
March 27, 2009 19:50 WSPC/123-JCSC 00513

CHRONO-SCHEDULING: A SIMPLIFIED DYNAMIC
SCHEDULING ALGORITHM FOR TIMING

PREDICTABLE PROCESSORS

F. DIAZ-DEL-RIO∗, J. L. SEVILLANO, S. VICENTE,
G. JIMENEZ-MORENO and A. CIVIT-BALCELLS

Escuela Técnica Superior de Ingenieŕıa Informática,
Universidad de Sevilla, Avda. Reina Mercedes s/n

41012 Sevilla, Spain
∗fdiaz@atc.us.es

We propose a simpler and latency-reduced instruction scheduler, called chrono-scheduling 
algorithm, which avoids large and difficult instruction wake-up in order to reduce power 
consumption and latencies. The key idea of this scheduler is to extract and record all 
possible information about the future execution of an instruction during its issue, so as not 
to look for this information again and again during wait stages at the reservation stations. 
Therefore, an instruction can be issued with the information about at what cycle its 
operands must be captured and when it must be executed. The first implementation is 
targeted to processors that have constant latencies like many embedded microcontrollers, 
most vector processors without data cache, etc. Its main advantages are: no tags, no 
renaming, and much simpler waiting stations. When com-pared with classical dynamic 
schedulers, chrono-scheduling provides approximately the same CPI but with simpler 
overall circuitry and presumably higher clock speed (mainly because of its simplified 
stations).

Keywords: Computer architecture; instruction level parallelism; dynamic 
scheduling; reservation stations; reservation tables; time-predictable processors.

1. Introduction

Dynamic scheduling plays a fundamental role in the extraction of instruction level 
parallelism (ILP) from a serial instruction stream. It is an unquestionable fact 
that the inclusion of one of these techniques in a pipelined processor boosts its 
performance. Conventional dynamic schedulers designs are based on some kind of 
stations (namely “Instruction Queue”, “issue window”, or “Reservation Stations” 
(RS) according to prior work1), where instructions “wait” to be “woken-up” when 
all their data and structural dependences are resolved. Then, instruction is sent 
to its corresponding Functional Unit (FU) to be out-of-order executed. Therefore, 
the information needed to check if a preceding instruction is ready to execute is 
distributed among stations (the first known proposal of this type of distributed



March 27, 2009 19:50 WSPC/123-JCSC 00513

schedulers is Ref. 1). On the other hand, some prior dynamic schedulers2 were 
based on the idea of centralizing the information required to decide what instruc-
tions might wake up at each cycle. An alternative scheduler is that based on register 
renaming. Here register operand values are not part of the RS queue, which main-
tains only the information about input registers readiness. A good summary of 
classical schedulers can be found in some computer architecture books3 or in some 
papers.4,5

In an out-of-order engine, the instruction scheduler is responsible for dispatch-
ing instructions to execution units based on dependencies, latencies, and resource 
availability. Therefore, the resultant execution order matches that of the data flow, 
at least for the group of instructions hold in the stations, that is, the issue window. 
In this paper, we will use for these stations the classical name “Reservation Sta-
tions” (RS) due to Tomasulo.1 In these dynamic schedulers, RSs are implemented 
using a monolithic CAM (Content Addressable Memory). On the whole, an issue 
window is a complex multiported structure that incorporates comparators and data 
forwarding, wake logic (to identify which instructions are ready for execution) and 
additional logic for selecting ready instructions.6

Several circuit level studies7 have shown that the scheduler CAM logic domi-
nates the latency of a pipelined processor, and therefore the window size cannot 
be increased without slowing scheduler clock speed, because wake-up and select 
operations are not easily pipelined in conventional designs. Moreover, some vari-
ants or new proposals are still being suggested, in order to simplify tag-associated 
circuitry8 or to avoid this CAM-based wake-up method.9 Other studies point out 
that the performance of the scheduler can be improved by decreasing the number of 
tag comparisons necessary to schedule instructions.8 In addition, the high complex-
ity of dynamic schedulers implies that a significant fraction of the total CPU power 
dissipation (often as much as 25%) is expended within the RS.6,7 What is more 
relevant: the main sources of power dissipation of a scheduler are those related 
to associative matching and selection logic. Particularly, those major dissipation 
sources are6: (a) locating a free entry associatively and writing into this selected 
entry; (b) the associative matching done at the tag comparators to pick up for-
warded data; (c) arbitrating for the FU, enabling winning instructions for execute 
and reading the selected instructions information.

A kind of processors where dynamic scheduling may play a decisive role in the 
next future is that of advanced embedded processors. In order to increment perfor-
mance, some embedded processors are implementing deeper pipelines to boost fre-
quency, which usually yield to longer latencies and to an increase of the CPI (clock 
Cycles Per Instruction). For example, an evolutionary case is the ARM family10: 
first versions had 3 stages, afterwards they had 5 or more (the recent ARMv6 is 
designed for 7 stages).

As a result, reducing CPI is a key feature for the design of such high range 
micro-controllers. On the whole, it is well known that embedded processors designs 
are taking more and more features of high performance processors designs. The



March 27, 2009 19:50 WSPC/123-JCSC 00513

inclusion of some kind of dynamic scheduling to avoid stalls is, together with reduc-
ing branch penalties, a crucial point to decrease CPI. However, due to high latency,
complexity, high consumption of power, etc., embedded processors usually avoid
implementation of classical dynamic scheduling algorithms.

Another extreme example is necessarily found in vector cores and processors:
for instance the first implementation of vector instructions in VIRAM processor11

are deeply pipelined (15 stages) in order to hide memory latency. For those aggres-
sive vector machines, it has been calculated that some kind of dynamic scheduling
(in addition to compiler optimizations) will shrink CPI of arithmetic and memory
access instructions for vector machines: it may provide a speedup of 1.24–1.72.12

Nevertheless, the truth is that vector processors also avoid dynamic scheduling; the
reason of this lack is unclear.12

Having in mind all stated above, it is not surprising that in the last few years, one
of the main research topics in both embedded and general-purpose computing has
been not only to achieve the desired target performance, but also to deliver it with
power efficiency. Many embedded systems demand more and more performance at
low power dissipations (e.g., those in small phones or PDAs).

