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Abstract
Integrating RDF datasets has become a relevant problem for both researchers and practitioners. In the literature, there are
many genetic proposals that learn rules that allow to link the resources that refer to the same real-world entities, which is
paramount to integrating the datasets. Unfortunately, they are context-unaware because they focus on the resources and their
attributes but forget about their neighbours. This implies that they fall short in cases in which different resources have similar
attributes but refer to different real-world entities or cases in which they have dissimilar attributes but refer to the same real-
world entities. In this article, we present a proposal that learns context-aware rules that take into account both the attributes of
the resources and their neighbours. We have conducted an extensive experimentation that proves that it outperforms the most
advanced genetic proposal. Our conclusions were checked using statistically sound methods.

1 Introduction

An RDF dataset is a collection of resources that describe real-world entities. Such datasets are
commonly used to feed a variety of automated business processes [5]. Typically, this requires to
integrate them by linking the resources that refer to the same real-world entities [1]. The resources
are described by means of properties that can be either data properties or object properties; the
former model the attributes of the resources and the latter relate them to their neighbours.

There are several state-of-the-art proposals that use genetic approaches to learn link rules [9, 10,
16, 17]. Such rules basically compute the similarity of two resources by comparing their attributes
using a series of string transformations and similarity functions. If the resources are similar enough,
then they are linked because they are assumed to describe the same real-world entity; otherwise, they
are kept apart. It is not difficult to realize that such context-unaware rules are imprecise in cases in
which two resources have similar attributes but describe different real-world entities (e.g. different
people who have similar names or ages) or have dissimilar attributes but refer to the same real-world
entities (e.g. resources that describe different facets of a person).

In this article, we present an approach to learn context-aware rules building on the context-unaware
rules learnt by any of the previous proposals. By context-aware, we mean that the rule takes into
account the attributes of the resources being linked and the attributes of their neighbours. This is a
novel approach since our analysis of the related work reveals that this is the first time that context-
aware rules have been explored in this context. We have also performed an extensive experimental
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study in which we sought to prove two hypothesis, namely, (i) exploring the context helps improve 
the effectiveness of the link rules and (ii) learning context-aware rules helps improve the efficiency 
of the linking process. Our experimental results and the statistical analysis that we have conducted 
validate these hypotheses, which prove that our proposal is very promising. Our proposal is related to 
a previous one in which our goal was to link two datasets on the f ly [3]; our experimentation confirms 
that our new proposal is as effective as the previous one but increases efficiency significantly.

The rest of the article is organized as follows: Section 2 reports on the related work; Section 3 
provides the details of our proposal; Section 4 presents our experimental analysis; finally, Section 5 
summarizes our conclusions.

2 Related work

Learning link rules originated in the field of relational databases, where the problem was known 
as de-duplication [15], collective matching [18] or entity matching [13]. Unfortunately, it is not 
straightforward to adapt these results to RDF datasets because of the gap between the underlying 
data models.

Some authors have developed a number of proposals that are specifically tailored to working with 
RDF datasets. Unfortunately, some of them work on a single dataset [8, 14] and others require the 
datasets to be modelled using OWL ontologies [4, 6, 7, 12], which hinders their general applicability. 
There are a few proposals that work on two RDF datasets without an explicit model [9, 10, 16, 17, 
20], which makes them generally applicable. We analyse them below.

Isele and Bizer [9, 10] devised GenLink, which is a genetic approach that uses a tournament 
selection operator, a generational replacement operator, custom cross-over and mutation operators 
and a fitness function that relies on the Matthews correlation coefficient. It can use a variety of 
custom string transformation functions and the Levenshtein, Jaccard, numeric, geographic and date 
string similarity functions. Ngomo and Lyko [16] devised EAGLE, another genetic approach that 
uses a tournament selection operator, a μ + β replacement operator, tree cross-over and mutation 
operators and a fitness function that relies on the F1 score. It does not use any transformation 
functions, but the Levenshtein, Jaccard, cosine, Q-grams, overlap and trigrams string similarity 
functions. Nikolov et al. [17] contributed with another genetic proposal that uses a roulette-wheel 
selection operator, an elitist replacement operator, a tree cross-over operator, a custom mutation 
operator and a pseudo F1 fitness function. Transformations are not considered, but the library of 
similarity functions includes Jaro, Levenshtein and I-Sub. The proposal by Soru and Ngomo [20] 
transforms the input RDF datasets into feature vector sets to which any standard machine-learning 
technique can be applied to learn a classification model that makes the resources to be linked apart 
from the others. It does not take any transformation functions into account, but it can work with the
Q-grams, the cosine and the Levenshtein string similarity functions.

