
Journal Pre-proof

Feature models to boost the vulnerability management process

Ángel Jesús Varela-Vaca, Diana Borrego, María Teresa Gómez-López,
Rafael M. Gasca, Antonio Germán Márquez Trujillo

PII: S0164-1212(22)00217-5
DOI: https://doi.org/10.1016/j.jss.2022.111541
Reference: JSS 111541

To appear in: The Journal of Systems & Software

Received date : 18 February 2022
Revised date : 26 September 2022
Accepted date : 7 October 2022

Please cite this article as: Á.J. Varela-Vaca, D. Borrego, M.T. Gómez-López et al., Feature models
to boost the vulnerability management process. The Journal of Systems & Software (2022), doi:
https://doi.org/10.1016/j.jss.2022.111541.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jss.2022.111541
https://doi.org/10.1016/j.jss.2022.111541

Journal Pre-proof
Highlights (for review)
Jo
ur

na
l P

re
-p

ro
of

Highlights

• AMADEUS-Exploit is proposed as a solution for vulnerability management based on
feature models.

• Feature models are used as a modelling solution for vulnerabilities and exploit
information.

• AMADEUS-Exploit feeds from various vulnerabilities and exploits repositories.

• AMADEUS-Exploit enables reasoning to identify and classify vulnerabilities and
exploits.

• AMADEUS-Exploit is compared with other tools and evaluated in a security project.

Journal Pre-proof
Title page with author details
Jo
ur

na
l P

re
-p

ro
of

Title: Feature Models to boost the Vulnerability Management Process

Author names and affiliations:

PhD. Ángel Jesús Varela-Vaca, (Associate Professor) Universidad de Sevilla, Dpto. Lenguajes y
sistemas informáticos, Spain – ajvarela@us.es [Corresponding Author]

PhD. Diana Borrego Núñez, (Assisstant Professor) Universidad de Sevilla, Dpto. Lenguajes y
sistemas informáticos, Spain – dianabn@us.es

PhD. María Teresa Gómez-López (Full Professor), Universidad de Sevilla, Dpto. Lenguajes y
sistemas informáticos, Spain – maytegomez@us.es

PhD. Rafael M. Gasca (Full Professor), Universidad de Sevilla, Dpto. Lenguajes y sistemas
informáticos, Spain – gasca@us.es

MSc. Antonio Germán Márquez Trujillo (PhD Student), Universidad de Sevilla, Dpto. Lenguajes y
sistemas informáticos, Spain – amtrujillo@us.es

Abstract:

Vulnerability management is a critical and very challenging process that allows organisations to
design a procedure to identify potential vulnerabilities, assess the level of risk, and define
remediation mechanisms to address threats. Thus, the large number of configuration options in
systems makes it extremely difficult to identify which configurations are affected by
vulnerabilities and even assess how systems may be affected. There are several repositories to
store information on systems, software vulnerabilities, and exploits. However, they are largely
scattered, offer different formats and information, and their use has limitations, complicating
vulnerability management automation. For this reason, we introduce a discussion concerning
modelling in vulnerability management and the proposal of feature models as a means to collect
the variability of software and system configurations to facilitate the vulnerability management
process. This paper presents AMADEUS-Exploit, a feature model-based solution that provides
query and reasoning mechanisms that make it easier for vulnerability management experts. The
power of AMADEUS-Exploit is shown and evaluated in three different ways: first, the solution is
compared with other vulnerability management tools; second, the solution is faced with another
in a complex scenario with 4,000 vulnerabilities and 700 exploits; and finally, our solution was
used in a real project demonstrating the usability of reasoning operations to determine potential
vulnerabilities.

Journal Pre-proof
Manuscript Click here to view linked References
Jo
ur

na
l P

re
-p

ro
ofFeature Models to boost the Vulnerability Management1

Process2

Ángel Jesús Varela-Vacaa, Diana Borregoa, Marı́a Teresa Gómez-Lópeza, Rafael3

M. Gascaa, Antonio Germán Márquez Trujilloa
4

aData-Centric Computing Research Hub (IDEA), Universidad de Sevilla, Av. Reina
Mercedes, Seville, 41012, Spain {ajvarela, dianabn, maytegomez, gasca, amtrujillo}@us.es

Abstract5

Vulnerability management is a critical and very challenging process that allows6

organisations to design a procedure to identify potential vulnerabilities, assess the7

level of risk, and define remediation mechanisms to address threats. Thus, the8

large number of configuration options in systems makes it extremely difficult to9

identify which configurations are affected by vulnerabilities and even assess how10

systems may be affected. There are several repositories to store information on11

systems, software vulnerabilities, and exploits. However, they are largely scat-12

tered, offer different formats and information, and their use has limitations, com-13

plicating vulnerability management automation. For this reason, we introduce a14

discussion concerning modelling in vulnerability management and the proposal15

of feature models as a means to collect the variability of software and system con-16

figurations to facilitate the vulnerability management process. This paper presents17

AMADEUS-Exploit, a feature model-based solution that provides query and rea-18

soning mechanisms that make it easier for vulnerability management experts. The19

power of AMADEUS-Exploit is shown and evaluated in three different ways: first,20

the solution is compared with other vulnerability management tools; second, the21

solution is faced with another in a complex scenario with 4,000 vulnerabilities and22

700 exploits; and finally, our solution was used in a real project demonstrating the23

usability of reasoning operations to determine potential vulnerabilities.24

Keywords: Cybersecurity, Feature model, Vulnerability, Exploits, Reasoning,25

Vulnerable Management Process26

Preprint submitted to Journal of Systems and Software September 24, 2022

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of1. Introduction27

Vulnerability management [1] is a critical process that allows organisations28

to identify potential vulnerabilities, assess the level of risk, and define remedia-29

tion mechanisms to address threats. However, current cyberattack chains (attack30

chains) used by attackers to penetrate systems are becoming increasingly sophis-31

ticated [2]. Therefore, attackers use a wide variety of attack vectors to exploit32

system vulnerabilities. According to the definition of the European Union Agency33

for Cybersecurity (ENISA)1, “an attack vector is a means by which a threat agent34

can abuse weaknesses or vulnerabilities in assets to achieve a specific outcome”.35

For example, a misconfiguration [3] of a software component can be used as an36

entry point (attack vector) for an attacker. Due to the wide variety of existing con-37

figuration options for software and hardware systems and the increasing number38

of vulnerabilities, vulnerability management becomes a very difficult process [4],39

from identification to assessment [5][6]. Therefore, designing appropriate mech-40

anisms to drive the vulnerability management process is crucial to minimise the41

exposure of end-users and organisations to external threats.42

The first stage of a vulnerability management process is to inventory soft-43

ware and systems, and then identify vulnerabilities and exploits that may affect44

them [7]. To do so, the elements involved and their characteristics (i.e. ser-45

vice names, ports, software versions, etc.) must be identified, and which known46

vulnerabilities and exploits may affect them. Currently, there are vulnerability47

catalogues/repositories, such as the National Vulnerability Database (hereinafter48

NVD) [8]. These catalogues provide information related to vulnerabilities, as-49

sociating these vulnerabilities with the products they affect (software, hardware,50

operating systems, etc.). This information is crucial to determine whether a vul-51

nerability can be used as an attack vector and should or should not be taken into52

account for assessment. However, vulnerability repositories may have poor qual-53

ity [9], limitations that hinder their use [10] -such as a limited number of searches54

or hidden information retrieved-, or even their vulnerability information may be55

unlinked from exploits. In fact, automatic detection of system features and vul-56

nerabilities remains an open problem [11][12]. Current vulnerability management57

tools (e.g. OpenVAS) are very limited in the kind of operational capabilities they58

offer (they only prioritise by vulnerability impact) to carry out fine-grained vul-59

nerability management. For instance, identifying a specific attack vector related60

1ENISA Threat Landscape https://www.enisa.europa.eu/news/enisa-news/
enisa-report-the-2017-cyber-threat-landscape

2

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofto a combination of software version, platform, and operating system may be in-61

ferred from a vulnerability. These drawbacks make it even more difficult to assess62

vulnerabilities to obtain adequate vulnerability coverage [5]. Therefore, it is es-63

sential to provide models that collect information from vulnerability and exploit64

databases and offer automatic analysis mechanisms to support the definition of65

accurate vulnerability identification and assessment.66

The definition of models that enable automation and standardisation for the67

retrieval, identification, and assessment of vulnerabilities is one of the main chal-68

lenges in the vulnerability management process [13][14]. Most academic ap-69

proaches focus on the definition of semantic models [13][15][16][17]. Ontologies70

and knowledge graphs are used to link semantically related concepts that are gen-71

erally unrelated. For instance, the CVO ontology [16] related to the concepts of72

NIST, CERT/CSS, and CVSS (Common Vulnerability Score System) [18]. After-73

ward, the ontology is used to infer certain information from different data sources.74

This ontology was used to identify tweets that mentioned any vulnerability. Vul-75

nerabilities and exploits may affect different parts of a system at different levels76

of granularity, e.g., operating systems, platforms, applications, components, ver-77

sions, etc. This creates a controversy over the variability, i.e., which combination78

of those parts represents a vulnerability for the target system or infers whether any79

variety of those parts may affect the target system. Due to the high variability in80

both systems, vulnerabilities, and exploits, the interest in applying configuration81

models to analyse vulnerability emerged [19].82

In previous work, we presented AMADEUS [20] as a solution that uses fea-83

ture models (hereinafter FMs) as formal models to gather the variability of known84

affected elements (software, hardware, operating systems, etc.) represented in85

vulnerabilities. The main advantage of using FMs is that they can help us in two86

ways: firstly, by bringing together all the elements represented in a unified model;87

and, secondly, the use of FMs opens up the possibility of using automatic analysis88

mechanisms to support the definition of appropriate security tests. However, we89

did not address some limitations: 1) AMADEUS only supports one vulnerabil-90

ity repository, lacking the integration of vulnerability and exploit repositories; 2)91

