
AI-Driven Web API Testing
Alberto Martin-Lopez
Universidad de Sevilla

Seville, Spain
amarlop@us.es

ABSTRACT

Testing of web APIs is nowadays more critical than ever before, 
as they are the current standard for software integration. A bug 
in an organization’s web API could have a huge impact both in-
ternally (services relying on that API) and externally (third-party 
applications and end users). Most existing tools and testing ap-
proaches require writing tests or instrumenting the system under 
test (SUT). The main aim of this dissertation is to take web API 
testing to an unprecedented level of automation and thoroughness. 
To this end, we plan to apply artificial intelligence (AI) techniques 
for the autonomous detection of software failures. Specifically, the 
idea is to develop intelligent programs (we call them “bots”) ca-
pable of generating hundreds, thousands or even millions of test 
inputs and to evaluate whether the test outputs are correct based 
on: 1) patterns learned from previous executions of the SUT; and 2) 
knowledge gained from analyzing thousands of similar programs. 
Evaluation results of our initial prototype are promising, with bugs 
being automatically detected in some real-world APIs.

KEYWORDS:

Web API,

RESTful API,

testing framework,

automated software testing, 

artificial intelligence

1 INTRODUCTION

Web APIs enable the consumption of services and data over the 
network, typically using web services, each of which exposes one 
or more endpoints. An endpoint accepts requests and returns re-
sponses, usually over HTTP, and allows to perform operations (e.g. 
translate a text) or access a particular piece of information (e.g. a

photo). Modern web APIs generally adhere to the REpresentational

State Transfer (REST) architectural style [24], being referred to as

RESTful web APIs. RESTful web APIs are usually decomposed into

multiple RESTful web services [31], each of which implements one

or more create, read, update or delete (CRUD) operations over a

specific resource (e.g. a song in the Spotify API).

As web APIs become the preferred choice for the seamless in-

tegration of heterogeneous software systems, their validation be-

comes more critical than ever before. A bug in an organization’s

API could have a huge impact both internally (services relying on

that API) and externally (third-party applications and end users).

Multiple works have addressed the problem of testing web services

based on SOAP [1] or WSDL [2], technologies increasingly in dis-

use nowadays. However, few of them have addressed the unique

characteristics of RESTful APIs, which are the current de facto

standard. According to ProgrammableWeb [8], a popular API repos-

itory, more than 80% (14,903 out of 18,279) of the APIs recorded

in its directory up to November 2017 are RESTful APIs. It is on

this account that this dissertation revolves mainly around RESTful

API testing. More specifically, we focus on APIs described with the

OpenAPI Specification (OAS) [6], which is the industry standard

for RESTful API design. Nevertheless, we aspire our contributions

to be general enough to be applicable to other types of web services

and API specification languages (e.g. RAML [12]).

Some of the current approaches of RESTful API testing involve

the tester in the task of writing tests, thereby hindering automation.

Other approaches require the instrumentation of the SUT, which

may hinder their adoption. A number of techniques achieve a high

degree of automation, but fail at generating test cases that are com-

plex enough to exercise deep functionality of the program, which

hinders thoroughness. Moreover, some papers focus on white-box

testing, however, source code of web APIs is not always available,

and so these techniques cannot always be applied. Lastly, to the best

of our knowledge, no previous work has yet attempted to leverage

AI techniques (other than search-based) in the context of web API

testing. More and more testing companies such as Applitools [4]

and test.ai [13] (the latter founded by Jason Arbon, ex lead tester

at Google) are betting on AI as the next revolution for automating

software tests (in these cases, UI and mobile testing, respectively).

Our proposal seeks to address all these issues, reaching an un-

precedented level of automation and thoroughness. We plan to

develop a specification-driven testing framework for the automated

generation of complex test cases for web APIs. We intend to use

AI for the autonomous detection of software failures. Specifically,

our aim is to develop intelligent programs (called “bots”) capable

of generating hundreds, thousands or even millions of test inputs

following a model-based approach, where the API specification will

drive the generation of test data using a variety of testing tech-

niques (e.g. combinatorial, search-based and metamorphic testing).