Unfortunately, the previous proposals can learn context-unaware rules only, i.e. rules that compare
the resources building on their attributes, but not their neighbours. This means that they have
difficulties to deal with resources that are similar according to their attributes but are actually
different or vice versa. Analysing the neighbourhood of the resources may help discern the previous
cases. We have devised two instance-driven approaches [2, 3] that take the neighbours of the
resources to be linked into account, which proved to be a good idea regarding effectiveness.
Unfortunately, none of the approaches is efficient enough since they do not learn any rules; i.e.
the effort spent at executing them on two particular datasets cannot be reused when dealing with
similar datasets. This motivated us to work on the current proposal.



FIGURE 1. Method to learn context-aware rules.

3 Our proposal

Our proposal1 consists in a component that learns a set of context-unaware rules using any existing
technique and a component that analyses each rule individually and learns its context-aware version.
Below, we focus on the second component, which is our original contribution; first, we describe our
method to learn link rules; then, we present two ancillary methods; next, we illustrate the proposal
with an example; finally, we analyse its computational complexity.

3.1 Learning a context-aware rule

Figure 1 provides the pseudo-code to the method to learn context-aware rules. It works on a base rule
R, a set of support rules S, two datasets D1 and D2 and two parameters γ and θ , which we explain
below. We assume that the rules have been learnt with the first component, i.e. they are context-
unaware; we also assume that the datasets provide resources that are representative enough of the
resources that we wish to link in future. Our goal is to learn a context-aware rule that combines base
rule R with a subset of support rules S to improve the precision when linking similar datasets. Our
proposal works in three steps: it first learns a set of correspondences, next filters some of them out,
and then instantiates a template to produce the resulting rule.

The first step consists in computing a set of correspondences K at line 2. We describe the details
of this ancillary method in the following subsection. To understand the main method, it suffices to
know that the correspondences are tuples of the form (A, B, T , P1, P2), where A and B denote two
resources that are linked by means of base rule R; P1 and P2 denote two paths, i.e. two sequences
of object properties that relate resources A and B to two subsets of direct or indirect neighbours;
and T denotes a support rule that establishes some links among the previous subsets of neighbours.
There can be many correspondences, but the method filters out the ones in which the neighbours
cannot be considered similar enough according to the links found by support rule T . Intuitively,
the correspondences keep the links whose context can be considered similar enough not to be false
positive links.

The second step consists in selecting the support rules in K that have generated enough links,
which is performed by the statements at lines 3–4. We use a threshold γ to set the minimum number
of links that a support rule must have generated so that it can be selected. (The most appropriate
value of γ for a particular learning problem can be easily set using grid search.) First, the statement
at line 3 computes a set with the counters of links in K that have been generated by each support
rule T given two paths P1 and P2. It relies on an ancillary function called links, which is defined as
follows:

links(K, T , P1, P2) = {(A, B) | (A, B, T , P1, P2) ∈ K}.

1Our prototype is available at https://github.com/AndreaCimminoArriaga/Sorbas.
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The set of support rules selected is then defined as the set of support rules that generate at least 
γ percent the maximum number of links generated by a support rule, which is computed and stored 
in variable V at line 4. Note that V stores triples in which each support rule is accompanied by two 
paths; the reason is that a link rule may generate many links, but we are interested in links among 
resources that are directly or indirectly related to the original ones only.

The final step consists in generating the resulting context-aware rule by means of the statement at 
line 5. Method instantiate takes the base rule R, the set of links V and the parameter θ as inputs and 
instantiates the following template:

link(A, B) if R(A, B) ∧ ∃(T , P1, P2) ∈ V :

X = findResources(A, P1) ∧ Y = findResources(B, P2) ∧
E = {(U , V) | U ∈ X ∧ V ∈ Y ⇒ T(U , V)} ∧
computeSimilarity(X , Y , E) ≥ θ

Intuitively, resources A and B can be linked if they are linked by the base rule and their
neighbourhoods are similar enough. The neighbours are similar enough if there is at least one support
rule T with paths P1 and P2, such that let X denote the neighbours of resource A by following path
P1, let Y denote the neighbours of resource B by following path P2, and let E be the set of links
that support rule T finds among X and Y ; the neighbours are similar enough if X and Y are similar
enough according to the links found by the support rule.

Method findResources is very simple, so we do not provide any additional details. In the
subsections below, we delve into the intricacies of computing correspondences and similarities.

3.2 Computing correspondences

Figure 2 provides the pseudo-code to the method to compute correspondences. It works on a base
rule R, a set of support rules S, two datasets D1 and D2 and a similarity threshold θ . It returns a set
of correspondences K.