AMADEUS generates FMs but without taking exploits into account; 3) cross-tree92

constraints are generated in a separate file of the FMs file, and this limited the use93

of the reasoner; 4) the reasoning capabilities are not fully explored.94

In this paper, our aim is to extend the previous work [20] by improving AMADEUS95

empowered by the following items:96

1. In the previous work, AMADEUS only integrated one vulnerability repos-97

3

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofitory. In this paper, we propose to integrate more vulnerability repositories98

and also integrate exploit repositories.99

2. In the previous work, AMADEUS only considered vulnerability informa-100

tion. In the new approach, we redefine FM generation algorithms to take101

vulnerabilities and exploits information into account.102

3. In the previous work, AMADEUS was defined on top of the old-fashion103

FAMA Framework. In the new approach, the core of AMADEUS Exploit104

has been completely re-implemented to support a new FM engine to facili-105

tate reasoning capabilities.106

4. In the previous work, AMADEUS provided only a few operations and was107

very limited. In the new approach, we propose new FM reasoning capabili-108

ties with new operators to facilitate vulnerability analysis.109

5. AMADEUS-Exploit has positioned itself against a wide range of vulner-110

ability management tools to demonstrate the extent of the functionalities111

available on the market and the feasibility of the solution when applied in112

real contexts.113

6. In the previous work, AMADEUS was tested with a bunch of vulnerabil-114

ities. In the new approach, AMADEUS-Exploit is evaluated in three dif-115

ferent ways: 1) it is compared with other vulnerability management tools116

concerning certain capabilities for the identification and reasoning of vul-117

nerabilities and exploits; 2) it is applied in a synthetic scenario consisting of118

several applications and services affected by 4,000 vulnerabilities and 674119

exploits to demonstrate the ability to generate a large number of models;120

and 3) a real scenario in a security project is used, in which we apply our121

approach to recognise services, vulnerabilities, and exploits, and to apply122

reasoning operations to define a concrete list for prioritising vulnerability123

assessment.124

In summary, we present AMADEUS-Exploit2 as a new solution to cover the125

limitations of AMADEUS and other commercial tools, increasing the function-126

alities. AMADEUS-Exploit allows the automatic generation of FMs from dif-127

ferent vulnerability and exploit repositories, enabling an improved vulnerability128

2https://doi.org/10.5281/zenodo.7072369

4

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofmanagement process boosted by automatic analysis mechanisms, making it easier129

for vulnerability management experts to identify potentially vulnerable software130

and system configurations or to prioritise vulnerabilities to be assessed. Thus,131

AMADEUS-Exploit is conceived to assist/support experts in the process of dis-132

covering, identifying, and assessing vulnerabilities. Therefore, AMADEUS-Ex-133

ploit provides queries and reasoning operations to support and assist this crucial134

task. The current vulnerability and exploit databases enable for specific search135

capabilities. However, this search capability is limited to specific terms and infor-136

mation, and more sophisticated operations that address both are not available. Our137

approach tries to provide these types of operations.138

The rest of the paper is organised as follows. Section 2 presents the basics on139

feature modelling, vulnerabilities, and exploits to better understand the proposal.140

Section 3 introduces the proposal, describing the integrated modules to achieve141

the objectives set out in the methodology. Section 4 details the formalisation of142

FMs. Section 5 illustrates how FMs can be used to reason and achieve better143

results in security testing. Section 6 compares our solutions with other commer-144

cial tools, and assesses the feasibility of our approach on real scenarios. Section145

7 summarises previous proposals in the area. Section 8 analyses the threats to146

the validity of this study; and finally, conclusions are drawn and future work is147

outlined in Section 9.148

2. Foundations149

This section introduces some terms related to cybersecurity vulnerabilities,150

exploits, and feature modelling to facilitate the understanding of the proposal.151

2.1. Vulnerability repositories152

Several catalogues and repositories collect vulnerabilities that characterise dif-153

ferent systems. They also provide information on how attack vectors and vulner-154

abilities interact. Among all these repositories, some stand out, such as NVD [8],155

the US-CERT3 vulnerability notes database, VulDB4 or IBM X-FORCE5. This pa-156

per focusses on NVD and VulDB databases due to their wide use, continuous data157

3Vulnerability notes database: https://www.kb.cert.org/vuls/
4The Community-Driven Vulnerability Database: https://vuldb.com/
5Internet security systems x-force security threats: https://exchange.xforce.

ibmcloud.com/

5

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

(a) Apache NiFi 1.10 search in NVD. (b) Apache NiFi 1.10 vulnerability in VulDB.

Figure 1: Example of vulnerabilities in different databases.

update, and reliability. Furthermore, they have web tools that provide vulnerabil-158

ity search mechanisms, as illustrated in Figure 1a. This picture shows the indexed159

results related to the query about vulnerabilities of Apache Nifi 1.10. The query160

yielded three records, CVE-2020-94866, CVE-2020-1933, and CVE-2020-1928.161

Due to the wide range of target systems and configurations, they can easily162

be affected by vulnerabilities. An example of the extremely high number of vul-163

nerabilities is the 160,732 vulnerabilities registered in NVD7 (13,761 new vulner-164

abilities added in 2021), affecting 1,824 vendors and 5,999 products. However,165

6Acronym for Common Vulnerabilities, and Exposures (CVE)
7Data obtained from CVE Details: https://www.cvedetails.com/

6

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofthe use of these repositories (e.g., NVD and VulDB) may have usage limitations,166

such as 50 results of vulnerabilities per search for VulDB.. For example, the free167

version of VulDB provides limited information on vulnerabilities. For the CVE-168

2020-9485 obtained in the previous example (cf., Figure 1a), we obtained the169

information shown in Figure 1b. However, NVD provides comprehensive infor-170

mation about vulnerabilities, including JSON-based feeds that can be consumed171

for offline use of the database.172

2.2. Known Affected Configurations (CPE)173

Using the terminology in NVD, the Known Affected Configurations can be174

described through a set of Common Platform Enumerations (CPE) [21] {cpe1,175

cpe2, . . ., cpen}.176

Definition 1. CPE. A CPE cpei represents a configuration of a system by a list177

of pairs ⟨a, v⟩ attribute-value that describe the products and scenarios in which178

vulnerabilities may occur.179

In turn, these CPEs are represented by a set of Known Affected Software Con-180

figurations (hereinafter Configurations). To formalise the possible configurations,181

the CPE standard [21] created by the MITRE Corporation is used. It identifies the182

features of the contexts in which vulnerabilities could be exploited, providing key183

information in the definition, enforcement, and verification of IT policies, such as184

vulnerabilities or configurations.185

For a cpei
8 to be valid, each attribute (ai) must appear only once, from the186

following options:187

• part describes the scope of applicability: hardware (h), software (a), or188

operating system (o).189

• vendor describes the organisation that distributes the product, e.g., apache.190

• product identifies the product affected, e.g., nifi.191

• version is a vendor-specific alphanumeric string that characterises the re-192

lease version of the product, e.g., 1.0.1.193

• update is a specific alphanumeric string that characterises the update version194

of the product affected, e.g., update 256.195

8Considering CPE 2.3 specification [21].

7

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of• edition captures edition-related terms applied by the vendor to the product.196

• language defines the language supported by the product, e.g., ES.197

• sw edition describes how the product is tailored to a particular market.198

• target sw defines the software environment in which the product operates,199

e.g., Windows.200

• target hw characterises the architecture, e.g., x86.201

• other describes any other information.202

The value field (vi) associated with each attribute (ai) is usually a UTF-8203

string. However, there are two logical values that can also be assigned to indi-204

cate, respectively, that there are no restrictions applicable to that attribute (value205

ANY) or that there is no valid value (value NA, Not Applicable). Thus, a CPE can206

be represented as follows:207

cpex = {⟨part, v1⟩, ⟨vendor, v2⟩, ⟨product, v3⟩ . . . , ⟨other, vn⟩} (1)

The identifier cpex is used to quickly identify and differentiate CPEs from
each other. This paper uses Formatted String Binding (FSB), which consists of a
list of attributes delimited by colons9 as follows:

cpe : 2.3 : part : vendor : product : version : update : edition :

language : sw edition : target sw : target hw : other (2)

FSB adds prefixes and binds the attributes in a fixed order and separated by208

the colon character. Note that all eleven attribute values must appear in the FSB,209

such as:210

cpe : 2.3 : o : linux : linux kernel : 2.6.0 : ∗ : ∗ : ∗ : ∗ : ∗ : ∗ : ∗ (3)

The previous example for the CPE 2.3 can be represented as:

{⟨part, o⟩, ⟨vendor, linux⟩, ⟨product, linux kernel⟩,
⟨version, 2.6.0⟩, ⟨update, ANY ⟩, ⟨edition,ANY ⟩, ⟨language, ANY ⟩,
⟨sw edition,ANY ⟩, ⟨target sw,ANY ⟩, ⟨target hw,ANY ⟩,

⟨other, ANY ⟩} (4)

9The first pair indicates the standard of the CPE version used.

8

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofThe values of the attributes describe a configuration with vulnerability in an211

operating system (part=o), released by Linux (vendor), named Linux Kernel (prod-212

uct) at version 2.6.0 (version). The remaining attributes take the wildcard value213

(∗) in FSB, which is the logical value ANY. As can be seen, the first pair (cpe:2.3)214

is ignored, as it only points out the CPE format.215

2.3. Vulnerabilities216

A vulnerability is defined by ISO/IEC 27005:2008 as “a weakness of an asset217

or group of assets that can be exploited by one or more threats, where an asset is218

anything that has value to the organisation, its business operations, and their con-219

tinuity, including information resources that support the organisation’s mission”.220

With the idea of automating vulnerability scanning, the cybersecurity community221

has made several efforts to standardise the way vulnerabilities are represented. To222

this end, NVD, Vulners, VulDB, and other repositories use the de facto standard223

to represent vulnerabilities, Common Vulnerabilities, and Exposures (CVE) [22].224

CVE can be defined as a reference method for structural publication of known225

vulnerabilities for easy management and sharing.226

Definition 2. CVE. A CVE is a tuple ⟨CVE id, description, impact, CPEs⟩ of227

information about a vulnerability, where:228

1. CVE id is the mandatory identifier of each vulnerability.229

2. description is the summary to describe the vulnerability textually.230

3. impact of the vulnerability, following the CVSS standard [18] to assess the231

severity of the vulnerability. CVSS in its different versions (up to current232

3.1) proposes a formula that returns a value between 0 and 10 to represent233

the lowest and highest severity.234

4. CPEs is a set {cpe1, cpe2, . . ., cpen}.235

Table 1 shows an example of two CVEs related to Apache NiFi 1.10 from a236

query obtained for NVD, as shown in Figure 1a. These represent two different237

vulnerabilities that affect Apache Nifi in versions 1.0.0 and 1.10, as shown in the238

CPE column.239

As in the case of NVD, CVEs representing vulnerabilities are made up of a240

set of vulnerable contexts, the so-called Configurations. A Configuration is, in241

turn, composed of a list of vulnerable CPEs {cpe1, cpe2, cpe3, . . . , cpen}. Also,242

9

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofTable 1: NVD results for “Apache NiFi 1.10” query.

Vuln. ID Summary CVSS Severity CPEs
CVE-2020-1933 A XSS vulnerability V3.0: 6.1 {cpe:2.3:a:apache:nifi:1.0.0:...,

was found in ... V2.0: 4.3 ...}
CVE-2020-1928 An information disclosure V3.0: 5.3 {cpe:2.3:a:apache:nifi:1.10.0:...

vulnerability was ... V2.0: 5.0 ...}

Table 2: List of CPEs for the vulnerability CVE-2020-1933 from NVD.

