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Abstract
We give some structural formulas for the family of matrix-valued orthogonal poly-
nomials of size 2 × 2 introduced by C. Calderón et al. in an earlier work, which are
common eigenfunctions of a differential operator of hypergeometric type. Specifi-
cally, we give a Rodrigues formula that allows us to write this family of polynomials
explicitly in terms of the classical Jacobi polynomials, and write, for the sequence
of orthonormal polynomials, the three-term recurrence relation and the Christoffel–
Darboux identity. We obtain a Pearson equation, which enables us to prove that the
sequence of derivatives of the orthogonal polynomials is also orthogonal, and to com-
pute a Rodrigues formula for these polynomials as well as a matrix-valued differential
operator having these polynomials as eigenfunctions. We also describe the second-
order differential operators of the algebra associated with the weight matrix.
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1 Introduction

In the last few years, the search for examples of matrix-valued orthogonal polynomials
that are common eigenfunctions of a second-order differential operator, that is to say,
satisfying a bispectral property in the sense of [13], has received a lot of attention after
the seminal work of A. Durán in [15].

The theory of matrix-valued orthogonal polynomials was started by Krein in 1949
[37,38] (see also [1,2]), in connection with spectral analysis and moment problems.
Nevertheless, the first examples of orthogonal matrix polynomials satisfying this extra
property and non-reducible to scalar case appeared more recently in [19,25,27–29].
The collection of examples has been growing lately (see for instance [3,4,16,17,21,22,
26,34–36,40–42]). Moreover, the problem of giving a general classification of these
families of matrix-valued orthogonal polynomials as solutions of the so-calledMatrix
Bochner Problem has been also recently addressed in [7,8] for the special case of 2×2
hypergeometric matrix differential operators.

As the case of classical orthogonal polynomials, the families of matrix-valued
orthogonal polynomials satisfy many formal properties such as structural formulas
(see for instance [3,18,20,24,34]), which have been very useful to compute explicitly
the orthogonal polynomials relatedwith several of these families. Having these explicit
formulas is essential when one is looking for applications of these matrix-valued
bispectral polynomials, such as in the problem of time and band limiting over a non-
commutative ring and matrix-valued commuting operators, see [10–12,30–32].

Recently, in [4], a new family of matrix-valued orthogonal polynomials of size
2 × 2 was introduced, which are common eigenfunctions of a differential operator of
hypergeometric type (in the sense defined by Juan A. Tirao in [44]):

D = d2

dt2
t(1 − t) + d

dt
(C − tU ) − V , with U , V ,C ∈ C

2×2.

In particular, the polynomials (P(α,β,v)
n )n≥0 introduced in [4], orthogonal with

respect to the weight matrixW (α,β,v) given in (2.4) and (2.5), are common eigenfunc-
tions of an hypergeometric operator with matrix eigenvalues �n , which are diagonal
matrices with no repetition in their entries. This fact could be especially useful if
one intends to use this family of polynomials in the context of time and band limit-
ing, where the commutativity of the matrix-valued eigenvalues (�n)n could play an
important role.

In this paper, we give some structural formulas for the family of matrix-valued
orthogonal polynomials introduced in [4]. In particular, in Sect. 3, we give a Rodrigues
formula (see Theorem 3.1), which allows us to write this family of polynomials explic-
itly in terms of the classical Jacobi polynomials (see Corollary 3.3).

In Sect. 4, this Rodrigues formula allows us to compute the norms of the sequence
of monic orthogonal polynomials and therefore, we can find the coefficients of the
three-term recurrence relation and the Christoffel–Darboux identity for the sequence
of orthonormal polynomials.

In Sect. 5, we obtain a Pearson equation (see Proposition 5.4), which allows us
to prove that the sequence of derivatives of k-th order, k ≥ 1, of the orthogonal
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polynomials is also orthogonal with respect to the weight matrix given explicitly in
Proposition 5.3.

In Sect. 6, following the ideas in [34, Section 5.1], we use the Pearson equation to
give explicit lowering and rising operators for the sequence of derivatives. Thus, we
deduce aRodrigues formula for these polynomials andfind amatrix-valued differential
operator that has these matrix-valued polynomials as common eigenfunctions.

Finally, in Sect. 7, we describe the algebra of second-order differential operators
associated with the weight matrix W (α,β,v) given in (2.4) and (2.5). Indeed, for a
given weight matrix W , the analysis of the algebra D(W ) of all differential operators
that have a sequence of matrix-valued orthogonal polynomials with respect to W as
eigenfunctions has received much attention in the literature in the last fifteen years
[6,8,9,33,42,45,47]. While for classical orthogonal polynomials, the structure of this
algebra is very well-known (see [39]), in the matrix setting, where this algebra is
non-commutative, the situation is highly non-trivial.

2 Preliminaries

In this section, we give some background on matrix-valued orthogonal polynomials
(see [23] for further details). A weight matrix W is a complex N × N matrix-valued
integrable function on the interval (a, b), such thatW is positive definite almost every-
where and with finite moments of all orders, i.e.,

∫ b
a tndW (t) ∈ C

N×N , n ∈ N. The
weight matrix W induces a Hermitian sesquilinear form,

〈P, Q〉W =
∫ b

a
P(t)W (t) Q∗ (t) dt,

for any pair of N × N matrix-valued functions P(t) and Q(t), where Q∗(t) denotes
the conjugate transpose of Q(t).

A sequence (Pn)n≥0 of orthogonal polynomials with respect to a weight matrix
W is a sequence of matrix-valued polynomials satisfying that Pn(t), n ≥ 0, is a
matrix polynomial of degree nwith non-singular leading coefficient, and 〈Pn, Pm〉W =
�nδn,m , where �n , n ≥ 0, is a positive definite matrix. When �n = I , here I denotes
the identitymatrix, we say that the polynomials (Pn)n≥0 are orthonormal. In particular,
when the leading coefficient of Pn(t), n ≥ 0, is the identity matrix, we say that the
polynomials (Pn)n≥0 are monic.

Given a weight matrix W , there exists a unique sequence of monic orthogonal
polynomials (Pn)n≥0 in C

N×N [t], and any other sequence of orthogonal polynomials
(Qn)n≥0 can be written as Qn(t) = Kn Pn(t) for some non-singular matrix Kn .

Any sequence of monic orthogonal matrix-valued polynomials (Pn)n≥0 satisfies a
three-term recurrence relation

t Pn(t) = Pn+1(t) + Bn Pn(t) + An Pn−1(t), for n ∈ N0,

where P−1(t) = 0, P0(t) = I . The N ×N matrix coefficients An and Bn enjoy certain
properties; in particular, An is non-singular for any n.
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700 C. Calderón, M. M. Castro

TwoweightsW and W̃ are said to be equivalent if there exists a non-singular matrix
M , which does not depend on t , such that

W̃ (t) = MW (t)M∗, for all t ∈ (a, b).

A weight matrix W reduces to a smaller size if there exists a non-singular matrix M
such that

MW (t)M∗ =
(
W1(t) 0
0 W2(t)

)

, for all t ∈ (a, b),

where W1 and W2 are weights of smaller size. A weight matrix W is said to be
irreducible if it does not reduce to a smaller size (see [19,46]).

Let D be a right-hand side ordinary differential operator with matrix-valued poly-
nomial coefficients,

D =
s∑

i=0

∂ i Fi (t) , ∂ i = di

dt i
.

The operator D acts on a polynomial function P (t) as PD = ∑s
i=0 ∂ i PFi (t) .

We say that the differential operator D is symmetric with respect to W if

〈PD, Q〉W = 〈P, QD〉W , for all P, Q ∈ C
N×N [t]. (2.1)

The differential operator D = d2

dt2
F2(t)+ d

dt
F1(t)+ F0 is symmetric with respect

to W if and only if [19, Theorem 3.1]

F2W = WF∗
2 ,

2 (F2W )′ = F1W + WF∗
1 ,

(F2W )′′ − (F1W )′ = WF∗
0 − F0W , (2.2)

and

lim
t→a,b

F2 (t)W (t) = 0 and lim
t→a,b

(
F1 (t)W (t) − W (t) F∗

1 (t)
) = 0. (2.3)

We will need the following result to find the Rodrigues’ formula for the sequence
of orthogonal polynomials with respect to a weight matrix W .

Theorem 2.1 [18, Lemma 1.1] Let F2, F1 and F0 be matrix polynomials of degrees not
larger than 2, 1 , and 0, respectively. Let W , Rn be N × N matrix functions twice and
n times differentiable, respectively, in an open set of the real line�. Assume that W (t)
is non-singular for t ∈ � and that satisfies the identity and the differential equations
in (2.2). Define the functions Pn, n ≥ 1, by

Pn = R(n)
n W−1.
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If for a matrix �n, the function Rn satisfies

(
RnF

∗
2

)′′ −
(
Rn[F∗

1 + n
(
F∗
2

)′]
)′ + Rn[F∗

0 + n
(
F∗
1

)′ +
(
n
2

)
(
F∗
2

)′′ ] = �n Rn,

then the function Pn satisfies

P
′′
n (t) F2 (t) + P

′
n (t) F1 (t) + Pn (t) F0 (t) = �n Pn (t) .