In this paper, we propose the chrono-scheduling algorithm (CS): a simpler and
latency reduced scheduler, where large and difficult instruction wake-up is avoided,
while preserving the same expected CPI. This first simplified implementation is
targeted to processors that have constant latencies. This is the case of many embed-
ded microcontrollers, most vector processors without data cache12 and some special
designs with a single level of memory hierarchy, like those based on IRAM.11 As
timing predictability is a desirable property of real time systems, instruction laten-
cies are fixed in many of them.13 Moreover we will see that chrono-schedulers can
take advantage of another interesting feature: timing estimation can be obtained
easier than in classical schedulers.

This paper is structured as follows. In Sec. 2, a broad and comprehensive descrip-
tion of a chrono-scheduling (CS) implementation is summarized; causes of structural
stalls are detailed in the following section, and finally conclusions are summarized.
Along this work we use a set of acronyms and variables that are summarized in
Fig. 1.

2. Chrono-Scheduling Architecture

Classical schedulers must examine repeatedly a waiting instruction for wake-up
till it can be issued. The disadvantages of this repetitive examination have been
previously observed by other authors.7,14 On the other hand, the key idea of CS
is to extract and record all possible information about the future execution of
an instruction during its issue, so as not to look for this information again and
again during wait stages in the RS. When an instruction issues, it can take with
it all this information, that is, at what cycle its operands must be captured and
when it must be executed. So we are in some way centralizing the distributed



March 27, 2009 19:50 WSPC/123-JCSC 00513

ACRONYM MEANING

BRT Binary Reservation Table 

CDB Common Data Bus 

CS Chrono-scheduling

FU Functional Unit

HS  Hold Station 

IF IS EX WB Stages in a classic al Tomasulo processor pipeline: I nstruction Fetch, Instruction decode and 
issue, Execution and Write Back 

KUF Number of bits that can be explored into a BRT in a period 

LUF Full latency (including WB phase) of a FU 

m Issue width 

N Number of cycles elapsed between the “producer” and the “consumer” instructions 

nHS Nu

RegisterFile  

Relative Period  

mber of HSs  

RF 

RP 

RS Reservation Station  

SS Shift Station  

Td RP of a destination register (when it will be generated) 

TEX First period where a FU is free, and EX stage can begin 

Ts RP of a source register (when it can be captured) 

TWB First period where a CDB is free, and WB stage can begin 

Fig. 1. List of acronyms and variables (in alphabetical order).

extraction of information (done at RSs in classical algorithms) into the IS (issue)
stage, while keeping operands distributed. In this sense, CS shares some aspects
with distributed algorithms1 (operands are distributed to avoid WAR hazards),
but it goes further because it extracts and records timing information at IS stage.
It is necessary that duration of the execution phase is predictable at IS stage to
extract timing information, which is usual in real time processors (in fact this
is a desirable feature for these processors, in order to facilitate execution time
estimation of a task or a block of code). As structural dependences usually have a
known length (they depend on the number of clocks that a resource is occupied),
they can also be chrono-scheduled as well as data dependences. Timing extraction
has been already used at software level (mainly in VLIW compilers) or proposed
as a module preceding instruction fetch in order to schedule VLIW instructions for
a static core processor.15

Calculating timing information of an instruction at its earlier stages has an
additional advantage: for those instructions whose execution is predicted to be
many cycles ahead, scheduling hardware algorithms can be sophisticated; disre-
garding them if they are time-consuming. Only for those that will execute in few
cycles, hardware must be simplified and optimized. On the other hand, in classical
dynamic schedulers, all the instructions must have a fast detection of dependences
(in order to be woken up in one clock cycle) prior to execution stage; and when the



March 27, 2009 19:50 WSPC/123-JCSC 00513

number of tags is elevated, this detection can decrease clock speed as mentioned
above.

For the sake of simplicity and in order to explain CS operation we will write
our examples using DLX ISA3 (where instructions have a maximum of two source
registers and one destination register) and the classic pipeline of Tomasulo’s Algo-
rithm for a scalar processor.1 Anyway, the chrono-scheduling ideas can be similarly
applied to other kind of dynamic scheduling architectures, like those based on reg-
ister renaming or other variants,4 and also it can be observed that extension of CS
to superscalar processors is quite straightforward.

The pipeline on a Tomasulo-like processor is segmented in four stages: IF
(Instruction Fetch), IS (Instruction decode and issue to the reservation stations
RSs), EX (Execution in the FU; the result is stored in the corresponding RS), WB
(Write Back of results to register file RF and to other RSs that wait for these
data). Forwarding is done in WB phase, through what was called CDB, Common
Data Bus.

Let us suppose that full latencies LUF (including WB phase) are 2 and 4 for
integer and MULT operations respectively. Firstly we analyze the case of infinite
Functional Units (FU) and one CDB for each FU, which means that there will not
be any structural conflict when a instruction wants to execute or do WB stage. The
case of resource limitations will be explained in the next section. Let us consider
the code given in Fig. 2, which execution timing is also represented in this figure,
and its data flow in Fig. 3. Note that the code has no structural conflict at phases
EX and WB. Symbol ◦ represents a waiting cycle (due to data dependences) in the
RS where an instruction is allocated.