Configuration 1
List of CPEs
cpe1 : cpe:2.3:a:apache:nifi:1.0.0:beta-rc1:*:*:*:*:*:*
cpe2 : cpe:2.3:a:apache:nifi:1.0.0:rc1:*:*:*:*:*:*
cpe3 : cpe:2.3:a:apache:nifi:1.0.0:-:*:*:*:*:*:*
... (+54 results)
Running Configurations
cpe58 : cpe:2.3:a:mozilla:firefox:-:*:*:*:*:*:*:*

optionally, to specify concrete runtime environments in which the vulnerability243

can be reproduced, a set of Running Configurations (RC) can be included as a set244

of extra CPEs {cpen+1, cpen+2, cpen+3, . . . , cpen+m}. Thus, RC established some245

environment conditions under CPEs can be running. Table 2 shows an example of246

RC (cpe58) which indicates Mozilla Firefox as the running environment for which247

configurations (cpe1, cpe2, cpe3, . . .) can be exploited. In the presence of RCs,248

combinations of CPEs must be considered with respect to each RC separately.249

Table 2 shows a piece of an example of configurations for the vulnerability CVE-250

2020-1933 associated with Cross-Site Scripting in Apache NiFi for versions 1.0.0251

to 1.10.0. In this example, there is only one RC, so cpe1 can occur with cpe58;252

cpe2 can occur with cpe58; . . . and so on until all combinations are covered. In253

summary, Apache Nifi version 1.0.0 beta-rc1 and the others in the table under the254

environment of Mozilla Firefox (in any version) are affected by the Cross-Site255

Scripting vulnerability CVE-2020-1933.256

2.4. Security Exploits257

In general, a security exploit is a fragment of software used to attack a software258

or hardware system by leveraging a vulnerability. Exploits are designed to cause259

damage to systems in order to change their behaviour and derive some benefit for260

the attacker. Examples are pieces of software that attempt to produce arbitrary261

code executions, a denial of service, or a privilege granted. There is no standard262

way to represent exploits, but typically they can be described in the following263

information.264

10

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of• Exp Id is the identifier of the exploit.265

• List of CVEs with which the vulnerability is associated (if applicable).266

• date of publication of the exploit.267

• type of exploit, e.g., webapp, shellcode, remote, papers.268

• platf is the platform affected by the exploit, e.g., Hardware, PHP, Linux,269

Windows.270

• The author of the exploit published.271

• app: Vulnerable app that provides a link to the downloadable version of the272

platform.273

• sc: The source code or instructions which constitute the exploit itself.274

There are repositories of exploits, such as Exploit-DB [23] by Offensive Secu-275

rity Community, which provide a significant number of exploits associated with276

vulnerabilities. Specifically, this repository provides 42,802 exploits10. Following277

the example in Figure 1a, there are no exploits published for Apache Nifi. An278

illustrative example is the exploit 27,227 shown in Figure 2. This exploit is re-279

lated to the vulnerability CVE-2006-0733 for the WordPress Core 2.0 component280

concerning HTML Injection.281

2.5. Modelling Vulnerabilities and Exploits: Feature modelling and automatic282

analysis283

We start with a consideration of the approaches for vulnerability and exploit284

modelling in the context of cybersecurity and vulnerability management.285

As mentioned in the introduction, the use of models to represent vulnerabil-286

ities is a challenge for the vulnerability management process [14][13]. Threat287

modelling [24] is widespread in cybersecurity as a discipline for assessing and288

identifying potential vulnerabilities. However, threat modelling currently has sev-289

eral challenges to face [24]: 1) automate security analysis and modelling, and 2)290

integrate with threat and vulnerability databases. Several academic approaches291

define semantic models (i.e., ontologies and knowledge graphs) [13][15][16][17]292

10Data obtained from Exploit-DB:https://www.exploit-db.com/
exploit-database-statistics

11

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 2: Example of exploit associated to a CVE.

to homogenise and interrelate concepts of vulnerabilities and others. However,293

vulnerability and exploit information are often addressed separately. The high294

range of information and variability of vulnerabilities and exploits (e.g., devices,295

operating systems, platforms, applications, components, versions, configurations,296

source code, etc.) makes it difficult to find a model that enables reasoning and297

represents relations, variability, and commonalities. For example, any variety of298

software versions of a component may affect the targeting system due to certain299

vulnerabilities, and this may be inferred. Due to that, interest has arisen in apply-300

ing configuration models to analyse vulnerabilities [19].301

FMs are a widely used technique to represent software product lines (SPLs) [25]302

in tree-like structures. Although there are other representations (e.g. OVM [26]),303

FMs have become the de facto standard for representing common and variable304

characteristics in an SPL. In general, an FM is a model that defines features and305

their relationships. FMs can be defined in many ways (i.e., textual, formal, graph-306

ical, etc.) albeit the most widely used is the one proposed by Czarnecki [27],307

exemplified in Figure 3.308

Around FMs a field related to the Automatic Analysis of Feature Models309

(AAFM) [27] has emerged. AAFM aims to extract information from the models310

by using some logic or reasoning mechanisms, e.g., determining product configu-311

rations or tests.312

Regarding the tools, there are many of them that allow FMs to be defined and313

12

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 3: Example of FM for Apache security configuration [28].

provide some automatic analysis mechanisms. Some examples of tools are: FA-314

MILIAR [29], FeatureIDE [30], Gears11, FaMa [31], FaMaPy [32], SPLOT [33],315

pure::variants12, VariaMos [34] or Glencoe [35]. The new approach presented316

in this paper is powered by the FaMaPy framework. FaMaPy is a Python-based317

AAFM framework that enables multi-solver and multi-metamodel support for the318

integration of AAFM tools into the Python ecosystem. FaMaPy supports multi-319

ple solvers (e.g., Glucose or Minisat) and multiple variability models, such as the320

FaMa format [31]. FaMaPy defines an FM-metamodel that allows and provides321

transformations from different formats to the FaMaPy metamodel. In terms of322

reasoning capabilities, FaMaPy provides more than ten operations for cardinality-323

based feature models, e.g., valid model, valid product, error detection, error diag-324

nosis, etc.325

To perform an efficient vulnerability management process, it is crucial to326

choose the appropriate vulnerabilities (i.e, “vulnerability coverage”) and the el-327

ements of the systems and software that need to be checked [5]. As mentioned328

above, vulnerability and exploit repositories offer search engines to extract in-329

formation about them. However, these searches are sometimes limited, as the330

information is only available for a fee, and it is not always possible to secure com-331

plete information [9][10]. Moreover, the amount of extracted information can be332

unmanageable, which is a crucial problem since this information is essential to333

identify which elements (parts, vendors, versions, OS, etc.) of our systems and334

software need to be checked in security testing. Therefore, we propose to search335

and extract information from multiple vulnerability and exploit repositories and336

provide a unified model that helps to define appropriate security tests. Indeed,337

11Gears: www.biglever.com
12pure-systems: www.pure-systems.com

13

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofFMs are an interesting approach to represent the variability of elements within338

CVEs, CPEs and exploits. The main advantage of using FMs is that they can help339

us in two ways: first, by bringing together all the elements represented in a unified340

model; and, secondly, the use of FMs opens up the possibility of using automatic341

analysis mechanisms to support the definition of appropriate security tests.342

3. AMADEUS-Exploit343

An in-depth analysis of potential security vulnerabilities can facilitate a proper344

vulnerability management process based on possible attack vectors and their ex-345

ploits [5][36][37].346

As mentioned above, AMADEUS was presented in a previous work [20] as347

a methodology for automatically creating FMs by integrating information from348

the vulnerability repository and reasoning to determine attack vectors with cer-349

tain features. However, certain aspects were left pending, such as the subsequent350

extraction of exploits to assess vulnerabilities, the incorporation of new vulner-351

ability repositories, and the improvement of reasoning about the models. These352

tasks, among others, are crucial to complete the task of the vulnerability man-353

agement process, i.e., to enable the discovery and analysis of configurations with354

vulnerabilities and exploits available for testing within the software and hardware355

resources of an ecosystem. The new proposed framework, AMADEUS-Exploit356

follows the process shown in Figure 4, which describes the workflow, where the357

white boxes represent the different tasks that are performed, such as to ‘Analyse358

infrastructure’. Attached to the tasks by dashed arrows, it can be found a de-359

scription of the data generated or consumed by each task, e.g., the list of terms360

generated by ‘Provide Terms’. Bold arrows show in which order the gateways361

and tasks are reached and performed. For instance, there is an OR-gateway (X-362

diamond symbol) to choose the path to execute and AND-gateways (+-diamond363

symbol) to allow parallel execution of tasks. Certain tasks are grouped into stages364

labelled as grey boxes for ease of understanding, e.g., ‘Discover target elements’365

involves ‘Analyse the infrastructure’ and ‘Provide terms’. These stages are ex-366

plained in the following subsections.367

AMADEUS-Exploit can be placed between the preparation, discovery, and368

scanning phases in the vulnerability management process [14, 38]. These phases369

aim to analyse and gather information about potential targets, and to identify par-370

ticular aspects of those targets, e.g., exposed services, open ports, operating sys-371

tem names, vulnerabilities, etc.372

14

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofTo understand the framework, the tasks that make up the AMADEUS-Exploit373

process are marked in the workflow of Figure 4 as manual (hand symbol), and au-374

tomatic (engine symbol). Manual tasks require unavoidable human intervention.375

Scrapping
in NVD

VulDB

Report

Extract
vulnerable

configs.

Generate
Feature
Models

Analyse
Infrastructure

config1
config2
config3
...

NVD

Provide
Terms

{Term1,Term2, Term3, ...}

ExploitDB

Scrapping
in VulDB

Scrapping
in ExploitDB

Extract
exploits

Exploit
repository

exploit1
exploit2
exploit3
...

Discover target
elements

Vulnerabilities
and exploits identification

Assess
vulnerabilities and

exploits

- Service
- Type
- Version
- Port
 ...

Vulnerability
repository

Vulnerability
repository

Feature Model Catalogue of
vulnerabilities and exploits

Reasoning
on FMs

FamaPy
Reasoner

Automatic
Manual

LEGEND

Figure 4: AMADEUS-Exploit Framework overview.