2.1 The Family of Matrix-Valued Orthogonal Polynomials

In [4], the authors introduce a Jacobi-type weight matrixW (α,β,v) (t) and a differential
operator D(α,β,v) such that D(α,β,v) is symmetric with respect to the weight matrix
W (α,β,v) (t) .

Let α, β, v ∈ R, α, β > −1 and |α − β| < |v| < α + β + 2. We consider the
weight matrix function

W (α,β,v)(t) = tα (1 − t)β W̃ (α,β,v) (t) , for t ∈ (0, 1), (2.4)

with

W̃ (α,β,v) (t)

=

⎛

⎜
⎜
⎝

v(κv,β + 2)

κv,−β

t2 − (
κv,β + 2

)
t + (α + 1) (α + β + 2)t − (α + 1)

(α + β + 2)t − (α + 1) − v(κ−v,β + 2)

κ−v,−β

t2 − (
κ−v,β + 2

)
t + (α + 1)

⎞

⎟
⎟
⎠ ,

(2.5)

where for the sake of clearness in the rest of the paper, we use the notation:

κ±v,±β = α ± v ± β . (2.6)

W (α,β,v) is an irreducible weightmatrix and the hypergeometric-type differential oper-
ator given by

D(α,β,v) = d2

dt2
F2 (t) + d

dt
F1 (t) + F0 (t) , (2.7)

where
F2 (t) = t(1 − t), F1 (t) = C∗ − tU and F0 (t) = −V , (2.8)

and

C =
⎛

⎝
α + 1 − κ−v,−β

v

κv,−β

v

−κ−v,−β

v
α + 1 + κv,−β

v

⎞

⎠ , U = (α + β + 4) I and V =
(

v 0
0 0

)

,

(2.9)
is symmetric with respect to the weight matrix W (α,β,v).
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702 C. Calderón, M. M. Castro

In the same paper, the authors also give the corresponding monic orthogonal poly-
nomials in terms of the hypergeometric function 2H1 (C,U , V ; t) defined by J. A.
Tirao in [44] and their three-term recurrence relation.

Proposition 2.2 [4, Theorem 4.3] Let
(
P(α,β,v)
n

)

n≥0
be the sequence of matrix-valued

monic orthogonal polynomials associated with the weight function W (α,β,v)(t). Then,
P(α,β,v)
n is an eigenfunction of the differential operator D(α,β,v) with diagonal eigen-

value

�n =
(

λn 0
0 μn

)

,
λn = −n(n − 1) − n (α + β + 4) − v,

μn = −n(n − 1) − n (α + β + 4) .
(2.10)

Moreover, [4, Section 4.2], the matrix-valued monic orthogonal polynomials(
P(α,β,v)
n

)

n≥0
are given by

(
P(α,β,v)
n (t)

)∗ = 2H1 (C,U , V + λn I ; t) n! [C,U , V + λn I ]
−1
n

(
1 0
0 0

)

+ 2H1 (C,U , V + μn I ; t) n! [C,U , V + μn I ]
−1
n

(
0 0
0 1

)

,

(2.11)

where

2H1 (C,U , V ; t) =
∑

k≥0

[C,U , V ]k
tk

k! ,

and [C,U , V ]k is defined inductively as [C,U , V ]0 = I and

[C,U , V ]k+1 = (C + k I )−1 (k (k − 1) I + kU + V ) [C,U , V ]k . (2.12)

Proposition 2.3 [4, Theorem 3.12] The monic orthogonal polynomials
(
P(α,β,v)
n

)

n≥0
satisfy the three-term recurrence relation

t P(α,β,v)
n (t) = P(α,β,v)

n+1 (t) + B(α,β,v)
n P(α,β,v)

n (t) + A(α,β,v)
n P(α,β,v)

n−1 (t) (2.13)

where

A(α,β,v)
n = a(α,β,v)

n

((
4 + 2n + κ−v,β

) (
2n + κv,β

)
0

0
(
4 + 2n + κv,β

) (
2n + κ−v,β

)
)

,

(2.14)
with

a(α,β,v)
n

= n(1 + n + α)(1 + n + β)(2 + n + α + β)

(1 + 2n + α + β)(2 + 2n + α + β)2(3 + 2n + α + β)(2 + 2n + κ−v,β )(2 + 2n + κv,β )
, n ≥ 0,(2.15)
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and the entries of Bn = B(α,β,v)
n , n ≥ 0, are

(Bn)11 = −n
(α + n)v − κ−v,−β

(α + β + 2n + 2)v
+ (n + 1)

(α + n + 1)v − κ−v,−β

(α + β + 2n + 4)v
,

(Bn)21 = κv,−β

(
κ−v,β + 2

)

v
(
κ−v,β + 2 n + 2

) (
κ−v,β + 2 n + 4

) ,

(Bn)12 = −κ−v,−β

(
κv,β + 2

)

v
(
κv,β + 2 n + 2

) (
κv,β + 2 n + 4

) ,

(Bn)22 = −n
(α + n)v + κv,−β

(α + β + 2n + 2)v
+ (n + 1)

(α + n + 1)v + κv,−β

(α + β + 2n + 4)v
. (2.16)

Using the symmetry condition (2.1) and the three-term recurrence relation (2.13),
one can easily see that the coefficients A(α,β,v)

n and B(α,β,v)
n satisfy the identities:

A(α,β,v)
n

∥
∥
∥P

(α,β,v)
n−1 (t)

∥
∥
∥
2 =

∥
∥
∥P(α,β,v)

n (t)
∥
∥
∥
2
, (2.17)

(

B(α,β,v)
n

∥
∥
∥P(α,β,v)

n (t)
∥
∥
∥
2
)∗

= B(α,β,v)
n

∥
∥
∥P(α,β,v)

n (t)
∥
∥
∥
2
. (2.18)

3 Rodrigues Formula

In this section, we will provide a Rodrigues formula for the sequence of monic orthog-

onal polynomials
(
P(α,β,v)
n

)

n≥0
with respect to the weight matrix W = W (α,β,v) in

(2.4). Moreover, the Rodrigues formula will allow us to find an explicit expression for
the polynomials in terms of Jacobi polynomials.

Theorem 3.1 Consider the weight matrix W (t) = W (α,β,v)(t) given by the expression
in (2.4) and (2.5). Consider the matrix-valued functions (Pn)n≥0 and (Rn)n≥0 defined
by

Pn (t) = (Rn (t))(n) (W (t))−1 , (3.1)

Rn(t) = R(α,β,v)
n (t) = tn+α (1 − t)n+β

(
R(α,β,v)
n,2 t2 + R(α,β,v)

n,1 t + R(α,β,v)
n,0

)
,(3.2)

with

R(α,β,v)
n,2 = Rn,2 =

(
cn 0
0 dn

)

,

R(α,β,v)
n,1 = Rn,1 = 1

v

⎛

⎜
⎜
⎝

−cnκv,−β

cn(α + 2n + 2 + β)κv,−β(
κv,β + 2n + 2

)

−dn(α + 2n + 2 + β)κ−v,−β(
κ−v,β + 2n + 2

) dnκ−v,−β

⎞

⎟
⎟
⎠ ,
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704 C. Calderón, M. M. Castro

R(α,β,v)
n,0 = Rn,0 = 1 + n + α

v

⎛

⎜
⎝

cn
κv,−β(

κv,β + 2n + 2
) −cn

κv,−β(
κv,β + 2n + 2

)

dn
κ−v,−β(

κ−v,β + 2n + 2
) −dn

κ−v,−β(
κ−v,β + 2n + 2

)

⎞

⎟
⎠ ,

where (cn)n and (dn)n are arbitrary sequences of complex numbers. Then, Pn(t) is
a polynomial of degree n with non-singular leading coefficient equal to

⎛

⎜
⎜
⎝

κv,−β (α + β + n + 3)n
(−1)n v

(
κv,β + 2

) cn 0

0
κ−v,−β (α + β + n + 3)n
(−1)n+1 v

(
κ−v,β + 2

) dn

⎞

⎟
⎟
⎠ ,

where (a)n = a(a+1) . . . (a+n−1)denotes the usualPochhammer symbol.Moreover,
if we put

cn = (−1)n v
(
κv,β + 2

)

κv,−β (α + β + n + 3)n
, dn = (−1)n+1 v

(
κ−v,β + 2

)

κ−v,−β (α + β + n + 3)n
, (3.3)

then (Pn)n≥0 is a sequence of monic orthogonal polynomials with respect to W and

Pn = P(α,β,v)
n .

