solutions by Stewart (2017). This
upper branch persists as external pressure increases until an upper branch limit point is
reached (denoted p̂ext = p̂ext1). For values of external pressure larger than p̂ext1 the elastic
wall instantaneously collapses and the steady solution jumps catastrophically towards
branch III (solid yellow line), where the wall is highly collapsed and the steady flow has
separated beyond the constriction (figure 5c); this entirely collapsed branch was termed
the lower branch of steady solutions by Stewart (2017). This re-circulating region is a
prominent feature of branch III flow fields (figure 5c). We explore the transition from
the upper branch limit point toward the lower steady branch in § 3.2 below, showing
the birth of the re-circulation region as the channel becomes more collapsed. However,
such a re-circulation region may not necessarily be a requirement for multi-valued steady
solutions, since ad hoc one-dimensional models (which employ a flow-profile assumption
which does not allow flow separation) also exhibit these multiple steady states (Stewart
2010, 2017) The lower branch (branch III) persists as we decrease the external pressure
below p̂ext1 until the lower branch limit point is reached (denoted p̂ext = p̂ext2, where
p̂ext2 < p̂ext1). For even lower external pressures the system jumps to the upper branch, the
recirculating region disappears and the channel wall bulges outward (figure 4a). The upper
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Figure 4. Nonlinear steady solutions of the model for fixed Reynolds number (Re = 500) and pre-tension
(T̂0 = 10) showing: (a) the maximal and minimal channel widths as a function of the external pressure; (b) the
channel width at x̂ = 3.5 as a function of the external pressure (black line), compared with the prediction from
figure 4 in Heil (2004) (green line). The dotted lines in (b) show the comparison the present model (black) with
Heil (2004) (green) for a smaller Reynolds number, Re = 250, where the steady state is unique. Here, ê = 0.01
and ρ̂ = 0.

and lower branches (I and III) are connected by an intermediate branch termed branch II,
which we trace by numerical continuation. Below we confirm the observation of previous
studies that this intermediate branch is always unstable to perturbations. A typical flow
field for a solution along this intermediate branch is shown in figure 5(b).

3.2. Transition from the upper branch limit point
As the external pressure increases beyond the upper branch limit point the system abruptly
transitions to the lower branch steady state. This transition is explored in figure 6, where
we plot the unsteady evolution of the system from the upper branch limit point when
the external pressure is instantaneously increased. In particular, we consider an unsteady
simulation from the upper branch limit point at R = 500 for T̂0 = 10, displacing the
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Flexible channel flow with a hyperelastic wall
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Figure 5. Streamlines and pressure contours for three branches of steady solutions for fixed Reynolds number
(Re = 500) and fixed external pressure p̂ext = 1.52: (a) the upper branch (branch I); (b) the intermediate branch
(branch II); (c) the lower branch (branch III). Here, T̂0 = 10, ê = 0.01 and ρ̂ = 0.
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ŷ

100

–100

0

p̂b

100

–100

0

p̂b

3 4 5 6 7

3 4 5 6 7

1.0

0.5

t = 230

t = 260

0

(c)

ŷ
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Figure 6. Unsteady transition from the upper branch limit point to the lower steady branch for a thin wall
(ê = 0.01) with no wall inertia (ρ̂ = 0): (a) time trace of the minimal channel width (ĥmin); streamlines
and pressure colour map of the channel close to the outlet of the compliant segment at four selected times:
(b) t = 215.0; (c) t = 230.0; (d) t = 245.0; (e) t = 260.0. The time points plotted in (b–e) are marked in panel
(a). Here, p̂e = 1.54, Re = 500 and T̂0 = 10..

external pressure from p̂ext = 1.52 to p̂ext = 1.54 (marked with a cross in figure 8).
Over time the channel wall collapses monotonically toward the lower branch steady state
(figure 6a). Initially, the rate of collapse is slow and the flow is laminar (figure 6b),

934 A28-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
31

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



M.A. Herrada, S. Blanco-Trejo, J. Eggers and P.S. Stewart

but as the channel becomes increasingly constricted the rate of collapse increases and
boundary layer separation takes place (figure 6c), where a re-circulation region becomes
evident close to the downstream outlet of the compliant segment of the channel (figure 6d),
creating a region of much lower pressure (figure 6e). A movie showing the entire transition
is provided in the online supplementary material available at https://doi.org/10.1017/jfm.
2021.1131.