As mentioned, the workflow consists of three stages: (1) discovering the tar-376

15

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofget elements to be analysed; (2) the automatic extraction of information from both377

vulnerabilities and exploits (Vulnerability and Exploit identification); (3) vulner-378

ability and exploits assessment in which feature models are generated for each379

vulnerability and reasoning on FMs as the application of reasoning techniques on380

the obtained FMs. Each part is described in detail below.381

3.1. Discover target elements382

Depending on the system configurations (software, hardware, network, and383

others), specific vulnerabilities and exploits can be identified, or specific assess-384

ment techniques can be applied [39][40].385

Therefore, the first step is to define the scope of the analysis by discovering386

the elements involved in the analysis. This scope enables the establishment of387

the boundaries and goals of the analysis. There are several solutions to collect388

and retrieve the configuration used in organisations, including active and passive389

analysis tools. In our proposal, the systems or devices involved can be derived390

from the infrastructure analysis or provided by experts through a set of terms (cf.,391

Analyse Infrastructure and Provide Terms).392

As for infrastructure analysis (cf. Analyse Infrastructure), systems can be au-393

dited using active tools, such as Lynis13 and Nmap (Network Mapper)14. Nmap is394

a well-known tool widely used to audit the security of firewalls, networks, mea-395

sure network traffic, or detect vulnerabilities. Due to its popularity in the security396

community, Nmap is integrated in the AMADEUS-Exploit implementation, al-397

though others could be adapted as well.398

However, the user can include a list of terms (cf. Provide Terms) to anal-399

yse the vulnerabilities of a system. For this reason, AMADEUS-Exploit works400

in two modes of operation, custom and automatic. The custom mode allows401

users to provide a list of terms and keywords for a set of target systems, e.g.,402

the terms OpenSSH and version 7.7. The automatic mode invokes an analysis403

tool (Nmap in our case) on a set of target systems. AMADEUS-Exploit addresses404

the information retrieved from this tool as a list of terms and keywords, where405

the tuples are returned as ⟨service, version⟩, for example: ⟨OpenSSH, 7.7⟩,406

⟨ApacheHTTPServer,−⟩, ⟨OpenV PN, 2.3.17⟩.407

13Lynis: https://cisofy.com/lynis/
14NMAP: https://nmap.org/

16

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of3.2. Vulnerabilities and Exploits identification408

From the information extracted in the previous step (report or list of terms),409

possible configurations with vulnerabilities can be analysed. Therefore, terms410

related to running services, versions, active ports, etc, are used to search for vul-411

nerabilities (CVE) and exploits. These searches can be performed on repositories,412

where the information can be extracted using a scrapper (cf. Scrapping NVD,413

VulDB, and Exploit-DB). AMADEUS-Exploit integrates three main data sources:414

NVD [8], VulDB [41] and Exploit-DB [23]. The integration is possible thanks to415

the implementation of a Web scraper module that allows the automatic search and416

extraction of information in these repositories. The scrapper analyses structures417

similar to Figures 1a and 1b and collects data, keeping only specific and relevant418

information, such as the CVE ID, description, CPEs. As shown in Figure 4, the419

scrapping activities can be run in parallel as different repositories are accessed.420

Similarly, since vulnerability and exploit extraction are independent tasks, they421

can also be executed in parallel.422

After gathering the vulnerabilities represented by the CVE and exploits, it is423

time to analyse the possible features of the scenarios in which these vulnerabil-424

ities can be exploited. Therefore, AMADEUS-Exploit extracts different sets of425

CPEs (cf. Extract Vulnerable Configurations), represented, for each vulnerability426

(CVE). For example, the CVE-2020-1933 vulnerability describes the malicious427

scripts that can be injected into Apache NiFi 1.10. However, several questions428

arise, such as on which specific software configuration this vulnerability applies,429

whether it can be related to software, hardware, application or an operating sys-430

tem, or whether this vulnerability exists for each version or release. For instance,431

the CVE-2020-1933 contains 57 CPEs describing 57 different versions of Apache432

NiFi running in Mozilla Firefox affected by this vulnerability.433

Similarly, information about exploits (cf. Extract exploits) is extracted from434

ExploitDB[23]. In this way, the CVE IDs are used as necessary information to435

search for direct exploits related to those vulnerabilities. We retain all valuable436

features (i.e., Exploit ID, platform, etcetera) of each exploit obtained for use in437

subsequent feature model generation. Bear in mind that some vulnerabilities may438

have one or more exploits, but others do not. Therefore, (i) vulnerabilities ‘with439

exploits’ can be directly related to possible exploits to be used in a future security440

test, and (ii) vulnerabilities ‘without exploits’ should be known as they may be441

potential security issues or challenging vulnerabilities to be tested.442

For example, the aforementioned vulnerability CVE-2020-1933 has no ex-443

ploit, whereas the vulnerability CVE-2009-3555 (associated with Apache HTTP444

17

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofservers and OpenSSL) has two exploits. Therefore, we have two exploits that can445

be tested against all the CPE covered by the CVEs.446

3.3. Assess vulnerabilities and exploits447

Using these concepts as a basis, the AMADEUS-Exploit framework attempts448

to obtain valid FMs (cf. Generate Feature Models) of the discovered target sys-449

tems. All these generated FMs constitute a catalogue [28]. The contribution in450

this paper proposes a set of algorithms that create FMs adapted to the vulnerability451

context, giving rise to a catalogue of scenarios that collects the attack scenarios452

that may occur depending on the vulnerabilities. This catalogue can be used in453

many scenarios by reasoning over the models (cf., Reasoning on FMs). The rea-454

soning task in Figure 4 is represented as an iterative task (cf., green arrow) since455

the customer will require to apply multiple operations depending on the task at456

hand.457

Taking into account that FMs represent a catalogue of vulnerabilities, includ-458

ing their configurations and exploits, various reasoning operations can be devel-459

oped. Some examples are: the generation of attack vectors, the extraction of460

exploits, the extraction of vulnerabilities, the verification of a configuration, or461

the determination of the lack of exploits necessary to test a vulnerability, among462

others.463

Sections 4 and 5 detail how FMs are created and the possible reasoning men-464

tioned.465

4. Generation of Feature Models466

As discussed, the high variability -due to the large number of potential vul-467

nerabilities, affected configurations, and exploits- makes the management of po-468

tential threats too complicated. The creation of FMs that gather and structure this469

information makes vulnerability analysis easier and more automated. This section470

describes how an FM of vulnerabilities and exploits is, and how an FM catalogue471

can be created using the vulnerabilities and exploits sources.472

The inference of FMs from vulnerabilities was introduced in the previous473

work [20]. In that approach, we inferred an FM for a CVE, but it was built consid-474

ering only a vulnerability database and omitting exploit information. In this paper,475

AMADEUS-Exploit extends the previous approach by pursuing the construction476

of an FM catalogue that gathers vulnerabilities extracted from various reposito-477

ries and integrates them with exploits extracted from others. AMADEUS-Exploit478

18

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofgenerates an FM for each CVE (vulnerability), including each CPE of its config-479

urations and the associated exploits for each CVE. Therefore, each configuration480

collected in the FM is vulnerable according to NVD or VulDB vulnerabilities and481

can be associated with some exploits extracted from Exploit-DB.482

Definition 3. FM of vulnerabilities and exploits. Let CPEs be a list of known483

affected configurations and running configuration environments {cpe1, cpe2, cpe3,484

. . . , cpen} and EXP be a set of exploits {exp1, exp2, exp3, . . . , expm}. An FM of485

vulnerabilities and exploits is an equivalent representation of all combinations15
486

of each CPE and the EXP described in each vulnerability.487

FM ≡ CPEs ⋊⋉pred EXP ⇐⇒ products(FM) = {(cpe1, exp1), (cpe2, exp1), . . .
(cpe1, exp2), (cpe2, exp2), . . . , (cpen, expm)}

(5)

In our approach, the above-mentioned FM generation is carried out in two488

main phases:489

1. Retrieval of an unrestricted FM containing information only within the CPE490

and EXP sets.491

2. Inclusion of restrictions in the form of cross-tree relations in that FM, avoid-492

ing possible configurations that the FM could generate without restrictions.493

One of the main concerns in the proposed algorithms is correctness. Valid op-494

eration can prove that the generated model is correct, as it can obtain at least one495

valid product. In addition to model validation, the number of products can be used496

as a validation operation. In this sense, the number of products helps as a cor-497

rectness metric to measure accuracy and recall [42]. Therefore, if the number of498

products differs from the expected combination of CPE, RC, and EXP, FM is not499

equivalent (see Definition 3). The correctness of our algorithms has been studied500

and proven in previous work [43].501

4.1. Retrieving Unrestricted Feature Model from CPEs and Exploits502

The so-called reverse engineering in SPLs [44, 42] provides mechanisms to503

generate FMs from a set of configurations. Reverse engineering that can be ap-504

plied in this context of cybersecurity is relatively limited, with just 12 attributes to505

15We have used ⋊⋉pred with the semantic of the left join operator.

19

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofTable 3: Running example of CPEs and exploits for a vulnerability

CVE-ID-1
Configuration 1
List of CPEs
cpe1 : cpe:2.3:a:olearni:civet:1.0.0:*:*:fr:*:*:*
cpe2 : cpe:2.3:a:olearni:civet:1.0.1:*:*:*:*:*:*:*
cpe3 : cpe:2.3:a:olearni:civet:1.0.2:*:*:*:*:*:*:*
Running Configurations
-
Configuration 2
List of CPEs
cpe4 : cpe:2.3:a:oteachy:lynx:*:*:*:es:*:*:*:*
cpe5 : cpe:2.3:a:oteachy:ocelot:*:*:*:*:*:*:*:*
Running Configurations
cpe6 : cpe:2.3:a:origin:iberian:-:*:*:*:*:*:*:*
Exploits
⟨exp1, CVE-ID-1, . . . ⟩
⟨exp2, CVE-ID-1, . . . ⟩
⟨exp3, CVE-ID-1, . . . ⟩

describe CPEs and running configurations, and a set of exploits. This is the case,506

for example, with the product attribute, which determines vendor and part, not507

being possible for the same product to come from two different vendors or parts.508

In addition, these three attributes must have a specific value, as it is impossible509

to assign them the value ‘ANY’. These particularities are the main motivation to510

propose a specific algorithm to create FMs and to include these restrictions in FM511

generation.512

The running example in Table 3 is used to illustrate each part of the proposed513

algorithms. It represents a vulnerability CVE-ID-1 that encompasses two con-514

figurations, each with a CPE list {{cpe1, cpe2, cpe3},{cpe4, cpe5}} and a running515

configuration list {cpe6}, empty for Configuration 1. Furthermore, we assume that516

this vulnerability can be used with three different exploits {exp1, exp2, exp3}.517

518

The feature modelling algorithm is based on three steps: (1) creation of a sub-519

FM for each vendor and a sub-FM with every exploit; (2) creation of a sub-FM520

for each running configuration, and; (3) integration of these sub-FMs into a single521

FM tree, one for each CVE:522

1. Creation of a sub-FM for each vendor and a sub-FM with each exploit.523

For example, we create an FM for the vendors olearni (cpe1, cpe2, cpe3) and524

oteachy (cpe4 and cpe5), and similarly for the exploits exp1, exp2, and exp3.525

20

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

langlynx

oteachy

ocelot

versioncivet

1.0.0 1.0.1 es

olearni

civet

1.0.2

origin

iberian

versioniberian

NA

Vendors

Products

Oher
Attributes

lynx

{cpe1,cpe2,cpe3} {cpe4,cpe5} {cpe6}

Values

langcivet

fr ANY

{exp1,exp2,exp3 }

exploits

exp1 exp3

exp2

Figure 5: Process of construction of the FM for the running example.