Proof Let W be the weight matrix given in (2.4) and F2, F1, F0 and �n are the
polynomials coefficients defined in (2.8)–(2.10).

Following straightforward computations, we can prove that the matrix-valued func-
tion Rn(t) satisfies the equation

(
RnF

∗
2

)′′ −
(
Rn[F∗

1 + n
(
F∗
2

)′]
)′ + Rn[F∗

0 + n
(
F∗
1

)′ +
(
n
2

)
(
F∗
2

)′′ ] = �n Rn .

Theorem 2.1 guarantees that the function Pn (t) = (Rn (t))n (W (t))−1 is an eigen-
function of D(α,β,v) with eigenvalue �n given in (2.10). Then, P

(α,β,v)
n (t) and Pn (t)

satisfy the same differential equation.
We will prove that Pn is a polynomial of degree n with non-singular leading coeffi-

cient.Wewill use the following Rodrigues formula for the classical Jacobi polynomial
p(α,β)
n (t) [43, Chapter IV]

dn

dtn
[
tn+α (1 − t)n+β

] = n!tα (1 − t)β p(α,β)
n (1 − 2t),

where

p(α,β)
n (1 − 2t) = � (n + α + 1)

n!� (n + α + β + 1)

n∑

j=0

(
n
j

)
� (n + α + β + 1 + j)

� ( j + α + 1)
(−1) j t j .

(3.4)
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Thus, we obtain

R(n)
n (t) = n!tα (1 − t)β

(
p(α+2,β)
n (1 − 2t)Rn,2t

2

+p(α+1,β)
n (1 − 2t)Rn,1t + p(α,β)

n (1 − 2t)Rn,0

)
.

We can rewrite (W (t))−1 as

(W (t))−1 = t−α−2 (1 − t)−β−2
(
J2t

2 + J1t + J0
)

,

with

J2 =
⎛

⎜
⎝

κv,−β

v(κv,β + 2)
0

0 − κ−v,−β

v(κ−v,β + 2)

⎞

⎟
⎠ , J0 = −κv,−βκ−v,−β(α + 1)

v2(κv,β + 2)(κ−v,β + 2)

(
1 1
1 1

)

,

J1 = κv,−βκ−v,−β

v2

⎛

⎜
⎜
⎝

1

(κv,β + 2)

(α + β + 2)

(κv,β + 2)(κ−v,β + 2)
(α + β + 2)

(κv,β + 2)(κ−v,β + 2)

1

(κ−v,β + 2)

⎞

⎟
⎟
⎠ .

Observe that Rn,0 J0 = 0. Thus, Pn (t) becomes

Pn (t) = n!t−1 (1 − t)−2
[
p(α+2,β)
n (1 − 2t)Rn,2t

(
J2t

2 + J1t + J0
)

+p(α+1,β)
n (1 − 2t)Rn,1

(
J2t

2 + J1t + J0
)

+ p(α,β)
n (1 − 2t)Rn,0 (J2t + J1) ] .

Hence, Pn (t) is a polynomial of degree n if and only if t = 0 and t = 1 are zeros of
the following polynomial

Q (t) = p(α+2,β)
n (1 − 2t)Rn,2t

(
J2t

2 + J1t + J0
)

+ p(α+1,β)
n (1 − 2t)Rn,1

(
J2t

2 + J1t + J0
)

+p(α,β)
n (1 − 2t)Rn,0 (J2t + J1)

and t = 1 has multiplicity two, i.e., Q (0) = Q (1) = Q′ (1) = 0.

Taking into account that p(α,β)
n (1) = � (n + α + 1)

n!� (α + 1)
and p(α,β)

n (−1) = (−1)n

� (n + β + 1)

n!� (β + 1)
, we have

Q (0) = p(α+1,β)
n (1)Rn,1 J0 + p(α,β)

n (1)Rn,0 J1

= � (n + α + 1)

n!� (α + 1)

(
n + α + 1

α + 1
Rn,1 J0 + Rn,0 J1

)

= 0,
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706 C. Calderón, M. M. Castro

Q (1) = (−1)n
� (n + β + 1)

n!� (β + 1)
(Rn,2 + Rn,1 + Rn,0) (J2 + J1 + J0) = 0.

Now, by taking derivative of Q (t) with respect to t and considering the identity

(
p(α,β)
n

)′
(−1) = (β + α + n + 1) (−1)n−1 � (n + β + 1)

2 (n − 1)!� (β + 2) ,

we obtain

Q′ (1) = −2

((
p(α+2,β)
n

)′
(−1)Rn,2 +

(
p(α+1,β)
n

)′
(−1)Rn,1

+
(
p(α,β)
n

)′
(−1)Rn,0

)

(J2 + J1 + J0)

+p(α+2,β)
n (−1)Rn,2 (3J2 + 2J1 + J0)

+p(α+1,β)
n (−1)Rn,1 (2J2 + J1) + p(α,β)

n (−1)Rn,0 J2 = 0.

This shows that Q (t) is divisible by t (t − 1)2 therefore, Pn (t) is a polynomial of
degree n since deg (Q(t)) = n + 3.

Observe that the leading coefficient of Pn (t) is determined by the leading coefficient
of
n!p(α+2,β)

n (1 − 2t)Rn,2 J2t4. Considering (3.4), we have

(−1)n � (2n + α + β + 3)

� (n + α + β + 3)
Rn,2 J2

= (−1)n (α + β + n + 3)n
v

⎛

⎜
⎝

κv,−β

κv,β + 2
cn 0

0 − κ−v,−β

κ−v,β + 2
dn

⎞

⎟
⎠ .

The previous matrix coefficient is non-singular since |α − β| < |v| < α + β + 2.
Moreover, if (3.3) holds true, then Pn (t) is a monic polynomial and equal to

P(α,β,v)
n (t). 	


Corollary 3.2 Consider the weight matrix W (α,β,v)(t) given in (2.4) and (2.5). Then,
the monic orthogonal polynomials P(α,β,v)

n (t) satisfy the Rodrigues formula

P(α,β,v)
n (t) = (R(α,β,v)

n (t))(n)
(
W (α,β,v)(t)

)−1
.

We can see in the proof of Theorem 3.1 that Rodrigues’ formula allows us to find an
explicit expression for the polynomials in terms of the classical Jacobi polynomials.

Corollary 3.3 Consider the matrix-valued function W̃ (α,β,v)(t) given in (2.5) and let
R(α,β,v)
n,i , i = 0, 1, 2, be as in Theorem 3.1. Define the coefficients cn and dn as in
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(3.3). Then, the sequence of monic orthogonal polynomials (Pn)n≥0 , defined by (3.1)
can be written as

Pn (t) = n!
(
p(α+2,β)
n (1 − 2t)R(α,β,v)

n,2 t2 + p(α+1,β)
n (1 − 2t)R(α,β,v)

n,1 t

+p(α,β)
n (1 − 2t)R(α,β,v)

n,0

)
(W̃ (α,β,v) (t))−1. (3.5)

Moreover,

Pn (t) = n!
(
p(α,β)
n (1 − 2t)C (α,β,v)

n,2 + p(α,β)
n+1 (1 − 2t)C (α,β,v)

n,1

+p(α,β)
n+2 (1 − 2t)C (α,β,v)

n,0

)
(W̃ (α,β,v) (t))−1, (3.6)

with

C
(α,β,v)
n,2 = (β + n + 1) (α + n + 1)

(α + β + 2n + 2) (α + β + 2n + 3)

⎛

⎜
⎜
⎜
⎝

cn
(
κ−v,β + 2n + 4

)

κv,β + 2n + 2
0

0
dn

(
κv,β + 2n + 4

)

κ−v,β + 2n + 2

⎞

⎟
⎟
⎟
⎠

,

C
(α,β,v)
n,1 = n + 1

v

⎛

⎜
⎜
⎜
⎝

(α − β)
(
κ−v,β + 2n + 4

)
cn

(α + β + 2n + 2) (α + β + 2n + 4)
− cnκv,−β

κv,β + 2n + 2
dnκ−v,−β

κ−v,β + 2n + 2
− (α − β)

(
κv,β + 2n + 4

)
dn

(α + β + 2n + 2) (α + β + 2n + 4)

⎞

⎟
⎟
⎟
⎠

,

C
(α,β,v)
n,0 = (n + 1) (n + 2)

(α + β + 2n + 4) (α + β + 2n + 3)

(
cn 0
0 dn

)

.

Proof The expression in (3.5) follows from the proof above and to obtain (3.6), we
use the following property for the classical Jacobi polynomials p(α,β)

n (t) [43, Section
4.5]:

p(α+1,β)
n (1 − 2t) = (n + α + 1) p(α,β)

n (1 − 2t) − (n + 1) p(α,β)
n+1 (1 − 2t)

(2n + α + β + 2)t

in (3.5). 	