The statements at lines 2–5 perform the initialization steps. The method first initializes K to an
empty set and stores the source and the target classes of the base rule in sets RS and RT , respectively,
and the links that result from applying it to the input datasets in set L1. For the sake of efficiency, we
also compute the models of the input datasets, i.e. we infer the classes and their connecting properties
from their resources in the input datasets.

The main loop at lines 6–15 then iterates over the set of support rules using variable T . It first
computes the sets of source and target classes involved in rule T , which are stored in variables RS
and RT , respectively; next, it finds the set of paths Q1 that connect the source classes in RS with
the source classes in TS in dataset D1; similarly, it finds the set of paths Q2 that connect the target
classes in RT with the target classes in TT in dataset D2. The idea is to find the paths that relate the
resources linked by the base rule with the resources linked by the support rule, which is done by the
middle and the inner loops.

The middle loop at lines 10–15 iterates over the set of pairs of paths (P1, P2) from the Cartesian
product of Q1 and Q2. If there is at least a pair of paths, it then means that the resources involved in
the links returned by base rule R might have some neighbours that might be linked by support rule T .
The inner loop at lines 11–15 iterates over the collection of links (A, B) in set L1, i.e. the links
returned by the base rule. It first finds the set of resources X that are related to resource A using path
P1 in dataset D1 and the set of resources Y that are related to resource B using path P2 in dataset D2.



FIGURE 2. Method to learn correspondences.

FIGURE 3. Method to compute similarity.

Next, the method applies support rule T to datasets D1 and D2 and intersects the resulting links with
X ×Y in order to filter out the resources that are not neighbours of A or B; the result is stored in set E.
It then computes the similarity of sets A and B. If it is greater than or equal to threshold θ , then
correspondence (A, B, T , P1, P2) is added to set K; otherwise, it is filtered out.

Method findPaths returns the collection of paths between two given sets of classes from a given
dataset using Dijkstra’s algorithm. Method computeModel is implemented using the approach by
Rivero et al. [19]. We do not provide any additional details regarding methods sourceClasses,
targetClasses, findResources and apply because they are straightforward.

3.3 Computing similarity

Figure 3 shows our method to compute similarity. Its input consists of sets X and Y , which are two
sets of resources, and E, which is a set of links between them. It returns the Szymkiewicz–Simpson
overlapping coefficient, namely,

overlap(X , Y ) = |X ∩ Y |
min{|X |, |Y |}

The previous formula assumes that there is an implicit equality relation to compute X ∩ Y ,
|X |, or |Y |. In our context, this relation must be inferred from the set of links E by means of



Floyd–Warshall’s algorithm to compute the ref lexive, commutative, transitive closure of relation E, 
which we denote as E�.

The method to compute similarities relies on two ancillary methods, namely, reduce, which given 
a set of resources X and a set of links E returns a set whose elements are subsets of X that are equal 
according to E�, and intersect, which given two reduced sets of resources X and Y and a set of links 
E returns the intersection of X and Y according to E�. Their definitions are as follows:

reduce(X , E) = {W | W ∝ W ⊆ X ∧ W × W ⊆ E�}
intersect(X , Y , E) = {W | W ∝ W ⊆ X ∧ ∃W ′ : W ′ ⊆ Y ∧ W × W ′ ∈ E�}

where X ∝ φ denotes the maximal set X that fulfils predicate φ, i.e.

X ∝ φ ⇐⇒ φ(X ) ∧ ( ∃X ′ : X ⊆ X ′ ∧ φ(X ′))

The method to compute similarities then works as follows: it first computes the closure of E at
line 2; it then reduces the input sets of resources X and Y according to the closure of E at lines 3–4;
next, it computes the intersection of both reduced sets at line 5; finally, it computes the similarity
using Szymkiewicz–Simpson’s formula on the reduced sets at line 6.

3.4 An illustration

Figure 4 presents an excerpt of the DBLP dataset and an excerpt of the NSF dataset. The first
component learns the following rules in this scenario, where levenshtein and jaccard denote the
well-known string similarity functions, lfname denotes a function that transforms names into format
‘last name, first name’, and lowercase denotes a function that changes a string into lowercase:

r1: link(A, R) if rdf :type(A) = dblp:Author, rdf :type(R) = nsf :Researcher,

NA = dblp:name(A), NR = nsf :name(R),

levenshtein(lfname(NA), lfname(NR)) ≥ 0.80.

r2: link(A, P) if rdf :type(A) = dblp:Article, rdf :type(P) = nsf :Paper,

TA = dblp:title(A), TP = nsf :title(P),

jaccard(lowercase(TA), lowercase(TP)) ≥ 0.65.

r3: link(A, U) if rdf :type(A) = dblp:Affiliation, rdf :type(U) = nsf :Award,

TA = dblp:name(A), TU = nsf :uid(U),

jaccard(lowercase(TA), lowercase(TU )) ≥ 0.95.