There is an interesting analogy between these observations and those reported for
swirling flows in pipes (see for e.g. Lopez 1994; Herrada, Pérez-Saborid & Barrero
2003), where fluid flows with a significant azimuthal velocity component through a rigid
circular tube with an axisymmetric (fixed) sinusoidal indentation over a finite length. In
this analogy the indentation of the pipe mirrors the collapse of the compliant segment
of the channel, while the azimuthal fluid velocity component (and to some extent the
compressibility of the fluid) extracts energy from the mean flow in a similar way to
the compliance of the elastic wall. These swirling flows exhibit multiple (stable) steady
solutions for a given set of parameters (when the Reynolds number is larger than a critical
one) and the steady solutions can be described using bifurcation diagrams with three
branches of steady solutions and two limit points, analogous to those presented in figure 4;
this behaviour was recently termed ‘double hysteresis’ (Shtern 2018). These swirling
flows also exhibit an unsteady transition from a nearly columnar flow to a recirculating
flow when the swirling parameter is larger than a critical value (vortex breakdown),
analogous to the spontaneous collapse of the channel we observe as the external pressure
increases above the critical value (p̂ext1). In the former case, centrifugal forces generate
an adverse axial pressure gradient that induces a recirculating flow, whereas the channel
collapse generates an adverse pressure gradient that drives detachment of the boundary
layer adjacent to the flexible wall. The flow structures in figures 6–9 of Herrada et al.
(2003) are reminiscent of the transition observed in figure 6, where in both cases the
vortex breakdown occurs just downstream of the point of greatest indentation. The only
significant difference comes in the cross-stream location of vortex shedding: the symmetry
of the cylindrical geometry in the swirling flows results in vortex shedding near the axis of
the tube, while in the collapsible channel the vortex shedding occurs near the flexible wall.

3.3. Linear stability results
Having computed the steady configurations of the system, we now analyse the temporal
linear stability of the three different steady solution branches depicted in figure 4. For this
large value of pre-tension (T̂0 = 10) we find that the steady solutions along the section
of the upper branch tested are globally stable to time-dependent perturbations (all the
eigenvalues have ωi < 0) for all external pressures greater than the outlet pressure (i.e.
p̂ext � 0), while the solutions along the intermediate branch are always unstable (at least
one eigenvalue has ωi > 0 with ωr = 0). Figure 7 illustrates the stability of the lower
steady branch, showing the eigenvalue spectrum of the frequency ω for several values of
the external pressure, p̂ext. In this case (and in figure 11 below) we focus only on the most
unstable eigenvalues, illustrating those with ωi > −0.5. We find that the lower branch
is stable for sufficiently small external pressure, becoming globally unstable via a Hopf
bifurcation when the external pressure exceeds a critical value, p̂∗

ext ≈ 1.752 (i.e. a pair
of complex conjugate eigenvalues cross the real axis with non-zero ωr). At this critical
point, the corresponding steady state is shown in figure 7(b), where it is inflated at the
upstream end and collapsed at the downstream end (termed mode-2). The corresponding
eigenfunction of the wall profile for the neutrally stable mode is shown in figure 7(c),
which has two extrema (mode-2). We label the oscillatory modes associated with the
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Flexible channel flow with a hyperelastic wall
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Figure 7. Stability of the lower steady branch to time-dependent perturbations for fixed Reynolds number
(Re = 500) and fixed pre-tension (T̂0 = 10): (a) five eigenvalue spectra in the ω-plane for increasing values of
p̂ext; (b) profile of the lower surface of the steady wall at neutral stability (p̂ext ≈ 1.752); (c) real and imaginary
parts of the wall profile eigenfunction at neutral stability (p̂ext ≈ 1.752). Here, ê = 0.01 and ρ̂ = 0.

lower branch with lower case Roman numerals (i), (ii), (iii) . . . in the order of increasing
frequency, which is generally the order they become unstable as the external pressure
increases, and so this primary instability is denoted mode-(i). These stability predictions
agree well with the results presented by Heil (2004), where his figure 5 shows that the
flow becomes unsteady and exhibits self-excited oscillations for p̂ext = 2.5, well inside
our unstable regime. These results are also qualitatively similar to the predictions of the
one-dimensional model of Stewart (2017), who showed that his lower branch of steady
solutions becomes unstable to a mode-2 oscillation as the primary global instability of the
system as the external pressure increases.

We overview the parameter space in figure 8 to summarise the regions of interest. We
illustrate the region with multiple steady solutions by tracing the value of the external
pressure at the limit points of the upper and lower steady branches (p̂ext1 and p̂ext2,
analogous to those found in figure 4) as a function of the Reynolds number; similar to
Stewart (2017), we find that this region with multiple steady states exists for Reynolds
numbers greater than a threshold (Re > Recusp ≈ 330). We further plot the critical external
pressure for the onset of oscillatory instability, p̂∗

ext, as a function of the Reynolds number,
finding that for the range of Reynolds numbers explored here the neutral stability curve lies
entirely within the range where there is a unique steady solution along the lower steady
branch, so p̂∗

ext > p̂ext1. Note that we observe no instability of the upper steady branch for
this choice of the wall pre-tension (T̂0 = 10) across the range 0 � p̂ext � p̂ext1. It emerges
below that this branch only becomes unstable for p̂ext < 0 for this value of T̂0, which is not
considered here. For large Reynolds number we might expect the neutral stability curve
to enter the region of parameter space with multiple steady states (in a similar manner to
Stewart 2017), but this possibility is discussed in more detail below.