2. Creation of a sub-FM for every running configuration. For example, we526

create an FM for the vendor in the running configuration cpe6.527

3. Integration of sub-FMs into a single FM, i.e. integration of these sub-528

FMs (for vendors and exploits) into a single FM tree, one for each CVE.529

The ‘rc’ feature is included as an optional relation to the whole FM (as the530

running configuration may or may not appear).531

Figure 5 illustrates these steps for the running example in Table 3, connecting532

the CPE lists with blue lines, running configurations with green lines, and exploits533

with red dashed lines. In Figure 6, it can be seen how the four sub-FMs are534

combined to create the complete FM for the example. The inclusion of cross-tree535

constraints in the unrestricted FM is described below. Algorithms 1 and 2 in the536

appendix describe the concrete specification for the inference of FMs.537

4.2. Include cross-tree constraints in the FM538

Up to this point, the FM obtained encapsulates all attributes and values of the539

CPEs of a CVE and the related exploits. As mentioned above, the set of CPEs540

does not usually include such high variability, and the existence of some of its541

components is intrinsically related to the occurrence of others. Therefore, the in-542

ference of a set of constraints on an FM is necessary to overcome this situation543

and restrict the number of feasible combinations by adjusting it. At this stage,544

AMADEUS-Exploit derives a set of constraints to adjust the FM variability ac-545

cording to the restrictions of the CPE attributes and the running configurations.546

As mentioned above, Figure 6 is the adjusted version of the running example in547

21

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofrc

CVE-ID-1

origin

iberian

versioniberian

NA

langlynx

oteachy

ocelot

es

lynx

versioncivet

1.0.0 1.0.1

olearni

civet

1.0.2

langcivet

fr ANY

rc1

REQUIRE
REQUIRE

exploits

exp1 exp3

exp2

type

application

REQUIRE

REQUIRE

REQUIRE

REQUIRE

REQUIRE

Figure 6: Process of construction of the FM for the running example.

Table 3. We should clarify that it is unnecessary to include specific cross-tree con-548

straints between exploits and CPE features. In general, the exploits can be related549

to the CVE, referring to all the CPEs of the CVE.550

The cross-tree constraints are derived from an analysis of the original list of551

CPEs, a clear descriptor of the possible valid configurations. Any other combina-552

tion would result in an unlisted configuration and is therefore considered spurious.553

Recall that the whole point of this algorithm is to build an FM that can produce554

the same set of items contained in the original CPE list. Therefore, we only use555

two types of cross-tree constraints (Require and XOR-require [45, 46]). Require556

constraint is used when a feature requires other features with a non-direct family557

relation (e.g., f1→ f2). On the other hand, XOR-require constraint establishes a558

required relation between a feature and a set of other features, allowing only one559

to appear at a time. A f1 XOR-require {f2, f3} constraint is equivalent to:560

((f1→ f2) ∧ ¬(f1→ f3)) ∨ (¬(f1→ f2) ∧ (f1→ f3)) (6)

The cross-tree derivation consists of the following three parts:561

1. Creation of cross-tree constraints between the products and their associated562

type.563

2. Creation of cross-tree constraints between feature leaves of the same prod-564

uct (between relevant attribute values of the same sub-FM).565

3. Creation of cross-tree constraints between feature leaves of products and566

running configurations (between relevant attribute values and a sub-FM root567

of a running configuration).568

22

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofA detailed specification of cross-tree derivation is defined in the Algorithm 3569

in the Appendix section. Following the example in Table 3 and the FM generated570

in Figure 5, several cross-tree constraints are found by applying the Algorithm 3.571

According to each of the three parts of the algorithm, the constraints found are as572

follows:573

1. Cross-tree among features of the same vendor: relation among the civet574

product attributes, the constraints required between the features ‘1.0.0’ and575

‘fr’ to enforce the achievement of cpe1, plus the two required relations576

between ‘1.0.1’ and ‘1.0.2’, and ‘ANY ’ features to enforce cpe2 and cpe3;577

2. Cross-tree among products and types: the civet, ocelot, lynx products re-578

quire the same type, thus, application;579

3. Cross-tree among feature leaves and running configurations: the required580

relation between ‘ocelot’ and ‘rc1’ features to enforce the occurrence of581

running configuration features for cpe4, and the required relation between582

‘es’ feature and the ‘rc1’ to enforce cpe5.583

These cross-tree constraints are included to complete the FM, as shown in584

Figure 6.585

5. Reasoning on Feature Models586

AMADEUS-Exploit finds FMs as a way of representing vulnerabilities and587

exploit information discarding the generic and conventional representations, such588

as lists or repository tables.. An additional advantage derived from the use of FMs589

is the ability to store both vulnerabilities and their exploits as a catalogue [28].590

AMADEUS-Exploit has been enhanced by the definition of an FM catalogue,591

which, in a way, could be considered as an interactive entity supporting a wide592

range of queries and reasoning operations. These operations are part of the clas-593

sically automated analysis of FMs [27], i.e. determine if a product is valid, obtain594

all products, validate the model, detect and explain errors, etc.595

Please note that AMADEUS-Exploit is conceived to assist/support experts596

in the vulnerability management process. That is, to discover, identify, and as-597

sess vulnerabilities. Therefore, the queries and reasoning operations provided598

by AMADEUS-Exploit should be orientated to assist in this crucial task. Cur-599

rent vulnerability and exploit databases enable specific search capabilities, such600

as searching for vulnerabilities for CVE or CPE identifiers. However, this search601

23

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofcapacity is limited to particular terms and information, and vulnerabilities and602

exploits are unlinked. No more sophisticated operations related to both informa-603

tion are available. Our approach tries to provide these types of operations. For604

instance, it is impossible to perform a complex search that describes a partial con-605

figuration of a CPE that can be affected by exploits. For a given exploit, discover606

whether partial elements that define CPEs are involved or obtain all possible CPEs607

that are affected by exploits and vulnerabilities. Some of the possible reasoning608

operations applied to any FMs are explained in the following subsections.609

5.1. Reasoning about attack vectors610

As mentioned above, attack vectors are a means by which a threat actor can611

abuse the weaknesses or vulnerabilities of assets to achieve a specific result. There-612

fore, attack vectors are necessary to assess a vulnerability. From the FM perspec-613

tive, attack vectors represent the selection of features in the FM related to prod-614

ucts, vendors, OS, version, running configurations, exploits, etc. that describe a615

known affected configuration by a vulnerability. One of our goals is to support se-616

curity testing to assess a set of vulnerabilities that adequately covers the identified617

vulnerabilities. Using the reasoning capabilities provided by AMADEUS-Exploit,618

which was integrated with FaMaPy [32], we can apply certain operations tailored619

to the problem at hand. In particular, by obtaining the set of all products of the620

FMs (i.e., all attack vectors) or by applying a filter (i.e., completing an attack vec-621

tor), we can generate useful information to obtain the attack vectors. From a secu-622

rity testing point of view, if the expert knows which specific vulnerability configu-623

ration to test, we could simply query the FM by fetching the products or applying624

a filter to it. In practise, the generation of all attack vectors from an FM can help625

to know the configuration space that we have to check to test all possibilities of a626

vulnerability. Therefore, it helps to know the configuration space that represents627

the vulnerability and to decide how to assess it. For example, FM is built for the628

vulnerability CVE-2018-15473, which affects OpenSSH 7.7. In practise, the se-629

curity expert has entered into AMADEUS-Exploit the terms OpenSSH 7.7 and re-630

turned the FM for CVE-2018-15473 vulnerability. If we were to explore the entire631

configuration space to test this vulnerability, we have found 5008 different attack632

vectors (depending on the products) representing 256 CPEs and 3 exploits. An633

example of an attack vector obtained from the FM analysed is as follows: {CVE-634

2018-15473, type: {application}, source: {nvd}, exploits {exploit 45939}, drop-635

bear ssh project, dropbear ssh, dropbear ssh version, dropbear ssh version 0 35,636

dropbear ssh version, dropbear ssh version 0 35 update, dropbear ssh version, drop-637

bear ssh version 0 35 update test3}. In particular, AMADEUS-Exploit helps ex-638

24

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofperts by pointing out a specific product Dropbear SSH in version (0.35) and up-639

dating (update test3) that can be exploited for the exploit 45, 939.640

5.2. Reasoning about Exploits641

As stated above, vulnerability repositories, e.g., NVD or VulDB, do not link642

the CVE to exploits stored in other repositories (e.g. Exploit-DB). AMADEUS-643

Exploit allows us to obtain CVEs directly by identifying a set of exploits without644

using an FMs reasoner. In this way, AMADEUS-Exploit provides experts with a645

pointer to the exploit(s) to be used for each vulnerability (CVE). From a vulner-646

ability management point of view, this operation gives the expert a hint on which647

vulnerabilities have direct resources to test them. Experts can use this information648

to define the assessment of vulnerabilities with exploits, including prioritisation,649

or to check some attack vectors against certain exploits. Therefore, if we identify650

the exploits for some environments, we could point out the configuration vulner-651

ability. For example, exploit 7000 affects PHP platforms due to insecure cookie652

handling. The exploit provides a snippet of code to check the cookie settings in the653

admin panel. The exploit points out the vulnerabilities CVE-2008-6232 and CVE-654

2008-6231 that are related to the Pre Shopping Mall web application. However,655

we can extract more information that affects exploits, in particular by applying656

filters to the FM. For example, thanks to the FM of CVE-2008-6231, we found657

that 7, 000 exploits affect the product pre classified listings of the vendor Pre658

Shopping Mall. This information is not provided by the exploit but is contained in659

the CPEs within the CVE. This extraction of information from exploits requires660

the use of the reasoner, in particular, through filtering.661

Similarly, for a set of vulnerabilities and exploits, AMADEUS-Exploit can662

determine the lack of exploits to be analysed. This operation does not require663

a specific reasoning operation, and because of it, vulnerabilities that cannot be664

directly exploited are identified. This is useful from a security point of view, as665

possible attack vectors can be generated from CVEs that we do not know how to666

assess. Therefore, experts must decide how to assess it, bearing in mind that there667

are attack vectors raised by CVEs that have no resources to use. For instance,668

the vulnerability CVE-2019-16905 affecting OpenSSH in different versions due669

to an integer overflow does not have an exploit. This lack of exploits does not670

prevent the problem; the problem is identified by AMADEUS-Exploit and must671

be managed and evaluated in case of having any of the affected versions.672

25

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of5.3. Reasoning about Vulnerabilities and Exploits673