Intuitively, rule r1 is applied to a resource A of type dblp:Author and a resource R of type
nsf:Researcher; it computes the Levenshtein similarity between the names of the author and the
researcher after transforming them; if it is at least 0.80, then the corresponding resources are linked.
Rules r2 and r3 should now be easy to understand.

Let us analyse the case in which the base rule is r1 and the support rules are r2 and r3; i.e. we are
interested in linking DBLP authors and NSF researchers. Rule r1 returns the following links: {(dblp:
weiwang, nsf :weiwang1), (dblp:weiwang, nsf :weiwang2), (dblp:binliu, nsf :binwliu)}; note that the



FIGURE 4. Running example.

first and the third links are true positive links, but the second one is a false positive link.
Rule r2 returns the following links: {(dblp:article1, nsf :paper3), (dblp:article2, nsf :paper2), (dblp:
article4, nsf :paper2), (dblp:article5, nsf :paper5)}, which are true positive links. Finally, rule r3
returns {(dblp:affiliation1, nsf :award4)}, which are also true positive links. The sets of paths between
the source and target classes of r1 and r2 are {〈dblp:writtenBy〉} and {〈nsf :leads, nsf :supports〉}.
Furthermore, the paths between the source and target classes of r1 and r3 are {〈dblp:relatedTo〉} and
{〈nsf :leads〉}, respectively.

Link l1 = (dblp:weiwang, nsf :weiwang1) is analysed first. The method finds X = {dblp:
article1, dblp:article2, dblp:article3, dblp:article4} by following resource dblp:weiwang through path
〈dblp:writtenBy〉; similarly, it finds Y = {nsf :paper1, nsf :paper2, nsf :paper3} by following resource
nsf:weiwang1 through path 〈nsf :leads, nsf :supports〉. Now, support rule r2 is applied and the results
are intersected with X × Y so as to keep the links that are related to l1 only; the result is
E = {(dblp:article1, nsf :paper3), (dblp:article2, nsf :paper2), (dblp:article4, nsf :paper2)}. Then, the
similarity of X and Y in the context of E is computed, which returns 0.67; intuitively, there are
chances that l1 is a true positive link.

Link l2 = (dblp:weiwang, nsf :weiwang2) is analysed next. The method finds X = {dblp:
article1, dblp:article2, dblp:article3, dblp:article4} by following resource dblp:weiwang through path
〈dblp:writtenBy〉; next, it finds Y = {nsf :paper4} by following resource nsf:weiwang2 through path
〈nsf :leads, nsf :supports〉. Now support rule r2 is applied and the result is intersected with X × Y ,



which results in E = ∅. In this case, the similarity is zero, which intuitively indicates that it is very 
likely that l2 is a false positive link.

Link l3 = (dblp:binliu, nsf :binwliu) is analysed next. The method finds A1 = {dblp:article5} 
by following resource dblp:binliu through path 〈dblp:writtenBy〉; next, it finds Y1 = {nsf :paper5} 
by following resource nsf:binwliu through path 〈nsf :leads, nsf :supports〉. Now support rule r2 is 
applied and the result is intersected with X1 × Y1, which results in E = {(dblp:article5, nsf :paper5)}. 
The similarity is now 1.00, i.e. it is very likely that link l3 is a true positive link. The method then 
finds X2 = {dblp:affiliation1} by following resource dblp:binliu through path 〈dblp:relatedTo〉; next,  
it finds X2 = {nsf :award4} by following resource dblp:binwliu through path 〈nsf :supports〉. Now  
support rule r3 is applied and the result is intersected with X2 × Y2, which results in E = {(dblp: 
affiliation1, nsf :award4)}. The similarity is 1.00, which means that l3 is likely to be a true positive 
link.

Assume that θ = 0.50 and γ = 0.70, which are intended for illustration purposes only. Method 
computeCorrespondences returns set K = {(dblp:weiwang, nsf :weiwang1), (dblp:binliu, nsf : 
binwliu)}. We now have to analyse support rules r2 and r3 and the links that they produced given the 
paths shown previously. Support rule r2 produces links l1 and l3, and support rule r3 produces link 
l3 only; therefore, every support rule that returns at least 2 γ = 1.40 links using the previous paths 
is selected. In other words, support rule r2 is selected and support rule r3 is discarded. The resulting 
context-aware rule is as follows:

p∗: link(A, B) if r1(A, B),

X = findResources(A, 〈dblp:writtenBy〉),
Y = findResources(B, 〈nsf :leads, nsf :supports〉),
E = {(U , V) | U ∈ X ∧ V ∈ Y ⇒ r2(A, B)},
computeSimilarity(X , Y , E) ≥ 0.50.