4 Orthonormal Polynomials

In this section, we give an explicit expression for the norm of the matrix-valued

polynomials
(
P(α,β,v)
n

)

n≥0
. In addition, for the sequence of orthonormal polynomials,

we show the three-term recurrence relation and the Christoffel–Darboux formula,
introduced for a general sequence of matrix-valued orthogonal polynomials in [14]
(see also [23]).
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Proposition 4.1 The norm of the monic orthogonal polynomials P(α,β,v)
n (t), n ≥ 0,

is determined by

∥
∥
∥P(α,β,v)

n

∥
∥
∥
2 = n!vB (α + n + 2, β + n + 2)

(α + n + 3 + β)n

⎛

⎜
⎜
⎜
⎝

(
κv,β + 2

) (
κ−v,β + 2n + 4

)

κv,−β

(
κv,β + 2n + 2

) 0

0 −
(
κ−v,β + 2

) (
κv,β + 2n + 4

)

κ−v,−β

(
κ−v,β + 2n + 2

)

⎞

⎟
⎟
⎟
⎠

.

(4.1)
Therefore, the sequence of polynomials

P̃(α,β,v)
n (t) =

∥
∥
∥P(α,β,v)

n

∥
∥
∥

−1
P(α,β,v)
n (t)

is orthonormal with respect to W .

Proof Let P(α,β,v)
n (t) = ∑n

k=0 Pk
n t

k; using Rodrigues’ formula, we have

‖P(α,β,v)
n ‖2 =

∫ 1

0
P(α,β,v)
n (t)W (t)

(
P(α,β,v)
n (t)

)∗
dt

=
n∑

k=0

∫ 1

0
(Rn (t))(n)

(
Pk
n

)∗
tkdt .

Integrating by parts n times, we have,

∥
∥
∥P(α,β,v)

n

∥
∥
∥
2 = (−1)n

n∑

k=0

∫ 1

0
Rn (t)

dn

dtn

(
Pk
n

)∗
tkdt

= (−1)n
∫ 1

0
Rn (t)

dn

dtn
tndt

= (−1)n n!
∫ 1

0
Rn (t) dt

= (−1)n n!
∫ 1

0
tn+α (1 − t)n+β

(
Rn,2t

2 + Rn,1t + Rn,0

)
dt

= (−1)n n! [B (α + n + 3, β + n + 1) Rn,2

+B (α + n + 2, β + n + 1) Rn,1

+B (α + n + 1, β + n + 1) Rn,0
]
,

where B (x, y) = ∫ 1
0 t x−1 (1 − t)y−1 dt is the Beta function. Using the following

property,

B (x + 1, y) = x

x + y
B (x, y)

we obtain,

∥
∥
∥P(α,β,v)

n

∥
∥
∥
2 = (−1)n n!B (α + n + 1, β + n + 1)
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(
(α + n + 1) (α + n + 2)

(α + β + 2n + 2) (α + β + 2n + 3)
Rn,2 + α + n + 1

α + β + 2n + 2
Rn,1 + Rn,0

)

.

Using the expressions in (3.2), after some straightforward computations, we complete
the proof. 	


The sequence of orthonormal polynomials satisfies the following properties.

Proposition 4.2 The orthonormal polynomials
(
P̃(α,β,v)
n

)

n≥0
satisfy the three-term

recurrence relation

t P̃(α,β,v)
n (t) = Ã(α,β,v)

n+1 P̃(α,β,v)
n+1 (t) + B̃(α,β,v)

n P̃(α,β,v)
n (t) +

(
Ã(α,β,v)
n

)∗
P̃(α,β,v)
n−1 (t),

(4.2)
with

Ã(α,β,v)
n+1 =

∥
∥
∥P(α,β,v)

n

∥
∥
∥

−1 ∥
∥
∥P

(α,β,v)
n+1

∥
∥
∥ ,

B̃(α,β,v)
n =

∥
∥
∥P(α,β,v)

n

∥
∥
∥

−1
B(α,β,v)
n

∥
∥
∥P(α,β,v)

n

∥
∥
∥ ,

where B(α,β,v)
n is the coefficient of the three-term recurrence relation for the monic

orthogonal polynomials
(
P(α,β,v)
n

)

n≥0
(2.13). Clearly, B̃(α,β,v)

n is a symmetric matrix.

Proof By replacing the identity P̃(α,β,v)
n (t) =

∥
∥
∥P

(α,β,v)
n

∥
∥
∥

−1
P(α,β,v)
n (t) in the three-

term recurrence relation (2.13) and using identity (2.17), we obtain (4.2), and by (2.18)
one verifies that(
B̃(α,β,v)
n

)∗ = B̃(α,β,v)
n . 	


We also have the following Christoffel–Darboux formula for the sequence of

orthonormal polynomials
(
P̃(α,β,v)
n

)

n≥0
:

n∑

k=0

(
P̃(α,β,v)
k

)∗
(y) P̃(α,β,v)

k (x) =
(
P̃(α,β,v)
n

)∗
(y)

(
Ã(α,β,v)
n+1

)∗
P̃(α,β,v)
n+1 (x)

x − y

−
(
P̃(α,β,v)
n+1

)∗
(y) Ã(α,β,v)

n+1 P̃(α,β,v)
n (x)

x − y
.

Hence, the sequence of monic polynomials
(
P(α,β,v)
n

)

n≥0
satisfies

n∑

k=0

(
P(α,β,v)
k

)∗
(y)

∥
∥
∥P

(α,β,v)
k

∥
∥
∥

−2
P(α,β,v)
k (x)
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=
(
P(α,β,v)
n

)∗
(y)

∥
∥
∥P

(α,β,v)
n

∥
∥
∥

−2
P(α,β,v)
n+1 (x)

x − y

−
(
P(α,β,v)
n+1

)∗
(y)

∥
∥
∥P

(α,β,v)
n

∥
∥
∥

−2
P(α,β,v)
n (x)

x − y
,

where the explicit expression of
∥
∥
∥P

(α,β,v)
n

∥
∥
∥

−2
follows from (4.1).

5 The Derivatives of the Orthogonal Matrix-Valued Polynomials

In this section, we prove that polynomials in the sequence of derivatives of the orthog-

onal matrix polynomials
(
P(α,β,v)
n

)

n≥0
are also orthogonal by obtaining a Pearson

equation for the weight matrix W (α,β,v)(t).

Let
dk

dtk
P(α,β,v)
n (t) be the derivative of order k of themonic polynomial P(α,β,v)

n (t),

for n ≥ k. Then,

P(α,β,v,k)
n (t) = (n − k)!

n!
dk

dtk
P(α,β,v)
n (t) (5.1)

are monic polynomials of degree n − k for all n ≥ k.
The polynomial P(α,β,v)

n (t) is an eigenfunction of the operator D(α,β,v) given above
in (2.7)–(2.9).

Taking derivative k times, we have that P(α,β,v,k)
n (t) is an eigenfunction of the

differential hypergeometric operator

D(k) = D(α,β,v,k) = d2

dt2
t(1 − t) + d

dt
((C (k))∗ − tU (k)) − V , (5.2)

with
C (k) = C + k I , U (k) = U + 2k I = (α + β + 4 + 2k) I,

where C , U and V are the matrix entries of the operator D(α,β,v) given in (2.9). One
has that

P(α,β,v,k)
n D(α,β,v,k) = �(k)

n P(α,β,v,k)
n , n ≥ k,

where �
(k)
n = �n + kU + k(k − 1)I , with �n given in (2.10). One has, in particular,

the standard expression for the eigenvalue shown in [4, Proposition 3.3], �
(k)
n =

−(n − k)(n − k − 1)I − (n − k)U (k) − V . More explicitly,

�(k)
n =

(
λ

(k)
n 0
0 μ

(k)
n

)

,
λ

(k)
n = −(n − k) (α + β + 3 + n + k) − v,

μ
(k)
n = −(n − k) (α + β + 3 + n + k) .

(5.3)
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Remark 5.1 One notices that D(α,β,v,k) = D(α+k,β+k,v). Thus, the sequence of deriva-
tives are still common eigenfunctions of an hypergeometric operator with diagonal
matrix eigenvalues �

(k)
n , with no repetition in their entries.

Proposition 5.2 As in (2.11),we have the following explicit expression for the sequence

of polynomials
(
P(α,β,v,k)
n

)

n≥k
in terms of hypergeometric functions

(
P(α,β,v,k)
n (t)

)∗ = 2H1

(
C (k),U (k), V + λ(k)

n I ; t
)

(n − k)!
[
C (k),U (k), V + λ(k)

n I
]−1

n−k

(
1 0
0 0

)

+ 2H1

(
C (k),U (k), V + μ(k)

n I ; t
)

(n − k)!
[
C (k),U (k), V + μ(k)

n I
]−1

n−k

(
0 0
0 1

)

, (5.4)

where C (k), U (k) and V are the entries of the differential operator in (5.2) and λ
(k)
n

and μ
(k)
n are the diagonal entries of the matrix eigenvalue �

(k)
n given in (5.3).