The test outputs will also be automatically evaluated based on:

1) patterns learned from previous executions of the SUT; and 2)

knowledge gained from analyzing thousands of similar programs.

This testing framework could be offered as a service, opening a new

range of business opportunities. For example, API providers could

have their APIs automatically tested and pay depending on the type

of service contracted (e.g. 24/7 testing or 100% test coverage).

2 RELATEDWORK

Numerous authors have addressed the testing of Service-Oriented

Architectures (SOA) in general and web services in particular. Sur-

veys on the topic [17, 18] point out that this issue started to gain

attention with the popularization of service-centric systems. How-

ever, most papers focus on SOAP web services andWSDL, technolo-

gies that have fallen in disuse and are nowadays being displaced

by more modern alternatives such as REST or GraphQL [5].

Regarding RESTful web services testing, multiple tools and li-

braries are available in the market, including Postman [7], REST

Assured [10], ReadyAPI [9] and API Fortress [3]. These tools allow

to create and execute test cases as complex as desired, nevertheless,

these must be written by the tester, which hinders automation.

From an academic point of view, RESTful API testing has re-

ceived less attention than SOA testing, but interest has been contin-

uously increasing over the last decade. Several works have proposed

domain-specific languages [19, 30], formal notations [20] and frame-

works [22] for the description of test cases or service specifications.

Other approaches rely on manually defined models of the system

or models of the test data format from which test cases can be auto-

matically generated [16, 23, 25, 29]. However, such domain-specific

tools and model-based approaches may suffer from usability prob-

lems and adoption in industry, since the tester must familiarize

with them instead of using already-known standards. Furthermore,

these and other techniques such as [14, 33] can still be improved in

terms of automation, since the tester must usually perform some

preliminary task or instrument the SUT prior to the generation and

execution of test cases. On the other hand, some works leverage

the OAS document of the API to automate the testing process. For

instance, Ed-Douibi et al. [21] automatically generated test cases for

91 APIs and Atlidakis et al. [15] developed an autonomous fuzzer

for OAS-based APIs. While both techniques succeeded in finding

real faults, there is room for improvement in the way they generate

input test data: the first approach mainly uses default values and

in the second the user must manually define valid values for each

data type. The lack of complex test data may lead to a lack of thor-

oughness in the automatically generated test suites. Lastly, a few

approaches focus on white-box testing of RESTful APIs [14, 34].

Nevertheless, source code of web APIs is not always available, and

so these techniques cannot always be applied.

3 PROBLEM

The hypothesis that motivates this PhD can be described as follows:

It is possible to apply AI techniques to detect software failures in

web APIs in an autonomous way, increasing testing effectiveness and

significantly reducing its cost, through less human intervention. This

hypothesis leads us to address the following research questions:

RQ1: Is it possible to thoroughly test RESTful APIs just us-

ing their formal specification? Current API design languages

such as OAS or RAML provide a structured way to describe a REST-

ful API in a both human- and machine-readable way, allowing to

automatically generate source code or documentation, for instance.

However, it is unclear to what extent the specification can be used

to automate the generation of complex test cases that exercise deep

functionality of the API. We aim to further investigate this issue.

RQ2: Which advanced testing techniques are best suited for

testing web APIs?Web APIs pose challenges in testing that no

other systems do. For instance, in the context of search-based test-

ing, if source code is not available, which fitness functions are more

effective for driving the generation of test data? Furthermore, most

techniques focus on the generation of test inputs and disregard

the oracle problem, which is prominent in these kinds of systems.

In this sense, metamorphic testing stands out as an alternative to

approach this issue.

RQ3: How can AI support web API testing? The potential of

AI in web API testing is very much unknown, as it has hardly been

used in this context. AI could free human testers from several tasks,

for instance: 1) multiple resources from the API such as the docu-

mentation or the issue tracking system could be used to generate

more meaningful test cases; 2) natural language processing could

be used to infer useful parameter values based on the parameter de-

scriptions; 3) new realistic test cases could be created by analyzing

real calls to the service. The potential applications of AI and their

challenges will be one of the main research lines of this dissertation.