3.4. The influence of the pre-tension in the solid
When the pre-tension of the elastic wall is reduced, we observe a decrease in the
critical Reynolds number beyond which multiple steady flows exist, and the steady state
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Figure 8. Overview of the critical conditions for self-excited oscillations for pre-tension T̂0 = 10, plotting the
critical external pressure for instability as a function of the Reynolds number. The cross symbol indicates the
point in parameter space which corresponds to the unsteady simulation shown in figure 6. Here, ê = 0.01,
ρ̂ = 0.

bifurcation diagram and neutral stability curves become more complicated. To illustrate
this complexity, in figure 9 we characterise the multiplicity of steady solutions that
exist for a lower value of the pre-tension (T̂0 = 5) while holding the Reynolds number
fixed (Re = 500), plotting the minimal (ĥmin) and maximal (ĥmax) widths of the steady
channel as a function of the external pressure, for the upper and lower branches of
steady solutions, obtained following the same procedure as § 3.1. Similar to the case we
considered in figure 4 (T̂0 = 10), when the external pressure increases beyond a certain
value, p̂ext = p̂ext1, there is a jump from a solution on the upper branch to a solution on the
lower branch (where the channel becomes much more collapsed). In the same way, as we
decrease the external pressure along the lower branch below a certain value, p̂ext = p̂ext2,
there is a jump back to the upper branch.

To overview these steady solutions across the parameter space, in figure 10 we plot the
external pressure at the limit points of the steady solutions (p̂ext1 and p̂ext2) as a function
of the Reynolds number for a lower value of the pre-tension (T̂0 = 5), where we find that
the critical Reynolds number for multi-valued solutions has reduced (Recusp ≈ 275 in this
case). To further illustrate the stability of these steady solutions, in figure 10 we also trace
the critical external pressure for the onset of instability as a function of the Reynolds
number, finding again that the lower branch of steady solutions (branch III) becomes
unstable for external pressures greater than a critical value, p̂∗

ext, and is stable otherwise
(figure 10). This observation is similar to our observation for large pre-tension (T̂0 = 10),
with the only difference that now the loss of stability is closer to the region of multiplicity
of steady solutions, with the two bounding curves almost overlapping for the largest
Reynolds numbers considered. Tracing these curves to larger Reynolds numbers is an
interesting direction of future work, where we might expect the neutral stability curve and
the trace of the lower branch limit point to eventually intersect. Such an intersection was
previously observed by Stewart (2017), where the Hopf bifurcation (associated with the
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Flexible channel flow with a hyperelastic wall
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Figure 9. Nonlinear steady solutions of the model for fixed Reynolds number (Re = 500) and pre-tension
(T̂0 = 5), showing the maximal and minimal channel widths as a function of the external pressure p̂e. Here,
ê = 0.01 and ρ̂ = 0.
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Figure 10. Overview of the critical conditions for self-excited oscillations for lower pre-tension T̂0 = 5,
plotting the critical external pressure for instability as a function of the Reynolds number. The plus symbol
indicates the point in parameter space which corresponds to the nonlinear portrait of the upper branch instability
shown in figure 12. Here, ê = 0.01, ρ̂ = 0.

oscillation) and the saddle node bifurcation (associated with the steady solutions) interact
in a co-dimension 2 bifurcation, suggesting a nearby homoclinic orbit (Glendinning 1994).

However, for this lower value of the pre-tension we also observe that steady solutions
along the upper branch (branch I in figure 9) also become temporally unstable for external
pressures below a critical value, denoted p̂∗

extI , and are stable otherwise (see figure 10).
This means that for Re > Recusp there is only a narrow interval of external pressures
compatible with a steady stable flow, focused around the region with multiple steady
solutions. Instability of the upper branch of steady solutions has recently been noted by
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Figure 11. Exploration of the lower branch instability for lower pre-tension T̂0 = 5: (a) five eigenvalue spectra
in the ω plane for increasing external pressure; (b) steady wall profiles for the choice of external pressure where
the system is neutrally stable; (c) real and imaginary parts of the corresponding eigenfunction of the wall profile
at neutral stability. Here, ê = 0.01 and ρ̂ = 0.

Wang et al. (2021a) using a flexible wall modelled as a thin nonlinear beam, but in their
case the region of instability is located within and directly adjacent to the region with
multiple steady solutions (Wang et al. 2021b), in contrast to that noted here. The fully
developed limit cycles also exhibit some significant differences (see § 3.5 below).

To further explore this upper branch instability for lower pre-tension (T̂0 = 5) and fixed
Reynolds number (Re = 400), in figure 11(a) we plot the corresponding eigenvalue spectra
for several values of the external pressure, where a complex conjugate pair of eigenvalues
cross into the upper half-plane for p̂ < p̂∗

extI ≈ 1.12 (Note that p̂∗
ext ≈ 1.66), consistent

with a Hopf bifurcation. At neutral stability the steady configuration of the flexible wall is
entirely inflated with a single hump (termed mode-1, see figure 11b), while the neutrally
stable eigenfunction of the oscillating wall profile is mode-2 (figure 11c), similar to the
instability of the lower branch. Note that the frequency of oscillation along the upper
branch is generally larger than the corresponding instability along the lower branch. Given
that this oscillation also has a mode-2 structure of the wall shape eigenfunction, we
label modes associated with the upper branch using Roman letters (a),(b),. . . in order of
increasing frequency, which is generally the order they become unstable as the Reynolds
number increases. The primary oscillatory mode associated with the upper branch is
therefore labelled mode-(a). It is interesting to note that the instability of the mode-1 steady
state exhibits a mode-2 eigenfunction profile, presumably because the prescribed upstream
flux suppresses modes that induce large volume changes in the flexible segment of the
channel (such as the mode-1 oscillations observed with prescribed upstream pressure e.g.
Jensen & Heil 2003; Stewart et al. 2009, 2010).