The intuitive interpretation is that p∗ links resources A and B if rule r1 links them and they have
some neighbours (using paths 〈dblp:writtenBy〉 and 〈nsf :leads, nsf :supports〉), respectively) that can
be linked by means of rule r2, and it results in two sets of resources whose similarity is at least 0.50.

3.5 Complexity analysis

Our goal is to prove that our proposal is computationally tractable, i.e. there is a polynomial upper
limit to the time and space required to run it.

LEMMA 1
Method computeSimilarity does not require more than O(n3) time and O(n2) space to execute, where
n denotes the number of resources in the largest input dataset.

PROOF. The proof proceeds in three steps: first, we present some preliminaries, next analyse the time
complexity, and, finally, study the space complexity.

Preliminaries: the method works on two sets of resources X and Y and a set of links E. We denote
n = max{|D1|, |D2|}. We can safely assume that O(n) is an upper bound to both the number of
resources in X and Y and that O(n (n − 1)/2) ⊆ O(n2) is an upper limit to the number of links in E
since this is the maximum number of edges in a graph with n vertices.



Time complexity: the statement at line 2 applies Floyd–Warshall’s algorithm to the input set of 
links E. This algorithm requires cubic time in the number of vertices of the input graph, which 
implies that O((n + n)3) ⊆ O(n3) is an upper limit to the execution time. The statements at lines 3–4 
reduce the input sets X and Y using the closure of E. A trivial implementation checks the pairs in 
the self-Cartesian products of X and Y ; thus, O(n2) is an upper limit to the time that each reduction 
requires. The statement at line 5 intersects the reductions of X and Y . A trivial implementation 
checks the pairs in the Cartesian product of X and Y , which implies that O(n2) is an upper limit to 
the time required. The statement at line 6 performs a simple arithmetic operation that is not expected 
to require more than O(1) time. As a conclusion, method computeSimilarity does not require more 
than O(n3 + 2 n2 + n2 + 1) ⊆ O(n3) time to execute.

Space complexity: the statement at line 2 relies on Floyd–Warshall’s algorithm, which is quadratic in 
the number of vertices of the input graph, which implies that it does not require more than O(n2) in 
our proposal. The statements at lines 3–4 reduce the input sets X and Y , which may not require more 
than O(n) space since this is an upper limit to the sizes of the input sets of resources. The statement 
at line 5 intersects the reductions of X and Y , which cannot result in more than O(n) resources. The 
statement at line 6 performs a simple arithmetic operation that requires O(1) space. As a conclusion, 
method computeSimilarity does not require more than O(n2 + 2 n + n + 1) ⊆ O(n2) space to
execute. �
LEMMA 2
Method computeCorrespondences does not require more than O(n4) time and O(n2) space to
execute, where n denotes the number of resources in the largest input dataset.

PROOF. The proof proceeds in three steps: first, we present some preliminaries, next analyse the time
complexity and, finally, study the space complexity.

Preliminaries: the method works on a rule R, a set of support rules S, two datasets D1 and D2 and a
threshold θ . We denote the classes from the input datasets that are involved in these rules as C1 and
C2, respectively; we also denote n = max{|D1|, |D2|}, s = |S| and c = max{|C1|, |C2|}.
Time complexity: we first analyse the initialization statements. Line 2 does not require more than
O(1) time to run. Line 3 does not require more than O(1) time because the subsets of source
and target classes of rule R can be stored with the rule so that it does not require any additional
computations. Line 4 requires to iterate over the Cartesian product of D1 and D2 to apply rule R
to each pair; we can safely assume that applying a rule can be implemented in O(1) time since the
overall computation is dominated by computing the Cartesian product, which requires O(n2) time.
Blocking techniques can be used to reduce the cardinality of the Cartesian product [11], but we only
need to find a computationally tractable upper limit. Thus, we can be safely assume that the actual
implementation of line 4 will not require more than O(n2) time. Line 5 computes the models of the
input datasets, which we can perform using Rivero et al. [19] approach. It runs in O(e) time, where e
denotes the number of properties in the input dataset; since such number cannot exceed n (n − 1)/2,
then the statement at line 5 does not require more than O(n2) time to execute. As a conclusion, the
initialization statements do not require more than O(1 + 1 + n2 + n2) ⊆ O(n2) time.