For a given set of exploits, vulnerabilities related to them can be extracted.674

This operation is the opposite of the one in Section 5.2, but with similar goals.675

For example, if we try to find exploits manually via Exploit-DB in terms of the676

software OpenSSH 7.7, 28 possible exploits arise. Using AMADEUS-Exploit, we677

can first detect possible vulnerabilities in the software, i.e., CVE-2018-15473 and678

CVE-2019-16905. Since AMADEUS-ExploitS keeps the CVE-related exploits679

indexed, we can directly retrieve that, for the vulnerability CVE-2018-15473,680

three different exploits can be used (i.e., exploit 45939, exploit 45233, exploit681

45210), but there are no exploits available for CVE-2019-16905. Experts can use682

this operation in the definition of the assessment to quickly identify vulnerabili-683

ties related to a set of exploits to prioritise the test to be performed. AMADEUS-684

Exploit can provide this information without the need to perform reasoning oper-685

ations.686

5.4. Reasoning about Configurations687

Given details about a specific configuration, i.e., a partial selection of features688

in the FM such as product, version, operating system, etc., AMADEUS-Exploit689

can determine whether a specific attack vector affects it by diagnosing the con-690

figuration against the FM (detecting errors). This operation takes a configuration691

and checks whether it is correct or not (valid configuration) and checks its validity692

on the selected model. In addition, you can point out which products would be a693

valid configuration (explaining the errors). For example, let us assume the con-694

figuration {debian, debian linux version, debian linux version 8 0}, for the695

vulnerability CVE-2018-15473, is validated with 16 different valid attack vectors.696

Both obtaining and checking the FM configurations require the use of the FaMaPy697

reasoner.698

The types of operations mentioned above are ground-breaking proposals in the699

combination of cybersecurity and software product lines. Moreover, they are only700

a few examples of the potential use of FMs in cybersecurity, leaving the inclusion701

of many more functionalities for further work.702

6. Evaluation703

To conduct the evaluation, we propose the following research questions:704

• RQ1. Can we analyse the ecosystem of tools and compare them in terms of705

the use of multiple repositories, scanning, and reasoning capabilities?706

26

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of• RQ2. Can we automatically infer FMs in an acceptable runtime under dif-707

ferent scenarios and conditions? Can we compare our vulnerability identifi-708

cation capabilities with other tools?709

• RQ3. Can reasoning help us in the vulnerability management process in710

real scenarios?711

For guiding the answers to the research questions, we propose to evaluate712

AMADEUS-Exploit in three different ways: RQ1.) by analysing vulnerability713

management tools and their capabilities to position AMADEUS-Exploit; RQ2.)714

by evaluating AMADEUS-Exploit in a synthetic scenario and comparing it with715

other tools, and; RQ3.) by evaluating AMADEUS-Exploit in a real case by ap-716

plying reasoning operators to guide the vulnerability management process, from717

discovery to choice of a set of vulnerabilities to evaluate.718

6.1. Analysis of vulnerability management tools719

Taking advantage of the importance of vulnerability management, several tools720

are available. AMADEUS-Exploit has appeared as a solution for providing more721

functionalities, as analysed in this section.722

We have chosen a set of representative tools, both commercial and open source,723

to carry out a qualitative comparison. We intend to analyse the scanning and rea-724

soning characteristics of these tools in comparison with AMADEUS-Exploit. For725

this purpose, we have evaluated the following characteristics:726

• Open Source: the tool is open to the community and can be used free or727

under a licence.728

• Type of scanning: the tool allows automatic, manual, or both scanning729

mechanisms to discover targets.730

• Terms: the tool allows us to introduce terms for the scanning manual op-731

tion. These terms could be, e.g., identifiers of CVEs or parts of CPEs, or732

only identifiers for the targets to be analysed.733

• Databases: the tool uses vulnerability databases, exploits databases, or734

both.735

• Reasoning: the tool can perform any operation or reasoning analysis based736

on the results of vulnerabilities and exploits.737

27

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofThere are other general but interesting characteristics that may help in vulner-738

ability management task, such as:739

• Reporting: The solution provides any kind of dashboard to summarise the740

information on targets, vulnerabilities, and exploits.741

• Prioritisation (Prio.): The solution enables the prioritisation of vulnerabili-742

ties and exploits.743

• Type of Service: The solution is based on standalone service (S), cloud ser-744

vice (C), or both (B) services.745

The results obtained for each tool, including AMADEUS-Exploit, can be seen746

in Table 4. We can see that the tools most similar to ours are Vuls and Vulscan,747

with the difference that Vuls and Vulscan do not accept search terms. In fact,748

no tool allows us to establish the scope of the analysis by establishing the target749

based on a list of terms. In general, these tools need to point out network targets750

(IP or domain name) to establish the scope of the analysis. All the tools provide751

mechanisms for automatically discovering targets, but some tools enable manually752

defining the target (cf., column Manual) that avoids the discovery. It is important753

to highlight that the vulnerability and exploits scanning is limited to the services754

that can be consumed by the exposed ports (e.g., HTTP server exposed in 80 port),755

but other components like software add-ons, plug-ins, even stand-alone apps, etc.756

are out of the context of scanning. For example, a web browser application such757

as Firefox cannot be scanned with tools such as OpenVAS, Vulscan, etc.758

Regarding databases, all tools integrate some vulnerability databases, but just759

a few tools integrate exploit databases. Furthermore, these tools are very limited760

to retrieving information on vulnerabilities and exploits; for example, they only761

provide a ranking of vulnerabilities by impact (sorting operations) and do not762

provide capabilities such as inference of known affected software components763

provided for vulnerabilities to refine vulnerability assessment and management. In764

fact, we highlight that the only tool that uses modelling techniques is AMADEUS-765

Exploit. The use of modelling enables the application of reasoning operations to766

the results.767

6.2. Comparison in vulnerability and exploit identification768

In the first evaluation experiment, we propose a synthetic threat scenario that769

represents real applications and services used in the day-to-day life of organi-770

16S: Standalone, C: Cloud, B: Cloud and Standalone.

28

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofTable 4: Comparison for vulnerability management tools .

Tool Open Source
Type of scanning

Terms
Databases

Reasoning Reporting Prio. Type of Service16
Automatic Manual Vulnerabilities Exploits

InsightVM (Nexpose) × × × × × B
Qualys Cloud Platform × × × × C
Qualys VM × × × × C
Acunetix by Invicti × × × × C
Nessus × × × × × S
Tenable.io × × × × C
AlienVault USM × × × × C
OpenVAS × × × × × × B
OpenSCAP × × × × S
Vulscan × × × × × × × S
Vuls × × × × × × × S
AMADEUS-Exploit × × × × × × × × S

sations. The purpose of this scenario is to include the most representative ap-771

plications and services that allow web browsing, external connectivity (through772

ssh tunnels and VPN), and service exposure (application server and content man-773

agers). For this purpose, we have used the following applications and services774

for this scenario: (1) Mozilla Firefox (any version) as one of the most used In-775

ternet browsers; (2) Adobe Flash 32 bits as a plugin for those browsers, which is776

affected by multiple vulnerabilities; (3) OpenSSH 7.7 or higher as a typical so-777

lution to enable external connections; (4) Apache HTTP server (any version) as778

a web application server with an OpenSSL as SSL/TLS provider to support se-779

cure connections; (5) Nginx 1.7 as an alternative Web server for web applications;780

(6) OpenVPN 2.3 as a client/server that enables secure external connections; (7)781

WordPress (any version and plugin) as the most widely used content management782

system on the Internet for the development of web applications. To make the783

scenario more interesting, we have included some extensions or plugins such as784

Adobe Flash for a web browser or OpenSSL on the web server, and some versions785

for applications and services but not for all.786

This set of applications and services represents the target elements to anal-787

yse. We have deployed each application and service in a separate container and788

scanned them using the Vulscan tool. When we did not have the exact version789

specified in the scenario available, we decided to use the closest version available.790

The results in terms of the identified vulnerabilities and exploits are given in Ta-791

ble 5. We can observe that there are some applications and services for which792

Vulscan cannot find vulnerabilities and exploits, such as in the case of Mozilla793

Firefox or OpenVPN. This table shows the total set of vulnerabilities and exploits794

that the user must take into account to develop a correct vulnerability management795

process. This is just the first step; now, it will be up to the stakeholders involved796

in the vulnerability management process (for example, security testers) to anal-797

29

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofyse, select and prioritise the set of vulnerabilities and exploits to test from the set798

provided.799

To compare the capabilities of AMADEUS-Exploit in identifying vulnerabili-800

ties and exploits regarding Vulscan, we can explore the search by terms. By man-801

ually including these applications and services as terms in AMADEUS-Exploit,802

it automatically extracts 3, 932 different items corresponding to vulnerabilities803

and exploits. They correspond to the NVD and Exploit-DB results from 2002804

to 2021. In particular, vulnerabilities and exploits are distributed as shown in Ta-805

ble 5. Moreover, the chosen CVEs cover many known affected configurations806

(CPEs). For example, a single Mozilla Firefox vulnerability, e.g., CVE-2020-807

6801, gathers approximately 450 CPEs. This gives an idea in terms of possible808

attack vectors affected by a single vulnerability.809

Table 5: Number of vulnerabilities and exploits per application and service.

Name
Vulscan AMADEUS-Exploit

CVE Exploits CVE Exploits Avg. Features Avg. Constrains
Mozilla Firefox - - 1,501 120 261 24
Adobe Flash - - 2 - 130 28
OpenSSH 3 13 2 2 48 15
Apache HTTP server 10 36 4 2 141 24
Nginx 6 3 3 - 119 12
OpenVPN - - 4 - 74 48
Wordpress 11 36 2,416 450 63 13

As explained in Section 4, AMADES-Exploit retrieved an FM for each vulner-810

ability. The FMs inferred for the evaluation and the source code for the AMADEUS-811

Exploit implementation are available17, free of charge.812

To analyse the key characteristics (features and constraints) of FM, Figures 7a813

and 7b show the number of features and constraints. Additionally, the average814

number of features and constraints for each application and service is included in815

Table 5 as complementary details.816

To evaluate the extraction capabilities of AMADEUS-Exploit, Figure 8 shows817

an analysis of the time required to scrap CVEs and exploits, extract CPEs and818

exploit information, and generate FMs. In Figure 8, the dots represent the time819

consumed in the creation of an FM for each CVE, i.e., the Y-axis is the time spent820

in the creation, specified in seconds, while on the X-axis each entry represents821

a CVE. The testing process developed to obtain the performance time runs each822

phase several times and calculates the average time taken for each phase (in sec-823

onds). The generation of FMs requires an appropriate time (sublinear time) in824

17https://doi.org/10.5281/zenodo.7072369

30

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

(a) Features per CVE. (b) Constraints per CVE.