The upper branch neutral stability point, p̂∗
extI , can be traced (by numerical continuation)

to larger values of the wall pre-tension; we find that the critical external pressure must
become negative to induce instability for T̂0 = 10, explaining why it was not observed in
figures 7 and 8, where we restrict attention to external pressures larger than the channel
outlet pressure (p̂ext > 0).
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Flexible channel flow with a hyperelastic wall

We note that the neutral stability curves associated with both the upper and lower steady
branches trace close to the region with multiple steady solutions as the Reynolds number
increases, suggesting this region plays a key role in the structure of the dynamical system.
Stewart (2017) showed that the limit point on the upper steady branch (traced by the blue
curve in figures 8 and 10) asymptotes to the saddle node bifurcation point for steady
solutions of the inviscid system as the Reynolds number increases. Indeed, both Xu et al.
(2013) and Stewart (2017) identified the threshold where inviscid steady states emerge as
an organising centre of the dynamical system, consistent with our observation. Conversely,
the lower branch of steady solutions is entirely maintained by the fluid viscosity (Stewart
2017), and is thus absent in the inviscid limit.

3.5. Limit cycles of upper branch instability
Fully nonlinear simulations of self-excited oscillations growing from the lower branch of
steady solutions have been widely reported elsewhere (e.g. Heil 2004; Luo et al. 2008).
An instability of the upper branch of steady solutions was recently reported by Wang
et al. (2021a), who considered flow through a similar two-dimensional collapsible channel
system modelling the flexible wall as a thin (nonlinear) beam with resistance to both
bending and stretching (with no pre-stress), and the nonlinear limit cycles were explored
using fully nonlinear simulations. However, the upper branch oscillations evident from the
present model exhibit a significant difference in structure: for the oscillations reported by
Wang the unstable region restabilises as the upper branch limit point is reached (Wang
et al. 2021a) and remains confined to the neighbourhood of the region with multiple
steady states (Wang et al. 2021b), whereas for the present model the system is stable in
the neighbourhood of the upper branch limit point and instead the unstable region extends
over a wide range of external pressures away from the region with multiple steady states
(figure 10).

Given the difference in structure between our predictions and those of Wang et al.
(2021a), in figure 12 we examine the underlying dynamics of our upper branch oscillations
using fully nonlinear simulations of our model (method described in § 2.5) at a point in
parameter space within the upper branch neutral stability curve. In this case we choose
Re = 500, p̂ext = 1 and T̂0 = 5, marked with a plus inside the unstable region in figure 10.
Initiating the simulation on the upper branch steady solution, numerical noise is enough
to trigger an oscillatory instability evident in the time trace of the maximal channel width
(see figure 12(a) with growth rate and frequency consistent with the global linear stability
eigensolver), eventually saturating into a complicated nonlinear limit cycle (one period
shown in figure 12b). A movie showing the flow field and vorticity over several periods of
this limit cycle is provided in the online supplementary material.

Over a period of this limit cycle the wall profile grows a single hump at the downstream
end of the compliant segment (figure 12c); this hump propagates upstream reaching
a global maximum (figure 12d) before being reflected back downstream again by the
upstream rigid segment, where its amplitude subsequently decreases. As this hump
propagates downstream a second hump appears at the downstream end of the compliant
segment (figure 12e) which eventually dominates the first (figure 12f ). However, these
two humps do not coalesce but instead the x-location of the maximum wall deflection
changes discontinuously at the global minimum of ĥmax (figure 12( f ), explaining the
cusp in figure 12(b) at t ≈ 1138.2, 1145.5, 1152.8). This second hump grows in amplitude,
engulfing the remains of the first hump and shedding a low pressure vortex into the
downstream rigid segment (figure 12g). This propagating vortex creates a so-called
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Figure 12. The mechanism of upper branch instability for a thin hyperelastic wall (ê = 0.01) with no wall
inertia (ρ̂ = 0): (a) the maximal channel width ĥmax as a function of time; (b) zoom-in over panel (a) over one
period of oscillation; streamlines and pressure colour map of the channel close to the outlet of the compliant
segment at six selected times over a period of oscillation including: (c) t = 1149.6; (d) t = 1151.2; (e) t =
1152.8; ( f ) t = 1154; (g) t = 1155; (h) t = 1155.4. The fully developed limit cycle of interest is enclosed in the
red box in (a). The times corresponding to the snapshots in panels (c–h) are labelled in (b). Here, Re = 500,
p̂ext = 1 and T̂0 = 5.