We can realize that all the timing information of an instruction can be extracted
at each IS stage. In our first approach, as structural dependences have been avoided,
timing information depends only on the data. The “production” of the destination
register (the cycle in which the result will be calculated and sent to a CDB) will be
done. LUF cycles after both source operands are available at the FU. This is true
because at this point we are supposing that a FU is always vacant. Moreover, in a

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

MULT R3, R2, R1   IF IS E1 E2 E3 WB 

ADD  R4, R3, R1 IF IS º  º  º  EX WB 

SUB  R5, R4, R3 IF IS º  º  º  º  EX WB  

XOR  R4, R6, R1 IF IS EX WB 

SHR  R3, R4, R2 IF IS º  EX WB 

Fig. 2. Timing diagram of Example 1.



March 27, 2009 19:50 WSPC/123-JCSC 00513

MULT

ADD

SUB

XOR

SHR

Fig. 3. Data flow of code example.

Tomasulo-like algorithm the cycle in which a source operand is available (see Fig. 2)
can be: (a) the present cycle if the datum resides in RF or (b) the exact period in
which it was sent to a CDB by another “producer” instruction if the datum was
marked with a tag in RF. In other schedulers a generated or available datum may
take several cycles to get to the corresponding FU.

Let us consider periods with respect to the IS stage of each instruction that we
name “relative periods” (RP). For a given instruction, let us define Tsj (j = 1, 2)
as the RP when values of each source register will be available (namely, the number
of cycles after the IS stage that a source operand is available). If an operand j is
available at IS stage (because its value resides in RF or it is coming at this cycle
through a CDB), we assign: Tsj = 0. Analogously, let Td be the period when
destination register of this instruction will be generated. Therefore, according to
previous assumptions, we have for this instruction that: Td = MAX(Ts1, T s2) +
LUF .

This equation is clearly recursive because every source register is also the desti-
nation register of a previous instruction (that is, each Tsj of the previous equation
can be calculated through the same equation). Let us call Tdj the destination RP of
the instruction that generated operand j. Then for the currently issued instruction,
we can write: Tsj = Tdj − Nj , where Nj is the number of cycles elapsed between
the “producer” and the “consumer” instructions. As Tdj is measured with respect
to the producer, this equation supposes a time reference change. Note that here
“number of cycles” Nj is the same that “number of instructions” plus the stall
cycles, because we are supposing that processor is scalar (it issues one instruction
per cycle).

As an example, in Fig. 4 we show the RP extraction of source and destination
registers. The last one is underlined to distinguish it from the other calculations.
Let us examine some examples. In MULT operation both source operands are in



March 27, 2009 19:50 WSPC/123-JCSC 00513

T1 T2 T3 T4 T5 T6 T7 T8 T9  

MULT R3,R2,R1 IF IS: R2,R1 available. R3 in MAX(+0,+0)+4=+4 (T7)

ADD  R4,R3,R1    IF IS: R1 avail.; R3 in +4(-1)=+3. R4 in MAX(+0,+3)+2=+5 (T9)

SUB  R5,R4,R3 IF IS: R4 in +5(-1)=+4;R3 in+4(-2)=+2. R5 in MAX(+4,+2)+2=+6(T11)

XOR  R4,R6,R1 IF IS: R1,R6 avail.; R4 in MAX(+0,+0)+2=+2 (T8)

SHR  R3,R4,R2 IF IS: R2 avail.;R4 in +2(-1)=+1, R3 in MAX(0,+1)+2=+3(T10)

Fig. 4. Timing of operands at IS stage.

the RF, so both Tsj are 0, and the destination R3 will be produced 4 cycles after
its issue stage. But for the next instruction ADD, one of the operands (R3, j = 1)
will be generated by MULT. R3 was an RP of +4 with respect to MULT, but 1
cycle has elapsed between MULT and ADD (N1 = 1), which means that: Ts1 =
Td1 − N1 = 4 − 1 = 3 (with respect to ADD). Calculation of destination RP
Td = MAX(Ts1, T s2) + LUF , gives that register R4 will be available at Td =
MAX(+0, +3) + 2 = +5, with respect to ADD issue. Note that the RP of R4 is
changed afterwards by XOR instruction. As this register appears as a destination
twice, its RP must be recalculated; it is the same action that occurs with register
renaming in classical schedulers.

Therefore, full timing of operands can be extracted at IS stage. One possible
implementation to achieve this is keeping all registers timing information in a kind
of scoreboard. In a chrono-scheduler, RF must record for each register the RP and
the FU that will produce a new value. When a register is destination of a newly
issued instruction, the Td value and FU must be written in the RF. On the contrary,
for every register that is not a destination, RP must be decremented at every clock
cycle; Nj are calculated in this way. When the RP of a register gets to 0, it must
capture its new value from the corresponding CDB (that of the FU recorded in
the RF).

The evolution of register scoreboard of previous example is shown at Fig. 5.
Rows contain the information of registers and columns represent absolute periods.
In every column the issued instruction is indicated. Every cell encloses RP value
for each register at the end of each cycle. In addition, FU are indicated between
brackets if data is not available for a register, that is, if its RP is bigger than 0.
Conversely if a data is available, we assign RP = +0 to this register. For example
at the end of period T2, all data reside at the RF except that of R3, which will
take 4 cycles to come from the MULT FU. At the next cycle R4 is marked with
+5 [INT], because this register is destination of ADD instruction (that is, data will
come from INT FU), and at its IS stage we can predict that the data for R4 will
arrive in 5 cycles. At the same period, register R3 decrements its RP.