Figure 7: Analysis of features and constraints per CVE.

the general case. However, we can observe that there are certain cases where the825

time is longer, since web scrapping is affected by the Internet response time of826

vulnerability and exploit repositories, i.e., NVD, VulDB and Exploit-DB.827

As mentioned in Section 4, model validation can be seen as a partial metric of828

correctness [42]. That is, a valid FM allows us to create at least one valid attack829

vector. Therefore, we have validated all FMs (i.e., valid model) to demonstrate830

that they succeed in obtaining at least one valid product (i.e., a complete selection831

of features in the FM). In this sense, the 3, 932 models have been successfully832

validated18. In this context, an attack vector is the selection of features in the FM833

related to products, vendors, OS, version, running configurations, exploits, etc.834

that describe a configuration with a vulnerability. Therefore, this configuration835

can be considered as an attack vector to be evaluated in vulnerability assessment.836

6.3. Evaluation in a real case837

The case study included in this section was part of the Security Observatory,838

a project of the University of Seville.19. The project aims to analyse and test the839

security of several systems. The security commission involved in the project pro-840

vides us with a list of target systems. To evaluate AMADEUS-Exploit, we have841

18FaMaPy valid operation was used.
19https://sic.us.es/seguridad-tic

31

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 8: Time consumed (seconds) in the whole process (Scrapping, Building FM and Including
Cross-tree Constrains).

chosen one of these real systems accessible through a public domain name20. The842

system behind the domain is a dedicated server that offers certain university ser-843

vices for the community. The system needed to be analysed, and information844

related to vulnerabilities and exploits was used to find the surface of the exposure845

and to define a risk treatment plan or mitigation plan for the system under anal-846

ysis. Although the system is known, the project required a black-box analysis to847

know of an entry point. For that reason, the analysis aims to demonstrate how to848

perform a vulnerability management process with AMADEUS-Exploit in a black-849

box scenario, where the characteristics of the underlying systems and software are850

completely unknown. Therefore, the purpose is to discover the target elements,851

identify potential vulnerabilities and exploits, and use reasoning capabilities to852

choose the appropriate vulnerabilities to cover the entire scenario.853

First, we launched AMADEUS-Exploit with automatic capabilities (cf. Sec-854

tion 3.1) to analyse the domain (only by giving the domain as input). Then, these855

terms have been extracted (automatically): f5, BIG-IP, load balancer, http, and856

proxy. Then, AMADEUS-Exploit automatically created FMs for those terms in857

relation to 167 CVEs and 13 exploits. The full list of CVEs and exploits can be858

20For confidentiality restrictions, the specific domain name cannot be provided.

32

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
offound in Appendix B. Additionally, we have determined the number of attack859

vectors for all FMs (cf., Appendix B) to evaluate their correctness.860

To help the expert in the choice of vulnerabilities, by applying ‘Reasoning861

about exploits’ operation (cf., Section 5), we can obtain which vulnerabilities con-862

tain at least one exploit and which do not. This information is not available in the863

NVD database nor in the Exploit-DB. Using this operation as a classification cri-864

terion, we can sort the vulnerabilities as shown in Appendix B. Therefore, experts865

can use this information provided by the AMADEUS-Exploit operation to priori-866

tise these 11 vulnerabilities first instead of others, as they provide some resources867

in the form of exploits. We can see how only 11 out of 167 vulnerabilities have868

exploits: {CVE-2012-1493, CVE-2008-0265, CVE-2008-0539, CVE-2008-7032,869

CVE-2014-2927, CVE-2014-2928, CVE-2014-8727, CVE-2012-2997, CVE-2015-870

4040, CVE-2015-3628, CVE-2018-5511}. Specially, the first one has 3 exploits871

to be used.872

In the lack of more information on systems and software, experts may be inter-873

ested in knowing those vulnerabilities that affect more known configurations (i.e.,874

represent more attack vectors). Using the operation ‘Reasoning about attack vec-875

tors’ (cf., Section 5), we can obtain all attack vectors for each vulnerability and use876

that number of vectors as an importance criterion to rank the vulnerabilities to be877

assessed. In that case, the top 10 vulnerabilities are {CVE-2019-6609, CVE-2018-878

5507, CVE-2017-6153, CVE-2019-6649, CVE-2018-5535, CVE-2018-5531, CVE-879

2018-15311, CVE-2018-5534, CVE-2018-5519, CVE-2018-5520}. Recall that880

the specific characteristics of the real system and software (product, vendor, OS,881

versions, etc.) are unknown, but we have identified certain aspects related to them.882

These vulnerabilities recovered the largest number of attack vectors and cover a883

wide spectrum of configurations, so they may be closer to the system and software884

in question.885

In a detailed analysis of FMs, we can use information related to the type, ven-886

dors, and products to choose vulnerabilities with the best attack vectors for our887

scenario. Applying ‘Reasoning about attack vectors’ (cf. Section 5) by using cer-888

tain filters, we have obtained the type, vendor, and products for each vulnerability889

shown in Appendix B. The number of identified vendors is a maximum of two890

for each vulnerability. The identified vendors are: f5 for 165 CVEs, Jenkins for891

CVE-2017-6153, CISCO for CVE-2018-5500, f5 and Vmware for CVE-2018-892

5511, f5 and Redhat for CVE-2019-6648. For our scenario, we identify ‘f5’ as893

a term. This information can be used by the expert to discard those CVEs that894

are not directly related to the ‘f5’ vendor, hence CVE-2017-6153 and CVE-2018-895

5500. Analysing the products, we can use a similar operation to obtain informa-896

33

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
oftion about the products and use this as criteria to order the vulnerabilities that897

affect more products. In that case, the top 10 vulnerabilities with the most prod-898

ucts are {CVE-2016-5022, CVE-2015-8099, CVE-2017-6128, CVE-2014-2927,899

CVE-2015-5516, CVE-2015-7394, CVE-2016-2084, CVE-2015-3628, CVE-2018-900

5516, CVE-2016-5021}. Likewise, we can use the terms associated with the prod-901

ucts to tune up the search for potential vulnerabilities for further assessment. As902

mentioned above, we identified the term BIG-IP, and the vulnerabilities containing903

this information are CVE-2008-7032 and CVE-2014-9342. However, we found904

no results within the CVEs filtering for the other two terms. Although experts may905

prioritise the evaluation for these two vulnerabilities, we cannot discard the other906

CVEs because we do not know if the products referring to CVEs are involved in907

our scenario.908

Finally, we can use the aforementioned criteria to define an adequate vulner-909

ability assessment. Thus, we propose to analyse first the CVEs with exploits and910

associated with the identifier vendor (f5) and product (BIG-IP), and then the CVEs911

that cover more attack vectors. The result is collected in Table 6. Of course, we912

cannot ignore the rest of the vulnerabilities, but those listed are the ones that best913

fit the scenario requirements identified by AMADEUS-Exploit and the different914

operations used. However, other reasoning queries can be used to further refine915

this proposed list.916

Table 6: List of 20-top vulnerabilities considered for evaluation.

Vulnerability Nº of attack vectors Exploits (EDBID) Vendors Products Versions
1 CVE-2012-1493 848 {exploit 19099 , exploit 19091, exploit 19064} 1 5 14
2 CVE-2008-0265 2 exploit 31024 1 1 1
3 CVE-2008-0539 2 exploit 31065 1 1 1
4 CVE-2008-7032 2 exploit 31133 1 1 1
5 CVE-2014-2927 390 exploit 34465 1 19 2
6 CVE-2014-2928 172 exploit 34927 1 9 1
7 CVE-2014-8727 58 exploit 35222 1 1 14
8 CVE-2012-2997 8 exploit 38233 1 1 18
9 CVE-2015-4040 796 exploit 38448 1 14 1
10 CVE-2015-3628 194 exploit 38764 1 18 9
11 CVE-2014-9342 2 - 1 1 14
12 CVE-2019-6609 26,450 - 1 14 14
13 CVE-2018-5507 1,998 - 1 13 13
14 CVE-2019-6649 1,314 - 1 14 14
15 CVE-2018-5535 1,176 - 1 13 13
16 CVE-2018-5531 1,168 - 1 13 13
17 CVE-2018-15311 924 - 1 13 1
18 CVE-2018-5534 870 - 1 13 13
19 CVE-2018-5519 868 - 1 13 13
20 CVE-2018-5520 868 - 1 13 13

The results were reported to the security commission and rapidly transferred917

34

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofto those administrators responsible for the system. The actions taken by the se-918

curity commission were to prioritise the analysis of the systems according to the919

vulnerabilities and exploits discovered to determine possible actions to take (e.g.,920

patches or updates) for the system. Now, the administrators responsible for the921

system must analyse the results in Table 6 to evaluate the vulnerabilities and ex-922

ploits discovered.923

7. Related Work924

System vulnerability scanning is a well-known problem to manage system925

risks [47][48]. To reduce risks, vulnerabilities must be collected and analysed926

to identify potential attacks and define adequate assessments (security testing).927

There are several works on these topics in the literature. Traditionally, vulnerabil-928

ity location and extraction focus on the analysis of source code or repositories in929

different directions, e.g., [49][50][51]. There are approaches based on static anal-930

ysis of the code [49], and others based on symbolic and dynamic analysis [51]. In931

terms of repository analysis, Neuhaus et al. [52] analyse the Mozilla vulnerability932

repository to provide a solution to predict the most prominent components that933

may be vulnerable. Jimenez et al. [50] present VulData7, a framework for auto-934

matically obtaining a dataset of NVD and Git vulnerabilities for specific systems.935

VulData7 allows to align vulnerabilities with possible fixes (patches), if any. From936

another perspective, Sanguino et al. [53] provide a tool called IVA that automates937

the search process for potential vulnerabilities in software products installed in938

organisations. This approach relies on an asset inventory, but our approach is de-939

coupled from the infrastructure, as AMADEUS-Exploit supports scanning tools940

such as Nmap, which allows us to discover assets and services automatically with-941

out the need for an inventory.942

Regarding vulnerability assessment, Dass et al. [5] and Murthy et al. [6] present943

solutions to obtain a set of vulnerabilities to be used in security testing. Dass et944

al. [5] propose a genetic algorithm approach to generate Common Vulnerability945

Scoring System (CVSS) vectors to find the best set of vulnerabilities for adequate946

security testing. However, the main drawback is that, after generating the CVSS947

vector, they have to search the CVE repository to find the vulnerabilities to use.948