We now analyse the main loop at lines 6–15, which executes s times. The statement at line 7
does not consume more than O(1) time if the classes involved in a rule are stored with the rule.
The statement at line 8 finds the paths in the models of the input datasets that connect the source
classes to the target classes. We use Dijkstra’s algorithm, which means that computing the path
from a single class requires O(c + e log e) time, where e denotes the number of properties in the



model; note that e cannot exceed c (c − 1)/2, which implies that computing the path from a single 
class does not require more than O(c + c (c − 1)/2 log(c (c − 1)/2) ⊆ O(c2 log c); simply put: 
computing a maximum of c paths cannot require more than O(c c2 log c) ⊆ O(c3 log c) time. The 
statement at line 9 applies rule T to the input datasets, which we concluded does not require more 
than O(n2) time. The middle loop at lines 10–15 cannot execute more than O(c) times because we 
compute a path per class. The inner loop at lines 11–15 does not execute more than O(n2) times, 
which would be the case if every resource could be linked to every other resource. Line 12 finds 
the resources that are reachable from two given resources along two given paths, which may not 
require more than O(2 n) ⊆ O(n) time. Line 13 is dominated by the computation of the Cartesian 
product, which does not require more than O(n2) time. Finally, the if statement at lines 14–15 does 
not require more than O(n2) time, which we proved before. Thus, the inner loop does not require 
more than O(n2 (n + n2 + n2)) ⊆ O(n4) time to execute; consequently, the middle loop does not 
require more than O(c n4) time to execute; as a conclusion, the main loop does not require more than 
O(s (1+c3 log c+c n4)) = O(s+s c3 log c+s c n4) time. Realize that the computation is dominated 
by the number of resources n, which is expected to be much larger than the number of support rules 
s or the number of classes c; i.e. the previous time order is a subset of O(n4).

Summing up: method computeCorrespondences does not require more than O(n2 + n4) ⊆ O(n4) 
time to execute.

Space complexity: we first analyze the initialization statements. Line 2 requires no more than O(1) 
space because it simply stores an empty set; line 3 computes the sources and target classes, which 
may not require more than O(2 c) ⊆ O(c) space; line 4 requires to store the links in the Cartesian 
product of D1 and D2, which may not require more than O(n2) space. (As it was the case before, 
blocking techniques can be used [11], but this will not contradict the previous upper limit.) That is, 
the initialization steps do not require more than O(1 + c + n2) space; since the number of classes 
is expected to be much smaller than the number of resources, then we can safely assume that the 
initialization does not require more than O(n2) space.

We now analyse the main loop. The only statement that accumulates data is the one at line 15, 
which computes the resulting set of correspondences. The correspondences involve the resources in 
the input datasets, the support rules and the paths from the source classes to the target classes. That 
means that O(n2 s c) is an upper limit to the number of correspondences; taking into account that the 
number of resources n is expected to be much larger than the number of support rules or classes, we 
can then safely assume that storing the resulting correspondences does not require more than O(n2) 
space. In the main loop, the statement at line 7 does not require more than O(2 c) ⊆ O(c) space to 
store the classes, the statement at line 8 does not require more than O(2 c) ⊆ O(c) space to store the 
paths and the statement at line 9 does not require more than O(n2) space to store the links. In the 
inner loop, the statement at line 12 may not require more than O(2 n) space to store the resources, 
the statement at line 13 may not require more than O(n2) space to store the links and the statement 
at line 14 was proven not to require more than O(n2) space. As a conclusion, the computation in 
the main loop is dominated by accumulating the resulting correspondences, which does not require 
more than O(n2) space.

Summing up: method computeCorrespondences does not require more than O(n2 + n2) ⊆ O(n2)

space. �
THEOREM 1
O(n4) and O(n2) are upper limits to the time and space complexity of method learnContextAwareRule,
where n denotes the number of resources in the largest input dataset.



PROOF. The proof proceeds in three steps: first, we present some preliminaries, next analyse the time 
complexity and, finally, study the space complexity.

Preliminaries: the method works on a rule R, a set of support rules S, two datasets D1 and D2 and 
two thresholds γ and θ . We denote n = max{|D1|, |D2|} and s = |S|.

Time complexity: the statement at line 2 computes the correspondences, which was proved not to 
require more than O(n4) time. The statements at lines 3–4 compute the counters of links and filter 
them out; since there cannot be more than O(n2) links, it is safe to assume that this is an upper limit 
to the time required to execute these statements. Finally, the statement at line 5 simply instantiates 
a rule template, which does not require more than O(1) time. As a conclusion, the method does 
not require more than O(n4 + 2 n2 + 1) ⊆ O(n4) time. Please, realize that this is an upper limit 
which proves that the algorithm is computationally tractable. Our experimental study confirms that 
the timings on a commodity workstation are very good.