Despite the fact that RPs computations are done at IS stages (according to
the formula Td = MAX(Ts1, T s2) + LUF ), we indicate this calculations in the RF



March 27, 2009 19:50 WSPC/123-JCSC 00513

T2: MULT T3: ADD T4: SUB T5: XOR T6: SHR T7 

R1 +0 +0 +0 +0 +0 +0

R2 +0 +0 +0 +0 +0 +0

R3 +4[MULT] +3[MULT] +2   [MULT] +1 [MULT] +0 +1+2=+3[INT] +2

R4 +0 3+2=+5[INT] +4   [INT] +3+2[INT] +1   [INT] +0

R5 +0 +0 MAX[4,2]+2=4+2=
+6 [INT]

+5  [INT] +4   [INT] +3

Fig. 5. Evolution of the register scoreboard.

scoreboard of Fig. 5, to follow better this procedure. Nonetheless some comparators
(MAX functions) have been eliminated to simplify this figure. In Fig. 5 real data
dependences are also shown with arrows, and RPs values that are read at IS stage
are underlined. Register renaming done in classic Tomasulo-like schedulers, takes
place here with a change of RP value (represented with a cross over a RP). This
occurs at T5 for register R4, and in T6 for R3. Therefore, changes of RPs values
avoid WAW hazards straightforwardly. In this fashion (and in a similar way to most
schedulers) the results of MULT and ADD will never arrive to the RF, but only
to the instructions that need them. This will be done at the stations as explained
below. Also it is clear that WAR hazards are avoided at the stations, but without
using any kind of tags.

In Fig. 6 we show the overall architecture of a CS algorithm. While its gen-
eral structure reminds us that of a Tomasulo-like scheduler, several simplifications
have been done, mainly at the stations previous to the FU. Let us explain at this
point how the new CS stations work. An issued instruction can capture its source
operands from RF at IS stage, or from a CDB (in case of data dependence) after
an exact number of cycles Tsj. So there is no need for CAM logic at the stations
where instructions are waiting to be executed. Instead, RPs values can be stored
at waiting stations and also decremented at every cycle until they are zero: at this
moment the source value will exactly arrive from the corresponding FU (which
must also be kept at the station). Then stations can be organized in a temporal
manner: we can introduce a pile of stations for each FU and shift stations down
at each cycle. So we can talk about “Shift Stations” (SS), instead of reservation
stations. In Fig. 7 three SSs are represented for a 32-bit machine; the last of them
is just a register that contains the operand value and the operation type to be
executed in the next cycle. When an instruction issues, it must occupy the SS
that takes the number of cycles given by Ts = MAX(Ts1, T s2) to arrive to the
FU. The other source RP, MIN(Ts1, T s2), must be written in the SS to determine
when the first operand source must be captured. Note that SSs are in fact in-order



March 27, 2009 19:50 WSPC/123-JCSC 00513

FU1 (conmutative) FU2 (conmutative)

Registers Cycles

Operands and 
control buses 

SS: Shift
Stations

Data Buses  

WB

ISIS

OTHERS FU
EX

Fig. 6. Architecture of a chrono-scheduler.

Time
direction 

From
CDBs

FU

 Bit 32 bits 
Avail/   FU2  value / RP    FU1  Type of
Wait   Ts    100000... 0000 operation

 Bit 32 bits 
Avail/   FU2  value / RP    FU1 Type of
Wait   Ts    100000... 0000 operation

From register file 

CDBs

From
RF

Avail/  32 bits 
Wait value 

32 bits value

From
CDBs

32 bits value  Type of operation 

Fig. 7. Architecture of Shift Stations. Dotted lines are control signals.



March 27, 2009 19:50 WSPC/123-JCSC 00513

execution stations (IS stage has ordered them due to RP calculation), that is, there 
is no need to implement priority circuitry or selection logic that decides which sta-
tion must execute at each cycle. In this way we can say that time “goes down” 
to the FU. At each clock cycle, the control information of each SSs is copied to 
the immediately lower SS (buses that do this copy are not illustrated in Fig. 7 
for clearness reasons). Also the operand field goes down to the FU as explained 
below. At the next section we will study what happens when the SS to be occupied 
is already busy (that is, FU is held in reserve at the required cycle by another 
instruction).

For example, instruction SUB has two dependences whose RPs values at issue 
period are +4 (coming from INT FU) and +2 (coming from MULT FU). These 
RPs will be decremented at each cycle. Therefore, SUB can be executed when +4 
reaches zero, and prior to that cycle, the other operand must be captured from a 
CDB (when the RP value of +2 decreases until zero).

SSs must contain only one field for its first source operand value (if it exists) 
that will be captured for the producer FU1. The other operand (if it exists) will 
just arrive at the cycle previous to execution (field FU2 at Fig. 7 indicates which 
FU will generate the last operand). All the information in a SS is copied down to 
the FU, and the SS operand values can arrive through three different sources (see 
the MUX on each SSs in Fig. 7): directly from the RF if it was available when the 
instruction was decoded, from the upper SS or from one of the CDBs (when an 
instruction is waiting for the result of another one).

In this way, the operand value field can be used for a value or for a RP (the 
bit on the left field of each SS indicates if the operand is available or not). For 
implementation simplicity, in Fig. 7, RPs are decoded as a 32-bit number with 
only one active bit, whose position indicates RP value. So instead of decrementing, 
this number is shifted until the active bit arrives at the lower multiplexor’s control 
signal; at this moment, the first operand is captured from the CDB indicated by 
FU1. For example, in Fig. 7, upper and second SSs will catch its operands in the 
next cycle. On the left of each SS, a bit indicates if operand value is available or 
not (in which case, it represents a RP). The other control signal of MUXs (that is, 
the one that decides if the operand will arrive from the RF or from the previous 
SS) are not drawn for reasons of clearness.

As we are using classic Tomasulo’s pipeline, inferior SS has always its operand 
ready to execute, but for other pipeline implementations this could change. Similarly 
each FU output needs a latch according to Tomasulo’s pipeline (which delays the 
data forwarding to WB stage). This latch could be suppressed if forwarding could 
be done at the end of EX.

Since SSs have been simplified to have only one source operand, FUs must 
comply with non-commutative operations. In SUB instructions this fact supposes 
only to invert the sign of operands. For DIV instructions a swap circuit at the 
input of FU should be added (potential increment in DIV latency will have 
little performance penalty, because these instructions are very infrequent and DIV



March 27, 2009 19:50 WSPC/123-JCSC 00513

latencies in embedded processors are usually already large). For store instructions
a similar reasoning is valid if a write buffer is implemented.