We include the proof for completeness.

Proof Indeed, the polynomials
(
P(α,β,v,k)
n

)

n≥k
are common eigenfuntions of the

matrix hypergeometric-type operator (5.2) with diagonal eigenvalue �
(k)
n .

The fact that the eigenvalue is diagonal implies that the matrix equation can be
written as two vectorial hypergeometric equations as in [44, Theorem 5], and the

solutions of these equations are the columns of
(
P(α,β,v,k)
n

)

n≥k
. Since the eigenvalues

of the matrices C (k), 3 + α + k and 1 + α + k are nonnegative integers for all k ≥ 1,
then these solutions are hypergeometric vector functions.

Moreover, the vectorial functions are polynomials of degree n − k since the

form of the factor
(
(n − k)(n − k − 1)I + (n − k)U (k) + V + λ

(k)
n I

)
= −�

(k)
n +

λ
(k)
n I appearing in the expression of

[
C (k),U (k), V + λ

(k)
n I

]

n−k+1
(see 2.12),

makes its first column equal to zero. Analogously for the second column of[
C (k),U (k), V + μ

(k)
n I

]

n−k+1
.

Thematrices
[
C (k),U (k), V + μ

(k)
n I

]

n−k
and

[
C (k),U (k), V + λ

(k)
n I

]

n−k
are non-

singular, since λ
(k)
q �= μ

(k)
� , λ(k)

q �= λ
(k)
� and μ

(k)
q �= μ

(k)
� for all q �= �. 	


Proposition 5.3 Let α, β > −(k + 1) and |α − β| < |v| < α + β + 2 (k + 1). We
write

W (k)(t) = W (α,β,v,k)(t) = tα+k (1 − t)β+k W̃ (α,β,v,k) (t) ,where

W̃ (α,β,v,k) (t) = W (k)
2 t2 + W (k)

1 t + W (k)
0 , (5.5)
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with

W (k)
2 = v

⎛

⎜
⎜
⎝

κv,β + 2 (k + 1)

κv,−β

0

0 −κ−v,β + 2(k + 1)

κ−v,−β

⎞

⎟
⎟
⎠ , W (k)

0 = (α + k + 1)

(
1 −1

−1 1.

)

,

W (k)
1 =

(−κv,β α + β

α + β −κ−v,β

)

+ 2 (k + 1)

(
1 1
1 1

)

.

Then, W (k) is an irreducible weight matrix and the differential hypergeometric oper-
ator D(k) in (5.2 ) is symmetric with respect to the weight matrix W (k). Moreover, it
holds that W (k)(t) = W (α+k,β+k,v)(t).

Proof Taking into account Remark 5.1 and the fact that W (k)(t) = W (α+k,β+k,v)(t),
from Proposition 4.1 in [4], one has that D(α+k,β+k,v) is symmetric with respect to
W (α+k,β+k,v) and W (α+k,β+k,v) is an irreducible weight matrix if and only if α + k
and β + k satisfy α + k > −1, β + k > −1 and | (α + k) − (β + k) | < |v| <

(α + k) + (β + k) + 2. 	

We will use the following Pearson equation to prove that the sequence of polyno-

mials
(
P(α,β,v,k)
n

)

n≥k
is orthogonal with respect to W (k).

Theorem 5.4 The weight matrix W (k) satisfies the following Pearson equation:

(
W (k) (t)(k) (t)

)′ = W (k) (t)�(k) (t) , k ∈ N, with

(k) (t) = A k
2 t

2 + A k
1 t + A k

0 and �(k) (t) = Bk
1 t + Bk

0, (5.6)

where

A k
2 =

⎛

⎜
⎜
⎝

−κv,β + 2(k + 2)

κv,β + 2(k + 1)
0

0 −κ−v,β + 2(k + 2)

κ−v,β + 2(k + 1)

⎞

⎟
⎟
⎠ , (5.7)

A k
1 = 2

(κ−v,β + 2(k + 1))(κv,β + 2(k + 1))

(
0 κv,−β

κ−v,−β 0

)

− A k
2 , (5.8)

A k
0 = κv,−βκ−v,−β

v(κ−v,β + 2(k + 1))(κv,β + 2(k + 1))

(−1 1
−1 1

)

, (5.9)

Bk
1 = (α + β + 4 + 2k)A k

2 , (5.10)

Bk
0 =

(

−(α + k + 1)I − 1

v

(−κ−v,−β 0
0 κv,−β

))

A k
2

+ 1

2v

(
α + β + 2k + 4

v
A k

1 + Bk
1

)(−κ−v,β − 2(k + 1) 0
0 κv,β + 2(k + 1)

)

.

(5.11)
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Proof By replacing the expression of (k) (t) and �(k) (t) in (5.6) and taking deriva-
tive, we obtain

(
W (k) (t)

)′ (
A k

2 t
2 + A k

1 t + A k
0

)
− W (k) (t)

((
Bk

1 − 2A k
2

)
t + Bk

0 − A k
1

)
= 0.

(5.12)
The derivative of W (k) (t) is

(
W (k) (t)

)′ = −tα+k−1 (1 − t)β+k−1 (α + β + 2k + 2)W (k)
2 t3 + (α + k)W (k)

0

+
[
(α + k + 2)W (k)

2 − (α + β + 2k + 1)W (k)
1

]
t2

+
[
(α + k + 1)W (k)

1 − (α + β + 2k)W (k)
0

]
t .

Hence, the left-hand side of (5.12) is a product between a polynomial of degree five
and
t (α+k−1) (1 − t)(β+k−1) . Therefore, equating to zero the entries of this polynomial,
taking into account (5.10) and the equality W (k)

0 A k
0 = 0, it only remains to verify the

identities below, which follow immediately by straightforward computations.

(α + k + 4)W (k)
2 A k

2 − (α + β + 2k + 3)
(
W (k)

2 A k
1 + W (k)

1 A k
2

)

+W (k)
2

(
Bk

0 − Bk
1

)
+ W (k)

1 Bk
1 = 0,

(α + k + 3)
(
W (k)

2 A k
1 + W (k)

1 A k
2

)
− (α + β + 2k + 2)

(
W (k)

2 A k
0 + W (k)

1 A k
1

)
− W (k)

2 Bk
0

+W (k)
1

(
Bk

0 − Bk
1

)
+ 2W (k)

0 A k
2 = 0,

(α + k + 2)
(
W (k)

2 A k
0 + W (k)

1 A k
1 + W (k)

0 A k
2

)

− (α + β + 2k + 1)
(
W (k)

1 A k
0 + W (k)

0 A k
1

)

−W (k)
1 Bk

0 + W (k)
0

(
Bk

0 − Bk
1

)
= 0,

(α + k + 1)
(
W (k)

1 A k
0 + W (k)

0 A k
1

)
− W (k)

0 Bk
0 = 0.

	

Remark 5.5 Let us consider the matrix-valued functions W (α,β,v,k) (t) = W (k)(t),
(k)(t) and �(k)(t), k ∈ N, defined in (5.5) and Theorem 5.4, respectively. Then, by
straightforward computations, one can verify the following identities:

W (α,β,v,k+1) (t) = W (α,β,v,k) (t)(k) (t) , (5.13)
(
W (α,β,v,k+1) (t)

)′ = W (α,β,v,k) (t)�(k) (t) . (5.14)
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Taking into account that deg
(
(k)(t)

) = 2 and deg
(
�(k)(t)

) = 1, we obtain from
[5, Corollary 3.10] the following:

Corollary 5.6 The sequence of polynomials
(
P(α,β,v,k)
n

)

n≥k
is orthogonal with respect

to the weight matrix W (k) = W (α,β,v,k−1) (t)(k−1) (t) .

The following results are obtained in a similar way than in Theorem 3.1 and Corol-
lary 3.3.

Proposition 5.7 Let W (k)(t) be defined as in (5.5). A Rodrigues formula for the

sequence of polynomials
(
P(α,β,v,k)
n

)

n≥k
is

P(α,β,v,k)
n (t) =

(
R(α,β,v,k)
n (t)

)(n−k) (
W (k) (t)

)−1
, where

R(α,β,v,k)
n (t) = R(α+k,β+k,v)

n−k (t) .

Corollary 5.8 Let thematrix-valued functionW (k)(t),and thematrices R(α,β,v)
n−k,2 , R(α,β,v)

n−k,1

and R(α,β,v)
n−k,0 be defined as in (5.5) and (3.2). From the Rodrigues formula, we get the

explicit expressions for the sequence of polynomials
(
P(α,β,v,k)
n

)

n≥k
in terms of the

classical Jacobi polynomials p(α,β)
n (t),

P(α,β,v,k)
n (t) = (n − k)!