vorticity wave in the downstream rigid segment (particularly evident in figure 12c,g,h)
while the large hump at the downstream end of the compliant segment drives a short region
of channel collapse at the upstream end. As this vorticity wave propagates downstream,
the single hump in the compliant segment propagates upstream, repeating the cycle. The
nature of this oscillation exhibits many of the features of the nonlinear upper branch
oscillations described by Wang et al. (2021a), including the development of an upstream
propagating hump. However, for their upper branch oscillations this hump is annihilated
by the upstream rigid segment (not reflected) and the flow remains entirely laminar
throughout, with no evidence of low pressure vortex shedding. However, the present model
is restricted by the assumption of first-order elasticity, meaning that we cannot apply as
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Figure 13. The influence of the wall thickness on the steady and oscillatory solutions in the absence of wall
inertia (ρ̂ = 0): (a) the minimal steady channel width ĥmin as a function of the wall thickness; (b) the maximal
steady flow speed vmax as a function of the wall thickness; (c) the growth rate of the primary oscillatory mode
as a function of the wall thickness (mode-(i)); (d) the frequency of the primary oscillatory mode (mode-(i)) as
a function of the wall thickness. Here, T̂0 = 5, p̂ext = 2.98 and Re = 50.

many boundary conditions at each end of the beam as Wang et al. (2021a) (who applied
zero slope conditions at the end of the beam in addition to the clamped conditions).

These vorticity waves have previously been observed in channel flows with self-excited
oscillations from a collapsed (lower branch) steady state (Luo & Pedley 1996; Luo et al.
2008) or with prescribed (oscillatory) wall motion in one compartment (Stephanoff et al.
1983; Pedley & Stephanoff 1985).

3.6. The influence of the wall thickness
In this subsection we analyse the influence of the dimensionless wall thickness, ê, on the
model predictions. We consider a particular case holding the pre-tension, external pressure
and Reynolds number fixed (T̂0 = 5, p̂ext = 2.98 and Re = 50). For these parameters, with
wall thickness ê = 0.01, the system has a unique steady wall shape where the external
pressure is sufficiently large to collapse the channel wall (ĥmin < 1). These parameters are
chosen so that the system is just inside the unstable regime for lower branch oscillations
(Re = 50 and T̂0 = 5 which has critical p̂∗

ext ≈ 3.001). In figure 13 we characterise how an
increase in the wall thickness influences the underlying steady flow (figure 13a,b) and the
critical conditions for the onset of lower branch oscillations (figure 13c,d). Considering the
steady system first, figure 13(a) shows that the increase in wall thickness has little effect
on the overall shape of the flexible wall for this value of Reynolds number; the channel
becomes slightly less constricted as the wall thickness increases. Similarly, figure 13(b)
shows that increasing wall thickness slightly reduces the maximal streamwise velocity
through the constriction, v̂max = maxx,y(v̂1xb) (as expected by conservation of mass).
However, the wall thickness plays a more significant role in determining the stability of
these steady solutions. The increase of the wall thickness results in the initially unstable
solution (for ê = 0.01) becoming stable for a critical value of the wall thickness ê � 0.08
(figure 13c), with a corresponding decrease in the frequency of oscillation (figure 13d).

In order to quantify the effect of increasing the wall thickness on the stability of the
system across the parameter space, in figure 14 we plot the critical external pressure
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Figure 14. Overview of the critical conditions required for the onset of oscillations while changing the wall
thickness, plotting the critical external pressure for the onset of oscillation p̂∗

ext as a function of the Reynolds
number for five different wall thicknesses (ê = 0.01, ê = 0.2, ê = 0.4, ê = 1 and ê = 2). Here, T̂0 = 5.

for the onset of the primary oscillatory instability of the lower branch (mode-(i)),
denoted as p̂∗

ext, as function of the Reynolds number for fixed pre-tension (T̂0 = 5)
and five different wall thicknesses (ê = 0.01, 0.2, 0.4, 1, 2). Note that we have limited
our investigation to values of the Reynolds numbers smaller than the critical value
required for multiple steady solutions (Recusp), so the steady profile is unique. In
the absence of wall inertia (ρ̂ = 0) the effect of the wall thickness on the critical
conditions for instability remains weak for relatively thin walls (ê = 0.01, 0.2, 0.4):
the steady flow remains almost unchanged (figure 13a,b) and there is only a mild
stabilisation of the instability, characterised by an increase in the critical pressure
needed to generate self-excited oscillations (figure 14). It emerges that the thickness
of the wall must be of the order of the channel width (i.e. ê ∼ 1) before there is any
significant difference in the stability threshold. For example, for ê = 1 and ê = 2 the
critical pressure for the onset of instability is more appreciably increased compared
with ê = 0.01 (figure 14a), while the oscillation frequency is decreased (figure 14b).
Furthermore, for ê = 2 the critical external pressure and oscillation frequency both
saturate as the Reynolds number becomes large (figure 14). We show in § 3.7 below that
changes to the stability of the system are even more prominent when we include wall
inertia.