The number of required SSs depends on the clocks between issue and exe-
cute stages of an instruction. Of course, the bigger the latencies (or the bigger
the superscalar degree), the more SSs are needed (though many of them might be
empty).

As a result of the previous principle, an implementation approach suitable for
scalar processors will be that based only on SSs. Here, when an instruction has
to wait for an operand more cycles than the number of available SSs, a structural
stall must be inserted. In order to prevent performance degradation, we should
estimate the number of SSs to reduce these stalls. As a matter of fact, for real
scalar processors, the mean number of cycles that an instruction waits is fairly
small. While it is not easy to find explicitly this mean number for real processors
and benchmarks in current literature, simulations16 show that even for an aggressive
high-ILP-oriented superscalar machine like PowerPC 620, this quantity is very low.
Its mean value varies from 1.53 to 2.56 cycles in SPEC92 INT, and from 1.05 to
4.74 cycles in SPEC92 FP or from another point of view, from 1.01 to 2.39 cycles
in integer RS, 1.39 to 2.56 cycles in Load/Store RS and 2.45 to 4.74 cycles in FP
ALU RS for SPEC92. In PowerPC 620, instructions reside more time in its RS
obviously because of bigger FP ALU latencies (3 stages), but mainly because FP
execution is actually in order. Note that PowerPC’s mean number of cycles in FP
and Load/Store RSs are fully valid for our case, because these FUs are single (for
integer instructions, PowerPC implement two FUs, so cycles must be higher). But,
evidently for the scalar processor we want to “chronoschedule”, this number will
be much lower. Therefore, according to previous study, it is a fact that the number
of SSs necessary to prevent from many stalls is not elevated.

But in the case of more aggressive processors, instead of having a large number
of fast SSs, it would be preferable to implement a pool of stations that “holds”
instructions that will be executed in a number of cycles bigger than the number of
available SSs (in the rest of the paper we will describe this more general case). This
pool of “Hold Stations” (HS) needs a common multiplexor (see implementation in
Fig. 8) to choose the station that will be launched to SSs. Also a second counter to
indicate RP of the last or second operand (which coincides with future EX period)
is necessary for each entry. The maximum number of bits of this counter is bounded
by the maximum number of clocks that a CS can predict, which will occur for a
bizarre piece of code: that composed by a chain of longest latency instructions, each
of ones includes a real data dependence with its predecessor. Then the maximum
number of predictable clocks PCLKmax is given by:

PCLKmax = max(LUF ) × nHS −
⌊

nHS − 1
m

⌋
, (1)

where max(LUF ) is the biggest of all full latencies LUF (including WB phase), nHS

is the number of HSs and m is the issue width (m = 1 for a scalar processor). The



March 27, 2009 19:50 WSPC/123-JCSC 00513

Time
direction

From
CDBs

FU 

From register
file 

CDBs

From
RF  

From
CDBs

H.S.

S.S. 

   Bit  1st operand 
Avail/  FU2   RP / value   FU1  Type of    2nd operand
Wait   32 bits       operation  RP 

Next HS to
be launched

Bit 
Alloc/
Free

Fig. 8. Architecture of SSs and HSs. Dotted lines are control signals.

last member of the previous equation is introduced to take into account the number
of cycles that elapses from the first to the last HS allocation. The maximum number
of bits of this counter is therefore:

�log2 (PCLKmax)� . (2)

While this maximum number of predictable clocks would only occur in a bizarre
piece of code, note that the number of bits of the counter is not elevated: for
example, for a longest latency of 8 periods, an issue width of 4 and 64 HSs, then
PCLKmax = 497 cycles, which means that a 9-bits counter will be enough.

When the last operand’s RP of an HS equals the number of SSs plus 1, it must
be launched to the first SS (an alternative is to store the difference between the



March 27, 2009 19:50 WSPC/123-JCSC 00513

last RP and the number of SSs plus 1, detecting when it gets to zero). The first
operand of an HS is captured in a similar way to SS, while the second operand will
be caught just the cycle before doing EX.

As HSs include complete information about an issued instruction, SSs may be
unnecessary for some processor designs. In this case note that HSs behave identically
as RSs from the viewpoint of allocation and liberation. This is clear if we observe
that timing diagram of both schedulers is the same (note for example in Fig. 2
that this diagram is valid for a RS scheduler and for CS). Therefore, for a processor
based only on these HSs, it is obvious that processor CPI will be the same than that
of a RS-based processor (for a number of RSs equal to the number of HSs). But if
our design objective was to reduce the launching time, SSs must be incorporated.
The reason is that HS structure is more complicated than that of SS. For example
if SSs were not present, the launching time may increase due to the big multiplexor
that selects the next HS to be launched (see Fig. 8). As the path needed to send
an instruction to its corresponding FU is much shorter for SSs than for HSs, the
common solution will be to maintain a short number of SSs under the pool of
HSs (as shown in Fig. 8). The exact number of HS and SS should be carefully
determined for each CS implementation, according to the selected target processor
and the goal performance requirements, because this decision has a decisive impact
in the overall performance of the design (frequency, power, area, etc.). In Fig. 9
a cost summary of RS in relation to proposed SS and HS is presented using the
architectural parameters involved in these stations (for a 32-bit machine with a
CDB for each FU). In HS and SS the 32-bit first operand value is used to contain

Station Sequential fields, bits and main associated circuitry 
RS Allocate/ 

Free 
Type of 

operation 
Destination 

tag  
1st operand 

tag 
1st operand 

value 
1st operand 

available bit
2nd operand 

tag 
2nd

operand 
value 

2nd

operand 
available 

bit 
Bits  1 Log2(Ntype) Log2(Ntag) Log2(Ntag) 32 1 Log2(Ntag) 32 1
Main

associated 
circuitry 

Selection 
Logic (if 
ready) 