(
p(α+2+k,β+k)
n−k (1 − 2t)R(α+k,β+k,v)

n−k,2 t2

+p(α+1+k,β+k)
n−k (1 − 2t)R(α+k,β+k,v)

n−k,1 t

+p(α+k,β+k)
n−k (1 − 2t)R(α+k,β+k,v)

n−k,0

) (
W̃ (k)

)−1

and

P(α,β,v,k)
n (t) = (n − k)!

(
p(α+k,β+k)
n−k (1 − 2t)C (α+k,β+k,v)

n−k,2

+p(α+k,β+k)
n−k+1 (1 − 2t)C (α+k,β+k,v)

n−k,1

+p(α+k,β+k)
n−k+2 (1 − 2t)C (α+k,β+k,v)

n−k,0

) (
W̃ (k)

)−1
,

with C (α+k,β+k,v)
n−k,i , i = 0, 1, 2, given by (3.6).

Proposition 5.9 The orthogonal monic polynomials
(
P(α,β,v,k)
n

)

n≥k
satisfy the three-

term recurrence relation

t P(α,β,v,k)
n (t) = P(α,β,v,k)

n+1 (t) + B(α,β,v,k)
n P(α,β,v,k)

n (t) + A(α,β,v,k)
n P(α,β,v,k)

n−1 (t)

with
B(α,β,v,k)
n = B(α+k,β+k,v)

n−k , A(α,β,v,k)
n = A(α+k,β+k,v)

n−k , n ≥ k.
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The explicit expressions of B(α,β,v)
n and A(α,β,v)

n are given in (2.14)-(2.16).

Considering that W (k)(t) = W (α+k,β+k,v)(t) (see Proposition 5.3), the previous
recurrence follows directly from (2.3). Notwithstanding, we include the following
proof for completeness.

Proof If we write P(α,β,v,k)
n (t) = ∑n−k

s=0 Ps
n−k t

s , from (5.4), we have the following
explicit expressions,

Pn−k−1
n−k = (n − k)

v

⎛

⎜
⎜
⎝

− (α + n)v − κ−v,−β

(α + β + 2n + 2)

κ−v,−β

(κv,β + 2n + 2)

− κv,−β

(κ−v,β + 2n + 2)
− (α + n)v + κ−v,−β

(α + β + 2n + 2)

⎞

⎟
⎟
⎠ , (5.15)

Pn−k−2
n−k = (n − k) (n − k − 1) (α + n + 1)

(α + β + 2n + 2)

[
α + n

2(α + β + 2n + 1)
⎛

⎜
⎜
⎝

κv,β + 2n

κv,β + 2n + 2
0

0
κ−v,β + 2n

κ−v,β + 2n + 2

⎞

⎟
⎟
⎠

+ n + β + 1

α + β + 2n + 1

⎛

⎜
⎜
⎝

1

κv,β + 2n + 2
0

0
1

κ−v,β + 2n + 2

⎞

⎟
⎟
⎠ (5.16)

+ 1

v

⎛

⎜
⎜
⎝

− α − β

(κv,β + 2n + 2)
− κ−v,−β

κv,β + 2n + 2
κv,−β

κ−v,β + 2n + 2

α − β

(κ−v,β + 2n + 2)

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦ . (5.17)

If we consider the coefficient of order n−k and n−k−1 in the three-term recurrence
relation, we have,

B(α,β,v,k)
n = Pn−k−1

n−k − Pn−k−1
n+1−k ,

A(α,β,v,k)
n = Pn−k−2

n−k − Pn−k−1
n+1−k − B(α,β,v,k)

n Pn−k−1
n−k , n ∈ N,

respectively. Comparing with the expressions of B(α+k,β+k,v)
n−k and A(α+k,β+k,v)

n−k given
by substituting properly in (2.14)-(2.16), the proposition follows. 	


6 Shift Operators

In this section, we use Pearson equation (5.6) to give explicit lowering and rising
operators for the monic n-degree polynomials P(α,β,v,k)

n+k (t), n ≥ 0, defined in (5.1).
Moreover, from the existence of the shift operators, we deduce a Rodrigues formula

for the sequence of derivatives
(
P(α,β,v,k)
n+k

)

n≥0
, and we find a matrix-valued differen-

tial operator for which these matrix-valued polynomials are eigenfunctions. In what
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follows, we will consider the matrix-valued functions W (k) (t) ,(k) (t) and �(k) (t),
k ∈ N as defined in Theorem 5.4.

For any pair of matrix-valued functions P and Q, we denote

〈P, Q〉k =
∫ 1

0
P (t)W (k) (t) Q∗ (t) dt .

Proposition 6.1 Let η(k) be the first-order matrix-valued right differential operator

η(k) = d

dt
((k) (t))∗ + (�(k) (t))∗. (6.1)

Then,
d

dt
: L2

(
W (k)

) → L2
(
W (k+1)

)
and ηk : L2

(
W (k+1)

) → L2
(
W (k)

)
satisfy

〈
dP

dt
, Q

〉

k+1
= −

〈
P, Qη(k)

〉

k
.

Proof From

〈
dP

dt
, Q

〉

k+1
=

∫ 1

0

dP(t)

dt
W (k+1)(t)Q∗(t)dt, integrating by parts and

taking into account equalities (5.13) and (5.14) in Remark 5.5, we get,

〈
dP

dt
, Q

〉

k+1
= −

∫ 1

0
P(t)

d

dt

(
W (t)(k+1)

)
Q∗(t)dt −

∫ 1

0
P(t)W (k+1)(t)

(
dQ(t)

dt

)∗
dt

= −
∫ 1

0
P(t)W (k)(t)�(k)(t)Q∗(t)dt −

∫ 1

0
P(t)W (k)(t)(k)(t)

(
dQ(t)

dt

)∗
dt

= −
∫ 1

0
P(t)W (k)(t)

(

�(k) (t) Q∗(t) + (k) (t)

(
dQ(t)

dt

)∗)
Q∗(t)dt

= −
〈
P, Qη(k)

〉

k
.

	

Lemma 6.2 The following identity holds true

Iη(k+n−1) · · · η(k+1)η(k) = Ckn P(α,β,v,k)
n+k , n ≥ 1,

for a given k ≥ 0, where

Ckn = (−1)n (α + β + 3 + 2k + n)n⎛

⎜
⎜
⎜
⎝

(
κv,β + 2(k + 1 + n)

)

(
κv,β + 2(k + 1)

) 0

0

(
κ−v,β + 2(k + 1 + n)

)

(
κ−v,β + 2(k + 1)

)

⎞

⎟
⎟
⎟
⎠

,

n ≥ 1. (6.2)
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Proof It holds that Iη(k+n−1) · · · η(k+1)η(k) is a polynomial of degree n. From the
definition of the monic sequence of derivatives in (5.1), one has

d

dt
P(α,β,v,k)
n+k (t) = nP(α,β,v,k+1)

n+k (t) .

Thus, Proposition 6.1 implies that P(α,β,v,k+1)
n+k η(k) is a multiple of P(α,β,v,k)

n+k .

Therefore, applying the raising operators η(k+n−1) · · · η(k+1)η(k) to P(α,β,v,k+n)
n+k =

I , we get a multiple of P(α,β,v,k)
n+k . For the leading coefficient Ck

n of the polynomial
Iη(k+n−1) · · · η(k+1)η(k), one obtains the expression

Ckn =
n∏

i=1

(
(i − 1)A k+n−i

2 + Bk+n−i
1

)
.

The diagonal matrix entries A k
2 and Bk

1 are defined in (5.7) and (5.10). Then, by
replacing Bk

1 = (α + β + 4 + 2k)A k
2 in the identity above, we have

Ckn =
n∏

i=1

(
(2n + α + β + 3 + 2k − i)A k+n−i

2

)

= (−1)n
n∏

i=1

(2n + α + β + 3 + 2k − i)

⎛

⎜
⎜
⎝

∏n
i=1

(
κv,β + 2(k + n − i + 2)

)

κv,β + 2(k + n − i + 1)
0

0
∏n

i=1

(
κ−v,β + 2(k + n − i + 2)

)

κ−v,β + 2(k + n − i + 1)

⎞

⎟
⎟
⎠ .

Hence, the proof follows.
Note that Ckn is non-singular since |α − β| < |v| < α + β + 2 (k + 1) . 	

From the proposition and the lemma above, we obtain another expression for the

Rodrigues formula.

Proposition 6.3 The polynomials
(
P(α,β,v,k)
n+k

)

n≥0
satisfy the following Rodrigues for-

mula:

P(α,β,v,k)
n+k (t) =

(
Ckn

)−1
(
dn

dtn
W (k+n) (t)

)(
W (k) (t)

)−1
, n ≥ 1,

where the matrices Ckn are given by the expression in (6.2).

Proof Let Q be a matrix-valued function and η(k) the raising operator in (6.1), then

Qη(k) = dQ

dt
((k))∗ + Q(�(k))∗.
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Using the identities (5.13) and (5.14), we obtain

Qη(k) = d

dt

(
QW (k+1)

) (
W (k)

)−1
.