3.7. The influence of wall inertia
We now examine the influence of increasing wall inertia. It should be noted that the
steady version of the full nonlinear equations (2.1) is independent of the wall inertia
parameter ρ̂, and so all steady results are unchanged from those reported above. To
study the additional influence of wall inertia on the onset of self-excited oscillations
growing from the lower branch of static solutions, in figure 15 we trace the growth
rate (figure 15a) and frequency (figure 15b) of the mode-(i) instability from figures 8
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Flexible channel flow with a hyperelastic wall
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Figure 15. The role of increasing wall inertia in the growth rate and frequency of self-excited oscillations
for fixed wall thickness ê = 0.2: (a) the growth rate of the first four oscillatory modes as a function of the
wall inertia parameter; (b) the corresponding frequency of the first four oscillatory modes as a function of the
wall inertia parameter; spatial profiles of real and imaginary parts of the eigenfunctions at neutral stability for
(c) mode-(i) (ρ̂ = 0.631); (d) mode-(ii) (ρ̂ = 12.73); (e) mode-(iii) (ρ̂ = 21.02). Here, T̂0 = 5, p̂ext = 2.98 and
Re = 50.

and 10 as a function of the wall inertia parameter ρ̂; at neutral stability the eigenfunction
profile of the oscillatory mode has two (three) extrema in the real (complex) part of
the wall profile (figure 15c), meaning the number of extrema can change over a period
of oscillation for these walls of finite thickness. For this choice of parameters the
primary oscillatory mode of the lower branch (mode-(i)) is stable for ρ̂ = 0, becoming
unstable as the wall inertia parameter, ρ̂, increases (figure 15a), while the corresponding
oscillation frequency decreases (figure 15b). The perturbation growth rate for lower
branch mode-(i) exhibits a local maximum at ρ̂ ≈ 10 before asymptoting toward zero
as the wall inertia parameter continues to increase. Hence, this mode of instability
approaches stability with decreasing oscillation frequency as the wall gets heavier.
However, as the wall inertia parameter increases a second mode of oscillation also becomes
unstable at ρ̂ ≈ 12.72 (figure 15a) with larger frequency than mode-(i) (figure 15b);
we term this mode-(ii), which also has a perturbation wall profile with two extrema
(figure 15d) albeit with a narrow boundary layer at the upstream end of the profile.
Unlike the primary mode, the growth rate of this instability continues to increase as
ρ̂ increases for these parameter values, while the corresponding oscillation frequency
again approaches zero (figure 15b). As the wall mass parameter becomes even larger,
we eventually observe another mode becoming destabilised for ρ̂ ≈ 21.02 with larger
frequency (figure 15b) which we term mode-(iii), where the wall profile again exhibits
two extrema with a narrow upstream boundary layer (see eigenfunction wall profile
in figure 15e). Further increases in the wall inertia parameter destabilises mode-(iv)
(figure 15a,b). Note that, in accordance with our naming convention, the oscillation
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Figure 16. An overview of the critical conditions for the onset of instability for fixed wall thickness ê = 0.2
for three different values of the wall inertia parameter ρ̂ = 0, 10, 50: (a) the critical external pressure for the
onset of the four most unstable modes of the system (modes-(i) to (iv)) as a function of the Reynolds number;
(b) the corresponding neutrally stable oscillation frequency of these four modes as a function of the Reynolds
number. Here, T̂0 = 5.

frequency of each mode increases with increasing mode number (figure 15b). In summary,
increasing the wall inertia parameter, for all other parameters held fixed, destabilises
the primary global instability of the system, but also destabilises higher modes of
instability.

In order to summarise the influence of increasing wall inertia across the parameter
space, in figure 16 we plot the critical external pressure for the onset of lower branch
oscillations, p̂∗

ext, as a function of the Reynolds number for constant wall thickness
(ê = 0.2) and fixed pre-tension (T̂0 = 5) for three different values of the wall inertia
parameter (ρ̂ = 0, 10, 50). For small values of the wall inertia parameter (ρ̂ = 0, 10) we
find only mode-(i) across the section of parameter space considered (a direct continuation
of mode-(i) identified in the absence of wall inertia); this mode becomes increasingly
unstable as ρ̂ increases (figure 16a), while the corresponding frequency of oscillation
decreases (figure 16b). This observation is consistent with the work of Luo & Pedley
(1998), who found that increasing wall mass enlarges the unstable region of parameter
space. However, consistent with figure 15, as the wall inertia parameter increases,
additional (higher-frequency) modes of instability also arise in the system. In particular,
we identify modes (i), (ii), (iii) and (iv), labelled in order of increasing frequency. In fact,
it emerges that for ρ̂ = 50, for the parameters investigated the mode-(ii) oscillation is more
unstable than mode-(i) until Re ≈ 46. Beyond this critical value mode-(iii) becomes the
most unstable mode, while for even larger Reynolds numbers (Re � 166) there is another
cross-over in parameter space and mode-(iv) becomes the most unstable mode. Note that
the frequency of the oscillation increases with increasing mode number (figure 16b). These
observations are again consistent with the predictions of Luo & Pedley (1998), who found
that a higher-frequency oscillatory mode eventually dominated the fundamental mode as
the wall inertia parameter increased.

Figure 16(a) also highlights that the structure of the neutral stability curve for mode-(iii)
oscillations is somewhat different to the traces of mode-(i), (ii) and (iv), exhibiting a

934 A28-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
31

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



Flexible channel flow with a hyperelastic wall

maximal Reynolds number and a two-branch structure analogous to the tongue structures
seen in other collapsible channel systems (Luo et al. 2008; Stewart 2017).