Wakeup 
logic 

NCDB

Comparators 
of 

Log2(Ntag)×
Log2(Ntag) 

inputs 

 Wakeup
logic 

HS Allocate/ 
Free 

Type of 
operation 

Avail./Wait 
Bit 

RP-
FU1/value 

FU2 2nd operand RP

Bits  Log2(Ntype)  1 

 1 

32 Log2(NCDB) Log2(NMCLK) 
Main

associated 
circuitry 

Log2(NMCLK)-
Down counter

Log2(NMCLK)-
Down counter.
Launch logic 

SS Allocate/ 
Free 

Type of 
operation 

Avail./Wait 
Bit 

RP-
FU1/value 

FU2 

Bits Log2(Ntype) 32 Log2(NCDB)
Main

associated 
circuitry 

Log2(NMCLK)-
Down counter

Notation: Ntype : Maximum number of operations of the FU;   Ntag : number of tags ;  NCDB : number of CDBs 
NMCLK: number of estimated predictable cycles 

1

1

Fig. 9. Cost summary of RS, SS and HS (for a 32-bit machine).



March 27, 2009 19:50 WSPC/123-JCSC 00513

both the RP and the type of FU, since the number of bits that specify the FU1 
(Log2(N(CDB))) is small.

In addition, having in mind this combination of HS and SS, we can become 
aware of other advantages as explained below.

Whereas HSs are more complicated than SSs, we know that their instructions 
will be executed later, so their circuits need not to be enhanced or made fast. For 
example, if HS launch were lengthy, it could be pipelined in two cycles and launched. 
HS would occupy the second SS instead of the first one (or equivalently a HS could 
begin its launch two cycles ahead). An analogous argument is valid for bypasses 
from FUs to HSs, because it is not necessary to do these bypasses in just one cycle. 
On the whole, note that this idea can be extended to any piece of CS hardware. As 
time information is known for each event that will occur in the scheduler, only the 
pieces that are going to be executed in the next cycle must last one period. On the 
other hand, for those parts that will last (say) m cycles to arrive to the FU, we have 
these m cycles to do all the work involved in the launch. The same reasoning is valid 
for other events (like issuing an instruction, capturing its operand in the HS, etc.). 
We can conclude that the only critical pieces of a chrono-scheduler issue window 
are those related to the last SS (the one that is ready to execute). Therefore, a CS 
permits to implement an attractive design like that shown in Fig. 10 (for two FUs, 
analogously for more FUs), which divides the scheduler in two sections of different 
speeds (and technology if required). The bottom part includes all the critical time 
scheduler circuitry, while the upper part contains those pieces where time is not 
critical. The element with the symbol ∆ suggests that a delay in these buses will 
not degrade the processor performance.

FU1 FU2

Register   File SSs SSs 

HSs 

∆ ∆ ∆ ∆

Fig. 10. A two-speed CS design.



March 27, 2009 19:50 WSPC/123-JCSC 00513

Additionally, as it can be presumed that the major dissipation sources of a
CS scheduler are found around HSs (it is the biggest CS part, it has to locate
associatively free entries, it has an enabling circuitry to launch an HS to the pool
of SSs, etc.), a power saving design could be implemented for this upper part. For
example, this will be achieved if it works with a lower frequency and with reduced
power technology (which would not impact the processor performance as exposed
before). A preliminary theoretical power saving estimation can be found for CMOS
technology. It is well known that power consumption in this technology is quadratic
with voltage supply and linear with switching capacitance and activity.17 Therefore,
if an implementation of HSs worked with half frequency (it must have two SSs —
working with full frequency — for each FU), it would reduce its activity to the half,
that is, power dissipation of this part of the scheduler would be reduced to one half.
Of course a full implementation of a CS-based processor is needed to compare more
exactly the savings in power with respect to a RS-based processor.

HSs plays a similar role than classical RSs but they are much simpler: no CAM
logic is needed and only one operand must be contained (therefore, they need only
half data path inputs of RSs). In addition, as RPs are known we can predict which
HS is going to be launched. For example, a simple control register could permanently
store the next HS to be launched (that is, MUX control lines) if it were actualized
each time a new HS is occupied or a HS is launched (made free). Therefore, this
special selection logic will not cause any delay in the launch of a HS, as it can be
done in parallel with a previous launch.

3. Resource Limitations and Structural Stalls

When an instruction to be issued does not find an empty HS, a structural stall
must be inserted. The other possible stall cause, that is, if an RP does not fit in a
counter, is very improbable if a moderate number of count bits are implemented.
In order to prevent performance degradation, we must estimate the number of HSs
to reduce these stalls. As HSs plays a similar role than RSs, a moderate number
of HSs will guarantee a high speedup with respect to a static scheduler processor.
What is more, the number of HSs may be lower than that of classical RSs as several
instructions (those that are prepared to execute) reside in the SSs.

The challenge of limited number of FUs and CDBs can be resolved with a binary
reservation table (BRT) for each shared resource. For example, if an instruction is
scheduled at IS stage to capture its last operand at the same period than a previous
one (using the same FU), it must be delayed. For instance this case will occur in
example of Fig. 2 at period T8 for ADD and SHR instructions if MULT latency were
one cycle longer. Then SHR must be delayed to execute one cycle after to prevent
the structural hazard. Therefore, once Ts = MAX(Ts1, T s2) has been determined,
a search in the corresponding FU BRT beginning by the Tsth bit (for example using
a priority encoder), will find the first period TEX where this FU is free. At this
period TEX the instruction must begin its execution.



March 27, 2009 19:50 WSPC/123-JCSC 00513

T2 T3 T4 T5 T6 T7 T8 T9 T10T11  …

0 0 0 0 1 1 0 1 0 0 0 0... 