RQ4: Is it possible to offer continuous Testing as a Service

(TaaS) for web APIs? The popularization of DevOps in recent

years is fostering a shift towards the use of tools that provide con-

tinuous and autonomous building, testing and deployment. Further-

more, Software nowadays is predominantly provided as a Service

(SaaS). In this scenario, we envision the need of a testing framework

for web APIs that fulfills these two aspects. Ideally, the framework

should offer 24/7 testing and the reporting of bugs and API coverage

should be accessible as a service. Companies such as API Fortress

[3] already offer a similar service, however, we aim to provide a

higher level of automation, personalization, efficacy and efficiency.

4 OBJECTIVE

The main goal of this dissertation is to apply AI techniques for the

autonomous detection of failures in web APIs, including input test

data generation and output evaluation (oracle). We strongly believe

that this work can improve or complement existing web API testing

tools and approaches in several ways. Firstly, our proposal is the

first to integrate a model-based approach with a variety of testing

techniques; for example, there may be APIs where combinatorial

testing is more suited, e.g. an API with a high number of parameters,

and others where data perturbationmay bemore effective, if the API

input is a complex JSON object. Secondly, most approaches focus on

the generation of inputs, but that is only half of the problem; we plan

to address the evaluation of outputs as well. Thirdly, the application

of AI techniques will ideally allow to automate the full process,

as opposed to most approaches that require human intervention.

Finally, we aim to provide continuous TaaS with a much higher



Figure 1: High level architecture of the testing framework.

degree of automation and personalization than the current offerings,

which will open a new range of business opportunities.

5 WORKING PLAN AND PRELIMINARY
RESULTS

We have set ourselves a long-term and ambitious goal. Therefore,

we plan to divide it into four main milestones, each one closely

related to one of the research questions previously posed. Each of

the milestones is expected to materialize in the form of multiple

publications and artifacts (e.g. tools and datasets). Figure 1 depicts

the overall architecture of the testing framework we plan to imple-

ment, where we have divided the testing process into six phases.

Each milestone will address one or more of these phases.

The research described in this paper started in October 2018 and

is estimated to end in June 2022 (four years). At the time of writing

this paper (October 2019), we find ourselves in the second year of

the PhD, so we have fully addressed the first contribution and are

working on the second one.

Model-based specification-driven testing of RESTful APIs

(1st year). This contribution naturally results from answering RQ1.

After some preliminary tests, we found that it is generally infeasi-

ble to create test cases only with the API specification, as it lacks

key information such as authorization data (e.g. API keys). This

led us to implement a model-based testing prototype [11], partly

addressing steps 1 to 4 of Figure 1. Step 1 refers to the creation

of a test configuration file where to include all key information

needed to generate test cases. This includes authorization data, pa-

rameter values, inter-parameter dependencies [26] and parameter

weights (i.e. what parameters must be tested more thoroughly).

In step 2, test cases are automatically generated based on the API

specification and the test configuration file, so far using random

and boundary values for the input parameters. These test cases are

domain-independent, i.e. they can be instantiated in any framework

(step 3). In our case, we use REST Assured [10]. Finally, the test

cases are run and the API responses are asserted (step 4); the frame-

work provides a GUI for the visualization of bugs and API coverage.

Figure 2: GUI of the testing framework.

Figure 2 shows a screenshot of the GUI, taken after continuously

generating test cases for a real API (Bikewise)1 during 42 days.

More than 4,000 randomly generated test cases were executed, 865

of which made the system fail, showing the presence of bugs in 3

out of 4 paths in the API (errors 500 and 502).

Aiming to compare our testing framework to others, we noticed

the lack in the literature of a standard model for the assessment and

comparison of RESTful API testing techniques. For this reason, we

created a catalogue of test coverage criteria for RESTful APIs and

arranged them into multiple coverage levels, constituting what we

call a Test Coverage Model (TCM). The TCM provides a common

framework that authors can use to compare their work to others.

This contribution was published at an international workshop [28].