4. Discussion

In this paper we have developed a model for the flow of Newtonian fluid through a
finite-length (asymmetric) flexible-walled channel, as a planar analogue of flow through
a Starling resistor experiment. The flexible wall of the channel was assumed to be a
pre-tensioned hyperelastic material of finite thickness, overcoming the limitation with
more approximate models that require the elastic wall to be asymptotically thin (such as a
membrane (e.g. Luo & Pedley 1996), a nonlinear beam (e.g. Luo et al. 2008; Wang et al.
2021a) or an elastic shell (e.g. Heil 2004)) and providing a much closer resemblance to
the experiments where the tube walls are typically of the order of the tube radius (e.g.
Bertram et al. 1990, 1991; Bertram & Castles 1999). It should be noted that in the limit
of an asymptotically thin wall our hyperelastic model can be rationally reduced to either
a membrane or an elastic shell depending on the assumptions. Flow through the channel
is driven by a prescribed upstream flux against a prescribed downstream pressure, while
the compliant segment of the channel is externally pressurised. This model is validated
against previous predictions which approximated the wall using nonlinear shell theory
(Heil 2004), showing excellent agreement (figures 3, 4).

The numerical method used in this study is based on an arbitrary Lagrangian–Eulerian
approach (Hirt, Amsden & Cook 1974; Donea et al. 2004; Hron & Turek 2006; Basting
et al. 2017; Ryzhakov et al. 2020), in that one can either move with the fluid (Lagrangian
description) or view the flow from a fixed position (Eulerian description). The novelty
of our method lies in the use of non-singular mappings between these two descriptions,
in which all fields are solved simultaneously and which allow the method to be fully
implicit. At the same time, we use high-order (fourth-order) finite differences or spectral
Chebyshev collocation to discretise the transformed domains. Thus, while there are other
such monolithic methods (e.g. Hron & Turek 2006; Ryzhakov et al. 2020), we are able
to construct a stable method with high spatial accuracy. The numerical method used
herein is well suited for solving other fluid–structure interaction problems (e.g. Bungartz
& Schäfer 2006) since it can handle large deformation of the solid with the help of these
non-singular mappings; many standard implementations of fluid–structure interaction fail
due to excessive mesh deformation.

The model predicts that at least one steady configuration of the system exists for all
values of the parameters. For sufficiently large Reynolds numbers the system exhibits three
co-existing steady states for a narrow range of the parameters. These states are connected
by a pair of limit points, similar to earlier predictions using more approximate models (Luo
& Pedley 2000; Stewart 2017) with two stable configurations (figures 4, 9): an upper branch
(where the channel wall is entirely inflated) and a lower branch (where the channel wall
is collapsed). Beyond the upper limit point the system transitions (dynamically) from the
upper branch of steady solutions to the lower, where the wall profile becomes increasingly
collapsed, the flow separates beyond the constriction and a low pressure vortex is shed
into the downstream rigid segment (figure 6); such an observation has many similarities to
swirling flows in pipes and open jets (Lopez 1994; Shtern & Hussain 1996; Herrada et al.
2003).

Similar to previous studies (Heil 2004; Stewart 2017), we found an instability of the
lower branch of steady solutions via a Hopf bifurcation when either the Reynolds number
or the external pressure becomes sufficiently large (figures 8, 10). For the parameter values
considered in this study we did not observe the neutral stability curve entering the region
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of multiple steady states. However, in line with observations of Stewart (2017), we expect
that the neutral stability curve will eventually terminate when it intersects the line of limit
points along the lower branch of steady solutions.

However, our model also predicted that the upper branch of steady solutions could
become unstable via a Hopf bifurcation to an entirely separate branch of mode-2
instabilities when the pre-tension is sufficiently low (figure 10). Note that an analogous
instability of the upper branch has very recently been found in a model of Newtonian
flow in a collapsible channel with a nonlinear elastic beam (Wang et al. 2021a). The fully
developed limit cycle of our upper branch oscillations bears many similarities to those
described by Wang et al. (2021a), exhibiting a hump propagating upstream along the
compliant segment and interacting with flow in the upstream rigid segment (figure 12);
however, in our oscillations the hump is reflected by the upstream rigid segment and the
flow sheds a low pressure vortex which drives a vorticity wave into the downstream rigid
segment (Stephanoff et al. 1983; Pedley & Stephanoff 1985).

Our new hyperelastic formulation provides an opportunity to investigate the role of
wall thickness on the onset of instability. Previous studies of flow in thick-walled tubes
or channels have been restricted to steady configurations (Marzo et al. 2005; Zhang
et al. 2018), while unsteady systems have typically considered asymptotically thin walls
(Luo & Pedley 1996; Jensen & Heil 2003; Luo et al. 2008). We found that, in the
absence of wall inertia, increasing the wall thickness alone makes negligible difference
to either the steady solutions (figure 13a,b) or the onset of oscillations (figures 13c,d, 14)
until the wall thickness becomes comparable to the channel thickness (in this case the
aspect ratio of the wall is relatively small h/L � 0.2 and so thin-wall approximations are
still appropriate). For even larger wall thicknesses the critical pressure for the onset of
instability is significantly increased compared with the thin walls (figure 14), while the
oscillation frequency is decreased (figure 14b). Furthermore, for the largest wall thickness
considered the critical external pressure and oscillation frequency both saturate as the
Reynolds number becomes large (figure 14).