Iterating, it gives

Qη(k+n−1) · · · η(k+1)η(k) = dn

dtn

(
QW (k+n)

) (
W (k)

)−1
.

Now, taking Q (t) = I and using Lemma 6.2 we have

P(α,β,v,k)
n+k (t) =

(
Ckn

)−1 dn

dtn

(
W (k+n)(t)

) (
W (k)(t)

)−1
.

	

Corollary 6.4 Let W (k) (t) be the weight matrix (5.5). Then, the differential operator

E (k) = d

dt
◦ η(k) = d2

dt2
((k) (t))∗ + d

dt
(�(k) (t))∗ (6.3)

is symmetric with respect to W (k) (t) for all k ∈ N0. Moreover, the polynomials(
P(α,β,v,k)
n+k

)

n≥0
are eigenfunctions of the operator E (k) with eigenvalue

�n

(
E (k)

)
= n(n + α + β + 3 + 2k)A k

2 ,

where A k
2 is given by (5.7).

Proof From Proposition 6.1 and the factorization E (k) = d

dt
◦ η(k), it follows directly

that E (k) is symmetric with respect to W (k).

The eigenvalue is obtained by looking at the leading coefficients of (k)(t) and
�(k)(t) in (5.6). Thus, we obtain �n

(
E (k)

) = n (n − 1)A k
2 +nBk

1 = n(n+α +β +
3 + 2k)A k

2 . 	

Remark 6.5 The operators E (k) and D(k) in (5.2) commute. This result follows from
the fact that the corresponding eigenvalues�n

(
E (k)

)
and�

(k)
n+k in (5.3) commute, and

the linear map that assigns to each differential operator in the algebra of differential
operators D(W (k)) its corresponding sequence of eigenvalues, is an isomorphism (see
[33, Propositions 2.6 and 2.8]).

Remark 6.6 The Darboux transform Ẽ (k) = η(k) ◦ d

dt
of the operator E (k) is not

symmetric with respect to W (k). Moreover, it is symmetric with respect to W (k+1).

Indeed,

η(k) ◦ d

dt
= d2

dt2

(
(k) (t)

)∗ + d

dt

(
d

dt

(
(k) (t)

)∗ + d

dt

(
�(k) (t)

)∗) + d

dt

(
�(k) (t)

)∗
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= d2

dt2

(
A k

2 t
2 + A k

1 t + A k
0

)∗ + d

dt

((
2A k

2 + Bk
1

)
t + A k

1 + Bk
0

)∗ + (Bk
1)

∗.

In fact, if we substitute the coefficient of the second derivative in the first symmetry
condition in (2.2), we obtain

W (k)(t)
(
A k

2 t
2 + A k

1 t + A k
0

)
=

(
A k

2 t
2 + A k

1 t + A k
0

)∗
W (k) (t) ,

which does not hold. Taking the main coefficient W (k)
2 of W̃ (α,β,v,k) in (5.5), one has

in particular

Wk
2A

k
1 −

(
A k

1

)∗
Wk

2 = 4v(α + β + 2(k + 1))
(
κ−v,β + 2(k + 1)

)
(κv,β + 2(k + 1))

(
0 1

−1 0

)

�= 0.

The second statement follows from Proposition 6.1.

7 The AlgebraD (W)

In this section, we will discuss some properties of the structure of the algebra of matrix
differential operators having as eigenfunctions a sequence of polynomials (Pn)n≥0,
orthogonal with respect to the weight matrix W = W (α,β,v), i.e.,

D (W ) =
{
D : PnD = �n (D) Pn, �n (D) ∈ C

N×N for all n ≥ 0
}

.

The definition of D(W ) does not depend on the particular sequence of orthogonal
polynomials (see [33, Corollary 2.5]).

Theorem 7.1 Consider the weight matrix function W = W (α,β,v)(t). Then, the differ-
ential operators of order at most two in D(W ) are of the form

D = d2

dt2

(
A2t

2 + A1t + A0

)
+ d

dt
(B1t + B0) + C0, (7.1)

where

A2 =
(
a c
b d

)

, a, b, c, d ∈ C,

A1 = 1

2v

[( −2va (a − d)κ−v,−β

(a − d)κv,−β −2vd

)

+ bκ−v,−β

(−1 0
2 1

)

+ cκv,−β

(−1 −2
0 1

)]

,

A0 = (a − d)κv,−βκ−v,−β + bκ2−v,−β − cκ2
v,−β

4v2

(−1 −1
1 1

)

,

B1 =
(
a (α + β + 4)

(
κ−v,β + 4

)
c(

κv,β + 4
)
b (α + β + 4) d

)

,
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B0 = 1

4v

[

a

(−4((α + 1)v − κ−v,−β) κ−v,−β

(
κ−v,β + 6

)

κv,−β

(
κv,β + 2

)
0

)

+bκ−v,−β

(− (
κv,β + 2

)
0

2
(
κv,β + 4

)
κv,β + 6

)

+ cκv,−β

(− (
κ−v,β + 6

) −2
(
κ−v,β + 4

)

0 κ−v,β + 2

)

+ d

(
0 −κ−v,−β

(
κ−v,β + 2

)

−κv,−β

(
κv,β + 6

) −4((α + 1)v + κv,−β)

)]

,

C0 = 1

4
(κv,β + 4)(κv,β + 2)

⎛

⎝a

(
κ−v,β + 4

)

κv,β + 4
− d

κ−v,β + 2

κv,β + 2
c

(
κ−v,β + 4

)
(κ−v,β + 2)

(κv,β + 4)(κv,β + 2)
b 0

⎞

⎠ + eI , e ∈ C.

Proof Let
(
P(α,β,v)
n

)

n≥0
be the monic sequence of orthogonal polynomials with

respect to W (α,β,v). The polynomial P(α,β,v)
n is an eigenfunction of the operator D

(7.1) if
P(α,β,v)
n D = �n P

(α,β,v)
n ,

with �n = n (n − 1)A2 + nB1 + C0. This equation holds if and only if

k(k − 1)Pk
nA2 + (k + 1)kPk+1

n A1 + (k + 2) (k + 1)Pk+2
n A0 + kPk

nB1

+ (k + 1)Pk+1
n B0 + Pk

nC0 − (n (n − 1)A2 + nB1 + C0)Pk
n = 0,

(7.2)

where Pk
n denotes de k − th coefficient of Pn, k = 0, 1, 2, . . . n.

To prove the theorem, we need to solve equation (7.2) for k = n − 1 and
k = n − 2 to find relations between the parameters of the matrix-valued coefficients
A2,A1,A0,B1,B0 and C0.

We obtain the explicit expressions of Pn−1
n and Pn−2

n by substituting k = 0 in the
equalities (5.15) and (5.16), respectively.

From equation (7.2) for k = n − 1, we get

(
Pn−1
n �n − �nPn−1

n

)
− Pn−1

n (2 (n − 1) A2 + B1) + [n (n − 1) A1 + nB0] = 0.

(7.3)

Multiplying equation (7.3) by

v (α + β + 2 (n + 1))
(
κv,β + 2 (n + 1)

) (
κ−v,β + 2 (n + 1)

)

n
,

one obtains a matrix polynomial on n of degree four, where each coefficient must be
equal to zero. From the expression of the coefficient of n4, we get the expression for
A1 given above, and from the expression of the coefficient of n3, we get B0 in terms
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of A2 and B1. Looking at the entries (1, 1) , (1, 2) and (2, 2) of the coefficient of n2

and the fact that κv,−β and κ−v,−β are nonzero, we get (C0)12 , (C0)11 and (B1)12,
respectively, in terms of A2 and the other entries of C0 and B1. Finally, looking at the
coefficient of n, we get the values of (B1)11 , (B1)21 , (B1)22 and (C0)21; consequently,
we obtain the values of B1, B0 and C0 written above.

Analogously, from equation (7.2) for k = n − 2, we obtain

(
Pn−2
n �n−2 − �nPn−2

n

)
+ (n − 1)Pn−1

n ((n − 2) A1 + B0) + n (n − 1) A0 = 0.

(7.4)
Multiplying equation (7.4) by

v2(α + β + 2n + 1)(α + β + 2 (n + 1))(κv,β + 2 (n + 1))

(κv,β + α + β + 2 (2n + 1))(κ−v,β + α + β + 2 (2n + 1))(κ−v,β + 2 (n + 1)),

one obtains a matrix polynomial on n of degree eight, where each coefficient must be
equal to zero. We get the expression of A0 from the coefficient of n8.