When automatically generating test cases, we realized that many

of them were invalid due to the presence of inter-parameter depen-

dencies in some API operations, which cannot be formally specified

inOAS2.We reviewed the state of practice on 40 real-world APIs and

eventually found that this phenomenon is extremely common. We

published this contribution at an international conference [26] as

1https://bikewise.org
2https://github.com/OAI/OpenAPI-Specification/issues/256



well as the resulting dataset [27]. We are now developing a domain-

specific language (DSL) and a constraint programming-aided tool

for the specification and automated analysis of these dependencies.

This information will then be included in the test configuration file

so that valid test cases can be automatically generated.

Automatic generation of test cases (2nd year). This contribu-

tion seeks to answer RQ2 and is mainly concerned with phase 2

of Figure 1. The goal is to implement several techniques for the

generation of input test data and oracles and evaluate them. Among

others, we plan to integrate the following testing techniques in the

framework: 1) search-based testing: the coverage criteria defined in

our previous contribution [28] can be used as the fitness function; 2)

data perturbation: we are currently defining JSON mutation opera-

tors with two purposes: a) input data can be generated by perturbing

original JSON request bodies, and b) test suites can be evaluated

by mutating the specification of the API, i.e. the JSON response

bodies; 3) metamorphic testing: we have designed an approach for

the automated generation of metamorphic relations based on the

API specification and the patterns defined in a previous work from

our research group [32].

AI-driven testing of RESTful APIs (3rd year). This contribu-

tion seeks to answer RQ3. Once that test inputs and oracles are

automatically generated, we plan to keep improving and automat-

ing other aspects of the testing process as much as possible. This

refers to steps 5 and 6 in Figure 1.

In step 5, API requests and responses are monitored aiming

to identify two main patterns: invariants and metamorphic rela-

tions. Invariants are request-response patterns that always hold,

e.g. “when using parameter X in some operation, the response al-

ways contains the property Y”. Metamorphic relations are relations

between two or more API requests and responses, e.g. “when invok-

ing some operation and then invoking the same operation using

parameter X, the result of the second call must be a subset of the

first one”. The identification of these patterns will hopefully help

detect previously unknown bugs.

In step 6, the knowledge gained by the bots is used to automate

manual tasks, namely the tuning of the test configuration file and

some aspects of the generation of test cases. For example, we en-

vision that inter-parameter dependencies could be automatically

inferred only by monitoring real calls to the service, based on what

calls are successful and which are erroneous and why. Moreover,

meaningful and realistic values for parameters could be generated

by processing their description in natural language (extracted from

the API documentation) or by perturbing original values from pre-

vious executions.

Continuous Testing as a Service (TaaS) of RESTful APIs (4th

year). This contribution seeks to answer RQ4. Once the process

is fully automated, we intend to evaluate the effectiveness of the

framework in a more realistic environment. To this end, we plan

to select a number of real-world industrial APIs (e.g. YouTube and

Spotify) and perform 24/7 testing on them with the aim of finding

bugs in a completely autonomous way. Once we ascertain the va-

lidity of the framework, we aim to deploy it in a publicly accessible

server and offer its capabilities as a service to other API providers,

opening a new range of business opportunities.

ACKNOWLEDGMENTS

This work has been partially supported by the European Com-

mission (FEDER) and Spanish Government under projects BELI

(TIN2015-70560-R) and HORATIO (RTI2018-101204-B-C21), and

the FPU scholarship program, granted by the Spanish Ministry of

Education and Vocational Training (FPU17/04077).

REFERENCES
[1] 2007. Simple Object Access Protocol (SOAP) Version 1.2. https://www.w3.org/TR/

soap12-part0/
[2] 2007. Web Services Description Language (WSDL) Version 2.0. https://www.w3.

org/TR/wsdl20/
[3] 2019. API Fortress. https://apifortress.com
[4] 2019. Applitools. https://applitools.com
[5] 2019. GraphQL. https://graphql.org
[6] 2019. OpenAPI Specification. https://www.openapis.org
[7] 2019. Postman. https://getpostman.com
[8] 2019. ProgrammableWeb. https://www.programmableweb.com
[9] 2019. ReadyAPI. https://smartbear.com/product/ready-api/overview/
[10] 2019. REST Assured. https://rest-assured.io
[11] 2019. RESTest. https://github.com/isa-group/RESTest
[12] 2019. RESTful API Modeling Language (RAML). https://raml.org
[13] 2019. test.ai. https://test.ai
[14] A. Arcuri. 2019. RESTful API Automated Test Case Generation with EvoMaster.