Space complexity: the statement at line 2 returns the correspondences, which are stored locally. 
Before, we proved that the space requirements for the correspondences do not exceed O(n2) space. 
The statements at lines 3–4 do not require more than O(n2) space to store the selected links. The 
final statement at line 5 does not require more than O(1) space. As a conclusion, the method does 
not require more than O(n2 + 2 n2 + 1) ⊆ O(n2) space. Please, realize that this is an upper limit 
which proves that the algorithm is computationally tractable. Our experimental study confirms that
the memory consumption is within the limits of a commodity workstation. �

4 Experimental analysis

In this section, we first describe our experimental environment and then comment on our results
regarding effectiveness and efficiency. The research hypothesis behind the two experiments pre-
sented in this section are as follows:

H1: exploiting the context of the resources improves the results in terms of effectiveness. More
specifically, it can increase precision without degrading recall significantly.

H2: learning context-aware rules improves the results in terms of efficiency. More specifically,
there is a balance between the time required to learn a rule and the time required to apply it.

4.1 Experimental environment

We run our experiments on a workstation that was equipped with four Intel Xeon E5-2690 cores
at 2.60 GHz and 4 GiB of RAM. The operating system was CentOS Linux 7.3. We implemented
our proposal with Java 1.8 and the following components: the GenLink implementation provided
by Silk 2.6.0 to generate context-unaware link rules; Jena TDB 3.2.0 to work with RDF datasets;
ARQ 3.2.0 to work with SPARQL queries; and Simmetrics 1.6.2, SecondString 2013-05-02, and
JavaStringSimilarity 1.0.1 to compute string similarities.

We set up the following evaluation scenarios2 : (i) researchers, which focuses on the top 100
DBLP authors and the top 130 NSF researchers with the same names; (ii) authors, which focuses
on the 9 076 DBLP authors with the same names who are known to be different people; (iii) films,

2The datasets are available at http://dx.doi.org/10.5281/zenodo.2555034.

http://dx.doi.org/10.5281/zenodo.2555034


which focuses on 691 BBC movies and 445 DBpedia films that have similar titles; (iv) movies, which 
focuses on 96 DBpedia movies and 101 IMDb films that have similar titles; (v) publications, which 
focuses on 108 RAE publications and 98 Newcastle papers that are similar; (vi) restaurants, 
which focuses on 113 and 752 restaurants from Restaurantz; (vii) Persons1, which focuses on 500 
and 500 instances of people whose names are very similar but are different people and vice versa; 
and (viii) Persons2, which is similar to the previous one but focuses on 400 and 600 different people. 
We also used some Doremus scenarios, which provide data about music works that are catalogued by 
the French National Library and the Paris Philharmonic, namely, (ix) Doremus16-9ht, which focuses 
on 40 and 40 music works that are exactly the same but have differences in spelling or classification;
(x) Doremus16-fp, which focuses on 85 and 41 music works that are different but have very similar 
attributes; (xi) Doremus17-ht, which focuses on 238 and 238 music works that are the same, but 
have different attributes; and (xii) Doremus17-fp, which focuses on 75 and 75 music works that are 
different but have similar attributes.

The experimental competitors are BIS, which is our instance-driven proposal [3], and GenLink, 
which is a state-of-the-art proposal in the literature [9]. Herein after, we refer to the proposal that is 
described in this article as Sorbas.

4.2 Effectiveness results

Figure 5(a) reports on the number of links generated by each proposal and their average precision, 
recall and F1 score using 2-fold cross validation. In the case of Sorbas, we also report on the values 
learnt for thresholds θ and γ .

Note that GenLink generates more links than BIS or Sorbas, but many of them are false positives. 
The average precision of GenLink is 0.34 ± 0.33, whereas the average precisions of BIS and Sorbas 
are 0.71 ± 0.21 and 0.74 ± 0.23, respectively. Recall that we are dealing with scenarios in which the 
datasets have many similar resources that are actually different and also many dissimilar resources 
that are actually the same. Both BIS and Sorbas take the context of the resources to be linked into 
account, which helps make a difference between the previous cases. Note that the average recall of 
GenLink is 0.87±0.14, which is relatively high, but not that interesting because of the low precision; 
the recalls of BIS and Sorbas are 0.76± 0.21 and 0.78± 0.19, respectively, which are smaller, but we 
think that the improvement in precision clearly compensates the slight loss regarding recall. Realize 
that the F1 score of GenLink is 0.41± 0.31, whereas the F1 scores of BIS and Sorbas are 0.71± 0.19 
and 0.75 ± 0.2, respectively. The conclusion is that both Sorbas and BIS are similar to each other 
and better than GenLink regarding their effectiveness.