Thus, if we replace the expressions of A0, A1, B1, B0 and the entries (1, 1) ,

(1, 2) and (2, 1) of C0 in (7.3) and (7.4), both equations hold true.
Let D2 be the complex vector space of differential operators in D(W ) of order at

most two. We have already proved that dimD2 ≤ 5.
If D is symmetric, then D ∈ D (W ). Using symmetry equations in (2.2), one

verifies that the operator D in (7.1) is symmetric with respect to W if and only if
a, d, e ∈ R and condition

b
κv,β + 2

κv,−β

= −c
κ−v,β + 2

κ−v,−β

(7.5)

holds true. Indeed, writing W (t) = W (α,β,v) = W2t2 + W1t + W0, from the first
equation of symmetry in (2.2), we have that W2A∗

2 − A2W2 = 0, i.e.,

⎛

⎜
⎜
⎝

2Im (a)
(κv,β + 2)

κv,−β

−b
(κv,β + 2)

κv,−β

− c
(κ−v,β + 2)

κ−v,−β

b
(κv,β + 2)

κv,−β

+ c
(κ−v,β + 2)

κ−v,−β

−2Im (d)
(κv,β + 2)

κ−v,−β

⎞

⎟
⎟
⎠ = 0, (7.6)

where Im(z) denotes the imaginary part of a complex number z. Then, since κv,β +2 >

0 because of the restrictions of the parameters α, β and v in the definition of W (α,β,v)

in (2.4), to verify (7.6), one needs to have a, d ∈ R and condition (7.5).
In addition, from the third symmetry equation (2.2), we have that e ∈ R. Thus,

there exists at least five linearly independent symmetric operators of order at most two
in D(W ). Therefore, dimD2 = 5. 	


123



722 C. Calderón, M. M. Castro

By taking as the only nonzero parameters a = 1 and d = 1, respectively, in the
expression of the operator in (7.1), we write the operators:

D1 = d2

dt2

⎡

⎣

⎛

⎝
t2 − t

κ−v,−β

2v
t

κv,−β

2v
t 0

⎞

⎠ + κv,−βκ−v,−β

4v2

(−1 −1
1 1

)
⎤

⎦

+ d

dt

⎛

⎜
⎝

(α + β + 4) t + κ−v,−β

v
− (α + 1)

κ−v,−β

(
κ−v,β + 6

)

4v
κv,−β

(
κv,β + 2

)

4v
0

⎞

⎟
⎠

+
⎛

⎝

(
κ−v,β + 4

) (
κv,β + 2

)

4
0

0 0

⎞

⎠ ,

D2 = d2

dt2

⎡

⎣

⎛

⎝
0 −κ−v,−β

2v
t

−κv,−β

2v
t t2 − t

⎞

⎠ − κ−v,−βκv,−β

4v2

(−1 −1
1 1

)
⎤

⎦

+ d

dt

⎛

⎜
⎝

0 −κ−v,−β(κ−v,β + 2)

4v

−κv,−β

(
κv,β + 6

)

4v
(α + β + 4) t − κv,−β

v
− (α + 1)

⎞

⎟
⎠

+
(

−1

4

(
κv,β + 4

) (
κ−v,β + 2

)
0

0 0

)

.

Analogously, by choosing as nonzero parameters c = 1, b = −κv,−β(κ−v,β + 2)

κ−v,−β(κv,β + 2)
and

c = i ,

b = i
κv,−β(κ−v,β + 2)

κ−v,−β(κv,β + 2)
, respectively, we define the operators:

D3 = d2

dt2

⎧
⎪⎨

⎪⎩

⎛

⎝
0 1

− κv,−β(κ−v,β + 2)

κ−v,−β(κv,β + 2)
0

⎞

⎠ t2 + κv,−β

κv,β + 2

⎡

⎢
⎣

⎛

⎜
⎝

−1 − κv,β + 2

v

− κ−v,β + 2

v
1

⎞

⎟
⎠ t

+ 1

2

(
(α + β + 2)(α − β)

v2
+ 1

)(
1 1

−1 −1

)]}

+ d

dt

⎡

⎣

⎛

⎝
0 κ−v,β + 4

− κv,−β(κ−v,β + 2)(κv,β + 4)

κ−v,−β(κv,β + 2)
0

⎞

⎠ t

+ κv,−β

v

⎛

⎜
⎜
⎝

−1 − (κ−v,β + 4)

2

− (κv,β + 4)(κ−v,β + 2)

2(κv,β + 2)
− κ−v,β + 2

κv,β + 2

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

+ 1

4
(κ−v,β + 2)

⎛

⎝
0 κ−v,β + 4

− (κv,β + 4)κv,−β

κ−v,−β
0

⎞

⎠ ,
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i D4 = d2

dt2

⎧
⎨

⎩

⎛

⎝
0 −1

− κv,−β(κ−v,β + 2)

κ−v,−β(κv,β + 2)
0

⎞

⎠ t2 + κv,−β

v(κv,β + 2)

[(
α + β + 2 κv,β + 2

−(κ−v,β + 2) −(α + β + 2)

)

t

−(α + 1)

(
1 1

−1 −1

)]}

+ d

dt

⎡

⎣

⎛

⎝
0 −(κ−v,β + 4)

− κv,−β(κ−v,β + 2)(κv,β + 4)

κ−v,−β(κv,β + 2)
0

⎞

⎠ t

+ κv,−β

2v

⎛

⎝
κ−v,β + 4 κ−v,β + 4

− (κv,β + 4)(κ−v,β + 2)

(κv,β + 2)
− (κv,β + 4)(κ−v,β + 2)

(κv,β + 2)

⎞

⎠

⎤

⎦

− κ−v,β + 2

4

⎛

⎝
0 κ−v,β + 4

(κv,β + 4)κv,−β

κ−v,−β
0

⎞

⎠ .

One has the following:

Corollary 7.2 The set of symmetric operators {D1, D2, D3, D4, I } is a basis of the
space of differential operators of order at most two in D(W ). Moreover, the corre-
sponding eigenvalues for the differential operators D1, D2, D3 and D4 are

�n (D1) = 1

4

((
κv,β + 2(n + 1)

) (
κ−v,β + 2(n + 2)

)
0

0 0

)

,

�n (D2) =
(

−1

4

(
κ−v,β + 2

) (
κv,β + 4

)
0

0 (n + α + β + 3) n

)

,

�n (D3) = 1

4

(
κ−v,β + 2(1 + n)

) (
κ−v,β + 2(2 + n)

)
(
0 1
0 0

)

−
(
κv,β + 2(1 + n)

) (
κv,β + 2(2 + n)

) (
κ−v,β + 2

)
κv,−β

4κ−v,−β

(
κv,β + 2

)
(
0 0
1 0

)

,

�n (i D4) = −1

4

(
κ−v,β + 2(1 + n)

) (
κ−v,β + 2(2 + n)

)
(
0 1
0 0

)

−
(
κv,β + 2(1 + n)

) (
κv,β + 2(2 + n)

) (
κ−v,β + 2

)
κv,−β

4κ−v,−β

(
κv,β + 2

)
(
0 0
1 0

)

.

Corollary 7.3 The differential operators appearing in (2.7) and (6.3) are D(α,β,v) =
−D1 − D2 and E (0) = −κv,β + 4

κv,β + 2
D1 − κ−v,β + 4

κ−v,β + 2
D2 respectively.

Corollary 7.4 There are no operators of order one in the algebra D(W).

Proof Suppose that there exists a right differential operator of order one, such that
D = aD1 + bD2 + cD3 + d(i D4) + eI , with a, b, c, d, e ∈ R. Equating to zero the
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matrix-valued coefficient of
d2

dt2
, one obtains:

⎛

⎝
a c − di

−κv,−β

(
κ−v,β + 2

)

κ−v,−β

(
κv,β + 2

) (c + di) b

⎞

⎠ = 0.

Therefore a = b = c = d = 0. 	


Corollary 7.5 The algebra D (W ) is not commutative.

Proof Using the isomorphism between the algebra of differential operators and the
algebra of matrix-valued functions of n generated by the eigenvalues going with this
operators, we have that D1D3 �= D3D1 since �n (D1) �n (D3) �= �n (D3) �n (D1).

	


Remark 7.6 In [42], the authors study the algebra D
(
W (p,q)

)
, where W (p,q) is, for

p �= q

2
, the irreducible weight matrix

W (p,q)(t)

= (t (1 − t))

q − 2

2

⎛

⎝
2pt2 − 2pt + q

2
qt − q

2
qt − q

2
−2 (p − q) t2 + 2 (p − q) t + q

2

⎞

⎠ , t ∈ [0, 1].

Let us denote by D(p,q)
1 , D(p,q)

2 , D(p,q)
3 and D(p,q)

4 the differential operators appearing

in [42]. Then, taking α = β = q

2
− 1 in (2.4) and writing v = 2p − q,

we have the following relations with the operators Di , i = 1, 2, 3, 4, defined
above:

D(p,q)
1 = D1, D(p,q)

2 = D2 + (q − p) (p + 1) I ,

D(p,q)
3 = p

2(q − p)
(D3 + i D4) , D(p,q)

4 = 1

2
(D3 − i D4) .
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