ACM Trans. on Software Engineering and Methodology 28, 1 (2019), 3.
[15] V. Atlidakis, P. Godefroid, and M. Polishchuk. 2019. RESTler: Stateful REST API

Fuzzing. In Intern. Conference on Software Engineering. 748–758.
[16] C. Benac, L. Fredlund, A. Herranz, and J. Mariño. 2014. Jsongen: A QuickCheck

Based Library for Testing JSON Web Services. In ACM SIGPLAN Workshop on
Erlang. 33–41.

[17] M. Bozkurt, M. Harman, and Y. Hassoun. 2013. Testing and Verification in Service-
Oriented Architecture: A Survey. Software Testing, Verification and Reliability 23,
4 (2013), 261–313.

[18] G. Canfora and M. Di Penta. 2006. Service-Oriented Architectures Testing: A
Survey. In Software Engineering. Springer, 78–105.

[19] S. K. Chakrabarti and P. Kumar. 2009. Test-the-REST: An Approach to Test-
ing RESTful Web-Services. In Computation World: Future Computing, Service
Computation, Cognitive, Adaptive, Content, Patterns. 302–308.

[20] S. K. Chakrabarti and R. Rodriquez. 2010. Connectedness Testing of RESTful
Web-Services. In India Software Engineering Conference. 143–152.

[21] H. Ed-douibi, J.L.C. Izquierdo, and J. Cabot. 2018. Automatic Generation of
Test Cases for REST APIs: A Specification-Based Approach. In IEEE 22nd Intern.
Enterprise Distributed Object Computing Conference. 181–190.

[22] J. Edstrom and E. Tilevich. 2015. Improving the Survivability of RESTful Web
Applications via Declarative Fault Tolerance. Concurrency and Computation:
Practice and Experience 27, 12 (2015), 3108–3125.

[23] T. Fertig and P. Braun. 2015. Model-Driven Testing of RESTful APIs. In Intern.
Conference on World Wide Web. 1497–1502.

[24] R. T. Fielding. 2000. Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. Dissertation.

[25] P. Lamela, H. Li, and S. Thompson. 2013. Towards Property-Based Testing of
RESTful Web Services. In ACM SIGPLAN Workshop on Erlang. 33–41.

[26] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés. 2019. A Catalogue of Inter-
Parameter Dependencies in RESTful Web APIs. In Intern. Conference on Service-
Oriented Computing. 399–414.

[27] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés. 2019. Inter-Parameter Depen-
dencies in RESTful APIs [Dataset]. https://bit.ly/2wvv1m1

[28] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés. 2019. Test Coverage Criteria for
RESTful Web APIs. In ACM SIGSOFT Intern. Workshop on Automating TEST Case
Design, Selection, and Evaluation. 15–21.

[29] P. V. P. Pinheiro, A. T. Endo, and A. Simao. 2013. Model-Based Testing of RESTful
Web Services Using UML Protocol State Machines. In Brazilian Workshop on
Systematic and Automated Software Testing. 1–10.

[30] H. Reza and D. Van Gilst. 2010. A Framework for Testing RESTful Web Services.
In Intern. Conference on Information Technology: New Generations. 216–221.

[31] L. Richardson, M. Amundsen, and S. Ruby. 2013. RESTful Web APIs. O’Reilly
Media, Inc.

[32] S. Segura, A. Durán, J. Troya, and A. Ruiz-Cortés. 2019. Metamorphic Relation
Patterns for Query-based Systems. InWorkshop on Metamorphic Testing. 24–31.

[33] S. Segura, J.A. Parejo, J. Troya, and A. Ruiz-Cortés. 2018. Metamorphic Testing of
RESTful Web APIs. IEEE Trans. on Software Engineering 44, 11 (2018), 1083–1099.

[34] M. Zhang, B. Marculescu, and A. Arcuri. 2019. Resource-Based Test Case Gen-
eration for RESTful Web Services. In Genetic and Evolutionary Computation
Conference. 1426–1434.