ALU INT BRT 

0

T2 T3 T4 T5 T6 T7 T8 T9 T10T11  …

0 0 0 0 1 1 1 0 1 0 0 0 ... 

CDB BRT

0 

Priority Encoder

TWB period

Priority Encoder 

TEX period

Fig. 11. Implementation design for FU and CDB BRTs searching.

A similar BRT and searching can be implemented if CDBs were limited. For
example if processor design had a single CDB, we would need a FU BRT and a
CDB BRT. In this case a simple circuitry can be implemented to find the periods
TEX and TWB, at which EX and WB stages must begin. Supposing that a “0”
in a BRT bit means that the resource is free, and a “1” means occupied, then the
priority encoder searching should be preceded by OR operations between bits of FU
BRT and CDB BRT (this last shifted by FU duration). In Fig. 11 we schematize
this design for a two-bits searching, showing the BRT contents when SHR is going
to be issued (at T6 period). Note that for easy understanding in this figure we are
showing absolute periods T, instead of the relative ones that will be managed in
a real processor. In Fig. 11, searching at CDB BRT is shifted by one cycle with
respect to the FU BRT searching. The priority encoders’ outputs will give us the
RP of EX and WB stages for the SHR instruction.

In the rest of this paper we will work with single FU and a CDB for each FU,
for the following reasons. Firstly in our architecture, each SS needs only one path
for both operands (the other path is common for all stations, and placed on the
left operand). Moreover, most current embedded or vector processors implements
single FU but multiple forwarding paths.11,18 As the number of FUs is reduced for
these machines (2 or 3 for each pipe), a double or triple CDB supposes a moderate
number of forwarding paths if we compare for example with ARM9TDMI, which in
spite of being a simple scalar 5 stages machine, it has 5 forwarding paths. Finally CS
CDBs are much simpler than those of common schedulers because of the following:
there is no need for priority circuitry to select one of the CBDs, CDBs have no tag
and consequently logic associated to tags is not necessary.

Let us suppose that an instruction can look into a BRT for KUF bits in a
period. If no “0” is encountered in these KUF bits, the simpler solution is to insert
a stall. That is, no instruction is issued at this cycle, and a new KUF -bits search
must be done in the next cycle. These stalls would be almost negligible even with a
small KUF . In current literature it is not easy to find explicitly for real processors



March 27, 2009 19:50 WSPC/123-JCSC 00513

how frequent an instruction is “ready but waiting for FU”. However, simulations
show that in a well-balanced machine this case is rare. In PowerPC 620,16 for FP
benchmarks, average busy FU rate is less than 3 per 100 cycles, and for SPEC92
INT it reaches a maximum of 13.67% (in compress benchmark). For this processor,
then we will expect a maximum structural rate of these stalls given by (0.1367)KUF .
For instance if this search were 3 bits wide, maximum probability of stall will be less
than 2.6 per 1,000 cycles of integer benchmark’s execution (for FP programs it will
be virtually zero). Bearing in mind these probabilities, the maximum degradation
of the CPI of a CS with respect to the CPI of a RS-based scheduler, can be fairly
estimated. For a 100-cycle SPEC92 INT execution, if CPIRS is the expected CPI
for a RS-based scheduler, then the maximum deceleration can be:

A =
CPICS

CPIRS
=

100 + (0.1367)KUF

100
⇒ A = (0.1367)KUF % . (3)

For a 3-bit wide BRT search, this gives a deceleration of 1.0026. Note that
this CPI degradation for the SPEC92 INT average is very much lower, and for FP
benchmarks is virtually inexistent (an average deceleration of (0.03)KUF %, that is,
0.000027% for a 3-bit wide BRT search).

Given that EX stage may be delayed by a maximum of KUF − 1 cycles, a new
set of KUF − 1 shift registers must be inserted previous to the latch at FU left
input (in Figs. 7 and 8, an additional register has been added to the left input to
illustrate this situation, which means that KUF is “2” for this figure). One of these
latches will collect the last operand at cycle given by Ts; then Ts must be stored
in the corresponding SS (in Fig. 7, Ts is together with FU2). This new field can be
decremented each cycle, in a similar fashion to the right operand, so shift register
will be loaded when a SS orders it (Ts gets to zero). Another more infrequent stall
cause occurs when the length of a BRT is less than the calculated TEX . While
this stall can be avoided if BRT structure were modified to log this case, it is
clear that the rate of this stall is negligible if BRT contains a sufficient number
of bits. Moreover note that the maximum number of bits of this BRT is bounded
by PCLKmax (maximum number of clocks that a CS can predict). As explained in
Sec. 2 this number is not elevated for usual programs.

To sum up: a chrono-scheduler may stall if a resource is exhausted as it occurs
in every dynamic scheduler. In our case, stalls must be inserted if: (a) HSs are
exhausted; (b) When looking for a FU free, there is no success in BRT exploration;
(c) The length of a BRT is less than the calculated TEX . Then we conclude that the
expected CPI of a chrono-scheduler with a number of HSs, will be approximately
the same to that of a classical dynamic scheduler with the same number of RSs.
Consequently, the impact of most of architectural parameters in CS performance
will be similar to the impact for a RS-based scheduler. For example, the impact
of queue size, issue width or branch statistics in CPI will be the same as that
obtained using classical Reservation Stations; thus well-established CPI studies (like
Refs. 3, 14, 17 and so on) can apply to chrono-scheduler performance.



March 27, 2009 19:50 WSPC/123-JCSC 00513

... BRT 

Ts1

n

 KUF

n 
RF Reg.

Scoreboard

n 

KUF bits search

SS to be occupied  n=counter wide

+

LUF

Shifter

n

Ts2

Td

MAX 

TEX

Fig. 12. Chrono-scheduling issue implementation.