We have confirmed the previous conclusion by means of a statistical analysis, cf. Figure 5(b). Let 
us focus on the F1 score since it combines precision and recall. Note that Sorbas ranks at position 
1.42 in average, BIS ranks at position 1.58, and GenLink ranks at position 3.00; in other words, 
Sorbas and BIS seem to compete for the first position, whereas GenLink always ranks at the third 
position. Iman–Davenport’s test returns p-value 1.75E−07, which is a strong indication that the 
differences in rank are statistically significant. We then compared the proposals to each other using 
Bergmann–Hommel’s test. The comparison of Sorbas to BIS returns p-value 5.23E−01, which 
is larger than the standard confidence level; thus, it is a clear indication that the differences in 
rank are statistically significant; on the contrary, the comparison of Sorbas to GenLink returns 
p-value 2.29E−05 and the comparison of BIS to GenLink returns p-value 1.25E−04, which are 
strong indications that the differences in rank are statistically significant. These results confirm our 
conclusion regarding our proposal being more effective than GenLink in the scenarios in which we 
have experimented. Therefore, hypothesis H1 has been validated.



FIGURE 5. Experimental effectiveness.

4.3 Efficiency results

Figure 6 shows our experimental results regarding efficiency, which discards GenLink because it
was not effective enough. Note that BIS is an instance-driven proposal that does not attempt to learn
any rules, whereas Sorbas is a rule learner. We divided our scenarios into learning and validation
sets in order to perform k-fold cross validation. In Figure 6(a), the column regarding the learning
set must be interpreted as the time taken to link the resources in this set in the case of BIS and the
time taken to learn context-aware rules from this set in the case of Sorbas; the column regarding the
validation set must be interpreted as the time taken to link the resources in this set in the case of BIS
and the time taken to apply the context-aware rules learnt previously in the case of Sorbas.

Regarding the learning set, the average time taken by BIS is 16′22′′ ± 23′58′′ and the average
time taken by Sorbas is 16′54′′ ± 22′38′′. That is, it seems that the time taken to link the dataset and
to learn context-aware rules from it are very similar. Regarding the validation set, the difference is
more clear: note that the average time taken by BIS is 16′54′′ ± 22′38′′ and the average time taken



FIGURE 6. Experimental efficiency.

by Sorbas is 02′19′′ ± 05′09′′. That is, it seems that applying a rule that was learnt previously helps
save much computing time.

To confirm the previous conclusions, we analysed the experimental results using Iman–
Davenport’s test, cf. Figure 6. Note that the p-value is nearly zero in both cases, which is a strong
indication that the differences in rank are statistically significant. Simply put, the experimental
results support the idea that Sorbas is more efficient than BIS. Therefore, hypothesis H2 has been
validated.

5 Conclusions

Many RDF datasets provide data that do not have any explicit models. Linking their resources is very
important to integrate them. In the literature, there are several genetic proposals that learn link rules.
Unfortunately, they are context-unaware, which means that they do not take the neighbours of the
resources to be linked into account. This is problematic insofar there are resources that are similar
in terms of their attributes but are actually different and vice versa. In such cases, analysing their
neighbours may help make a difference. In this article, we have presented a proposal that leverages
any existing genetic proposal to learn a set of context-unaware rules and, then combined them in
order to learn context-aware rules that have proven to be more effective and efficient.



From our formalization, theoretical analysis, and empirical analysis, we have learnt the following 
lessons:

1. Exploring the context of the resources has proven to be a good idea, since it helps improve the
effectiveness of the rules learnt by other systems.

2. Learning rules has also proven to be a good idea, since the time required to learn them is
comparable to the time required to link two datasets, but they can be applied to similar datasets
more efficiently.

3. Computing the shortest possible paths among the source and the target classes has proven
to provide a good balance between effectiveness and efficiency. Our experiments reveal that
most paths range from one to three or four properties in length. In other words, the context that
allows to discern if two resources must be linked or not is typically very close to them.

4. The proposals that learn context-unaware rules behave in two different ways: they either
produce rules with nearly perfect precision but nearly zero recall, or they produce rules that
have a relatively high recall but very low precision. It seems that the behaviour depends
completely on the input datasets and the degree of similarity of their resources in terms of
their attributes.

Our future research will focus on devising heuristics to explore the neighbours more efficiently.
We have profiled our prototype and we have found out that computing the correspondences is the
major source of inefficiency; thus, boosting its performance will be our main goal. Note that our
proposal is computationally tractable and that the time it takes to work with the experimental datasets
is good enough, but we clearly need to improve it to deal with really big datasets.
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