The dimensionless parameter ρ̂ describes the strength of wall inertia compared with
the internal elastic stress, but also represents an eigen-frequency of the elastic wall
compared with the characteristic (inverse) time scale of the flow past the elastic wall.
It is therefore important to characterise how these natural frequencies of wall vibration
correlate to the other modes of self-excited oscillation of this system. Wall mass also
plays an important role in physiological applications such as human phonation (Mittal,
Erath & Plesniak 2013). We found that increasing the wall inertia parameter promotes
the onset of self-excited oscillation by enlarging the unstable region of the primary
(mode-2) global instability in the space spanned by Reynolds number and external pressure
(figure 16); inertia-driven destabilisation was previously noted by Luo & Pedley (1998). In
addition, increasing the wall inertia parameter also destabilises higher-frequency modes
of instability, which eventually dominate the primary global instability as the wall inertia
parameter increases (figure 16), again consistent with the observations of Luo & Pedley
(1998). However, it turns out that the value of the parameter ρ̂ is typically small for
the silicone rubber tubes used in Starling resistor experiments; these tubes have been
estimated to have a Young’s modulus and Poisson ratio of E = 3.8 MPa and ν = 0.423,
respectively (Bertram 1987), resulting in a shear modulus of μ2 = 1.335 MPa (assuming
an isotropic material). Silicone rubber also has an average density of ρ2 = 1240 kg m−3.
Starling resistor experiments in a tube with internal diameter 12 mm and a flow rate of the
order of 60 ml s−1 (Bertram & Tscherry 2006), exhibit a flow velocity of approximately
0.531 m s−1. Flow of this velocity in a channel of thickness 1 mm corresponds to a flow
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Flexible channel flow with a hyperelastic wall

rate per unit length in the out-of-plane direction of q = 5.31 × 10−4 m2 s−1. Using all
this information, we estimate ρ̂ ≈ 2.62 × 10−4 � 1 for a compliant channel formed from
silicone rubber.

Our hyperelastic formulation assumed first-order elasticity, with elastic stress
proportional to the gradient of the strain energy function with respect to the strain
tensor. We imposed lateral boundary conditions of no displacement along the face of the
elastic solid in contact with the rigid wall. This approach cannot reproduce the resistance
to bending of an elastic beam, since this would require strain gradient (second-order)
elasticity, where the elastic stress has additional contributions due to the derivative of the
strain energy function with respect to the strain gradient tensor; this approach would also
require additional boundary conditions at the edges of the compliant segment. Indeed,
Luo and coworkers considered a collapsible channel model where the (asymptotically
thin) elastic wall exhibited resistance to both bending and stretching but no pre-tension,
imposing clamped and zero slope conditions at each end of the flexible wall (Luo et al.
2008; Wang et al. 2021a,b). Their wall profiles accommodated this zero slope condition
over very narrow boundary layers at each end of the compliant segment (see examples in
Wang et al. 2021a). Furthermore, Wang et al. (2021b) noted that increasing the resistance
to bending of the beam narrowed the region of multiple steady states, and eventually
suppressed the onset of self-excited oscillation. Similar to the present study, the model
of Wang et al. (2021a,b) predicted self-excited oscillations growing from both the upper
and lower branches of static solutions. However, their lower branch oscillations were
typically of higher frequency and re-stabilised for sufficiently large external pressure
(Wang et al. 2021b) (contrary to the present system where lower branch instability
persisted as the external pressure increased, figures 8, 10). Both systems exhibited an
upper branch instability of O(1) frequency, but in Wang et al. (2021a,b) the unstable
zone remained localised to the neighbourhood of the upper branch limit point (contrary to
the present system where the upper branch instability persisted to low external pressures,
figure 10). However, it is unclear if these discrepancies are due to the differences in the
constitutive assumptions between the two systems, or due to the absence of pre-tension in
the work of Wang et al. (2021a,b). A more expansive comparison will be pursued in future
work.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2021.1131.
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ξ1 ξ2 χ1 χ2 ω̂r ω̂i

641 201 19 14 1.052 0.0232
641 201 19 19 1.054 0.02229
641 201 25 14 1.053 0.02404
641 201 25 19 1.055 0.02314
721 226 19 14 1.051 0.02064
721 226 25 14 1.051 0.02140
801 251 21 19 1.054 0.02239

Table 1. Mesh sensitivity for an unstable case on the upper branch of steady solutions for a thin wall (ê = 0.01)
with no wall inertia (ρ̂ = 0), listing the real and imaginary parts as a function of the discretisation parameters
ξ1, ξ2, χ1 and χ2. The row listed in bold corresponds to the parameters used for the simulations in the main
text. Here T̂0 = 5, p̂ext = 0.82 and Re = 400.

Appendix. Convergence study of the numerical method

To illustrate the mesh independence of the numerical results we compute the real and
imaginary components of the eigenvalue ω̂ obtained from the global linear stability
eigensolver for different discretisations of the domain, changing the number of mesh points
ξ1, ξ2, χ1 and χ2 (listed in § 2.2). A typical example for an unstable point on the upper
branch of steady solutions is provided in table 1, where we find that the real and imaginary
parts of ω̂ show only negligible variations as the mesh is refined. The data listed in boldface
correspond to the numerical mesh used in this work.
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