An example of a possible implementation of chrono-scheduler issue stage for an
XScale processor is given at Fig. 12. The right part of this schematic will calculate
RP and SS to be occupied for current instruction (if HSs were implemented, outputs
of this circuit will be placed on a empty HS). Here the MAX function has been
placed after the BRT access to shorten the total delay of this circuit, so all dotted
square can be implemented as a simple two-level AND-OR circuitry. Others details
that are not in the critical path are not shown in this figure, like the minimum of
(Ts1, T s2), that must be recorded in the SS or HS, and the setting of the TEX bit
in the BRT. As it occurs in all superscalar implementations, chrono-scheduler IS
stage is not time-scalable with respect to the issue width, so a detailed calculation
of maximum width should be done for each machine.

Besides if precise interrupts or dynamic speculation are to be implemented,
classical techniques (like reorder buffer) can be employed. However a deeper study
of precise interrupts and speculation implementation should be accomplished in
future works, in order to find possible simplifications of this piece of hardware
when chrono-scheduling information is used.

Ongoing work includes selecting several target processors where CS could fit
as a cheap dynamic scheduler, and writing an implementation in VHDL. This will
permit us to quantify exactly the savings in circuitry and power, clock frequency
increase and issue latency reduction with respect to a similar processor with a
register renaming scheduler, and comparing different types of target processors and
even multiple architectural factors for a particular processor family.

4. Conclusions

The structure of a chrono-scheduler targeted to time-predictable processors is first
presented. It avoids the usual complexity found in RSs of classical dynamic sched-
ulers, because it extracts timing information prior to issue, so no associative logic



March 27, 2009 19:50 WSPC/123-JCSC 00513

is needed. Its main advantages are: there are no tags in the system, no renaming,
data buses are not enlarged with tag information, each waiting station is very much
simpler (no comparing of logic nor CAM, no priority circuitry, only one operand
instead of three, only one datapath instead of two for each RS). Only small adders
and BRTs are added after the decoding stage. On the whole, it is apparent that
CPI for CS will be similar to that of classical schedulers because stalls come from
similar running out of resources, but clock speed may be increased because of its
simplified SSs, and circuitry complexity, and power consumption is predicted to be
fairly lower. Moreover, we present a design where the critical time part (which is
the least) is separated to the non-critical, allowing the implementation of this last
part with a power saving technology.

Acknowledgments

This work has been supported in part under Spanish Science and Education Min-
istry Research Project TIN2006-15617-C03-03 and under Andalusian Government
Excellence Research Project P06-TIC-02298.

References

1. R. M. Tomasulo, An efficient algorithm for exploiting multiple arithmetic units, IBM
J. Res. Dev. 11 (1967) 25–33.

2. J. E. Thornton, Parallel operation in control data 6600, Proc. AFIPS Fall Joint Com-
puter Conf. (1964), pp. 33–40.

3. J. L. Hennessy and D. A. Patterson, Computer Architecture. A Quantitative Approach,
2nd edn. (Morgan-Kaufmann, 1996).

4. M. Moudgill, K. Pingali and S. Vassiliadis, Register renaming and dynamic specula-
tion: An alternative approach, Proc. 26th Int. Symp. Microarchitecture, Texas (1993),
pp. 202–213.

5. D. Sima, The design space of register renaming techniques, IEEE Micro 20 (2000)
70–83.

6. D. V. Ponomarev, G. Kucuk, O. Ergin, K. Ghose and P. M. Kogge, Energy-efficient
issue queue design, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 11 (2003)
789–800.

7. S. Palacharla, N. P. Jouppi and J. E. Smith, Complexity-effective superscalar pro-
cessors, Proc. 24th Ann. Int. Symp. Computer Architecture (ISCA’97), June 1997,
pp. 206–218.

8. D. Ernst and T. Austin, Efficient dynamic scheduling through tag elimination, Proc.
29th Ann. Symp. Computer Architecture (ISCA’02) (2002), pp. 37–46.

9. M. A. Ramirez, A. Cristal, A. V. Veidenbaum, L. Villa and M. Valero, Direct instruc-
tion wake-up for out-of-order processors, Proc. Innovative Architecture for Future
Generation High-Performance Processors and Systems (2004), pp. 2–9.

10. D. Brash, The ARM Architecture Version 6 (ARMv6), ARM White Paper, January
2002.

11. C. E. Kozyrakis and D. A. Patterson, Scalable, vector processors for embedded sys-
tems, IEEE Micro 23 (2003), pp. 36–45.

12. R. Espasa, M. Valero and J. E. Smith, Out-of-order vector architectures, Proc. 30th
Ann. Int. Symp. Microarchitecture (1997), pp. 160–170.



March 27, 2009 19:50 WSPC/123-JCSC 00513

13. L. Thiele and R. Wilhelm, Design for timing predictability, Real-Time System 28
(2004) 157–177.

14. S. Önder and R. Gupta, Instruction wake-up in wide issue superscalars, Euro-Par
2001, LNCS, Vol. 2150 (Springer-Verlag, Berlin, Heidelberg, 2001), pp. 418–427.

15. S. Banerjia, S. W. Sathaye, K. N. Menezes and T. M. Conte, MPS: Miss-path schedul-
ing for multiple-issue processors, IEEE Trans. Comput. 47 (1998) 1382–1397.

16. T. A. Diep, C. Nelson and J. P. Shen, Performance evaluation of the powerPC 620
microarchitecture, Proc. 22nd Ann. Int. Symp. Computer Architecture (ISCA’95),
Italy, pp. 163–174.

17. D. Folegnani and A. González, Energy-effective issue logic, Proc. 28th Ann. Int. Symp.
Computer Architecture, Sweden (2001), pp. 230–239.

18. S. Segars, The ARM9 family — high performance microprocessors for embedded
applications, Proc. Int. Conf. Computer Design, October 1998, pp. 230–235.