On the contrary, Murthy et al. [6] focus on the coverage of the security test, ap-949

plying the concepts of pairwise testing. Thus, they assume that security testing950

is defined and only propose a coverage criterion to determine when the security951

testing process should stop by reducing the number of tests to be performed.952

35

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofIn the literature, formal [54] and pseudo-formal [55] structures have been used953

to identify vulnerabilities. In the contribution by Mulwad et al. [54], a term on-954

tology is created to identify future vulnerability terms to query the NVD. Jia et955

al. [17] use ML techniques on a cybersecurity knowledge base to extract entities956

and build an ontology to obtain a cybersecurity knowledge base. Then, the calcu-957

lation of formulas and the use of the path-ranking algorithm allow for the deriva-958

tion of new rules. The use of the knowledge base implies keeping this structure959

updated in case new terminology appears and not analysing in-depth the set of960

vulnerabilities of a system, providing less customised solutions. However, our ap-961

proach focusses on analysing the vulnerability of a system from its components,962

configurations, or terms introduced by experts.963

Other approaches, such as the contribution by Weerawardhana et al. [56], per-964

form information extraction from vulnerability databases, such as NVD [8], using965

Natural Language and ML techniques. This can be further used by applications,966

such as vulnerability scanners and security monitoring tools. In the contribution967

by Mulwad et al. [54], a framework is presented to detect and extract information968

about vulnerabilities and attacks from Web text. The use of exploits to analyse969

potential vulnerabilities has been an important area of research [57]. Previous970

work has analysed how exploits can be selected to reduce the risk produced by971

vulnerabilities [58, 59]. However, extracting and integrating them into a single972

model in which both vulnerabilities and exploits can be combined has been a973

challenge. Kenner et al. [19] pointed out this combination as necessary and it has974

been achieved innovatively in our AMADEUS-Exploit contribution.975

This introduces the use of FM to manage the variability of vulnerability and976

configuration of systems in a rational way. There are previous works in the litera-977

ture that use FM to represent system vulnerabilities [60][19]. In the contribution978

of ter Beek et al. [60], the authors use variability techniques to define the attack-979

defence scenario. However, Kenner et al. [19] built synthetic attack scenarios980

based on vulnerability analysis. Nevertheless, the most widely used methodology981

to obtain these models is still manual. In contrast to this, this paper provides a982

novel automated method capable of outperforming existing human-oriented ones.983

We use FMs to define a consistent and homogeneous structure representing con-984

figurations with vulnerabilities, and AMADEUS provides a solution that covers985

all phases of the process, from vulnerability extraction through reasoning to the986

creation of FMs.987

In the SPL area, the extraction of FMs from existing systems has already been988

addressed by reverse engineering techniques. These techniques are applicable in989

many tasks, but are mainly used to determine features, feature restrictions, and to990

36

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofgenerate complete feature models. There are several techniques applied to reverse991

engineering in SPL: search-based techniques [42]; using propositional logic [61];992

natural language requirements [62]; ad-hoc algorithms [63, 64, 65]; and, configu-993

ration scripts [44]. Most reverse engineering approaches focus on the application994

of different topics of software engineering. However, they are far from the partic-995

ular characteristics of cybersecurity and vulnerability issues, so in this paper we996

have considered the extraction of FMs from vulnerabilities.997

8. Threats to validity998

Even though the experiments presented in this paper provide pieces of evi-999

dence for validation, we discuss the different threats to validity that affect our1000

approach:1001

1. Internal validity. Although the evaluation performed on thousands of CVEs1002

demonstrates that there are no errors, the use of external databases may con-1003

tain uncontrolled errors to us. The analysis done in the evaluation reveals1004

different properties of FMs, vulnerabilities, known affected configurations,1005

and exploits. However, there might be characteristics that are not revealed,1006

e.g., the most prominent vulnerable feature. For instance, we can infer (in-1007

direct) relations between features and exploits that are not directly extracted1008

from the exploit databases. The main benefit of using FMs is the oppor-1009

tunity to use automatic analysis techniques over plain information that is1010

scattered through different and heterogeneous repositories. However, the1011

use of FMs introduces a disadvantage to experts in learning the logic under1012

the FMs and automatic analysis. Hence, our approach tries to fulfil this gap1013

by providing shortcuts.1014

2. External validity. Although the evaluation covers many CVEs and realistic1015

scenarios, we cannot generalise the conclusions for any scenario. AMADEUS-1016

Exploit is useful for different security stakeholders to reveal reasoning ca-1017

pabilities on vulnerability information that currently are not exploited, but1018

it would be necessary to carry out an external validation with experts.1019

3. Conclusion validity. Anyone can replicate the experiments, since we pro-1020

vide a repository with AMADEUS-Exploit source code and the models ex-1021

tracted for the evaluation.1022

37

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of9. Concluding Remarks & Future Directions1023

Vulnerability management is essential to avoid security risks. However, the1024

large amount of information in the different databases, the high complexity and1025

variability of system configurations, and the need for reasoning to assist the vul-1026

nerability management process make it very difficult to obtain an efficient solu-1027

tion. Therefore, it is essential to provide models that collect information from1028

vulnerability and exploit databases, and provide automatic analysis mechanisms1029

to support the vulnerability management process.1030

Previous solutions have faced this challenge, but the AMADEUS-Exploit frame-1031

work proposes a holistic solution to bridge the gap between vulnerability identifi-1032

cation and assessment through the application of feature models. It is an extension1033

of the AMADEUS framework presented in a previous work [20] that proposes a1034

methodology to automatically generate FMs and use them in automatic reasoning1035

to support vulnerability management, integrating some vulnerability and exploit1036

repositories. In addition to this functionality, the new AMADEUS-Exploit frame-1037

work addresses aspects such as the subsequent extraction of exploits to enable1038

vulnerability assessment, the incorporation of new vulnerability and exploit repos-1039

itories, and the improvement of reasoning models. AMADEUS-Exploit integrates1040

all functionality into a single FM model, including multiple reasoning operations1041

to facilitate the task of vulnerability management from identification to choosing1042

the most relevant vulnerabilities to assess.1043

The new framework has been evaluated in three different ways: 1) being com-1044

pared with other vulnerability management tools concerning certain capabilities1045

for the identification and reasoning of vulnerabilities and exploits; 2) in a synthetic1046

case in which almost 4,000 FMs have been extracted from typical applications and1047

services under high threat; and 3) being applied in real case scenario obtaining a1048

set of vulnerabilities and analysing their characteristics to choose the most rele-1049

vant ones to be considered for assessment according to the system and software1050

identified.1051

As future work directions, AMADEUS-Exploit has many potential extensions:1052

it can be extended (1) with decision-making techniques for attack vector gener-1053

ation; (2) using FMs to detect inconsistencies in vulnerability repositories; (3)1054

integrating other analysis tools (e.g., Lynis); (4) integrating other vulnerability1055

databases (e.g., CNVD, IBM X-Force, or US-Cert), etc. And last but not least, the1056

AMADEUS-Exploit process needs to be validated by external experts to make a1057

strong and practical validation.1058

38

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofAcknowledgements1059

This work has been funded by the projects COPERNICA (P20 01224), METAMORFO-1060

SIS (US-1381375), and AETHER-US (PID2020-112540RB-C44/AEI/10.13039/501100011033).1061

Disclosure1062

All authors are responsible for the concept of the paper, the results presented, and the1063

writing. All authors have approved the final content of the manuscript. No potential1064

conflict of interest was reported by the authors.1065

References1066

[1] P. Foreman, Vulnerability Management, Auerbach Publications, 2009.1067

[2] T. Yadav, A. M. Rao, Technical aspects of cyber kill chain, in: J. H. Abawajy,1068

S. Mukherjea, S. M. Thampi, A. Ruiz-Martı́nez (Eds.), Security in Computing and1069

Communications, Springer International Publishing, Cham, 2015, pp. 438–452.1070

[3] S. M. Perez, V. Cosentino, J. Cabot, Model-based analysis of java EE web security1071

misconfigurations, Comput. Lang. Syst. Struct. 49 (2017) 36–61.1072

[4] P. J. Morrison, R. Pandita, X. Xiao, R. Chillarege, L. Williams, Are vulnerabilities1073

discovered and resolved like other defects?, Empirical Software Engineering 23 (3)1074

(2018) 1383–1421.1075

[5] S. Dass, A. S. Namin, Vulnerability coverage for adequacy security testing, in: Pro-1076

ceedings of the 35th Annual ACM Symposium on Applied Computing, SAC ’20,1077

Association for Computing Machinery, New York, NY, USA, 2020, p. 540–543.1078

[6] P. Murthy, R. Shilpa, Vulnerability coverage criteria for security testing of web ap-1079

plications, in: 2018 International Conference on Advances in Computing, Commu-1080

nications and Informatics (ICACCI), 2018, pp. 489–494.1081

[7] P. Engebretson, The basics of hacking and penetration testing: ethical hacking and1082

penetration testing made easy, Elsevier, 2013.1083

[8] National Vulnerability Database, Available from NIST (2020).1084

URL https://nvd.nist.gov/1085

[9] P. Kuehn, M. Bayer, M. Wendelborn, C. Reuter, Ovana: An approach to analyze and1086

improve the information quality of vulnerability databases, in: The 16th Interna-1087

tional Conference on Availability, Reliability and Security, ARES 2021, Association1088

for Computing Machinery, New York, NY, USA, 2021.1089

39

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of[10] S. Zhang, X. Ou, D. Caragea, Predicting cyber risks through national vulnerability1090

database, Information Security Journal: A Global Perspective 24 (4-6) (2015) 194–1091

206.1092

[11] M. Gawron, F. Cheng, C. Meinel, Automatic detection of vulnerabilities for ad-1093

vanced security analytics, in: 2015 17th Asia-Pacific Network Operations and Man-1094

agement Symposium (APNOMS), 2015, pp. 471–474.1095

[12] R. Tommy, G. Sundeep, H. Jose, Automatic detection and correction of vulnerabili-1096

ties using machine learning, in: 2017 International Conference on Current Trends in1097

Computer, Electrical, Electronics and Communication (CTCEEC), 2017, pp. 1062–1098

1065.1099

[13] J. A. Wang, M. Guo, OVM: an ontology for vulnerability management., in: F. T.1100

Sheldon, G. Peterson, A. W. Krings, R. K. Abercrombie, A. Mili (Eds.), CSIIRW,1101

ACM, 2009, p. 34.1102

URL http://dblp.uni-trier.de/db/conf/csiirw/csiirw2009.1103

html#WangG091104

[14] T. Palmaers, Implementing a Vulnerability Management Process, Tech. rep., SANS1105

Institute (01 2021).1106

[15] J. A. Wang, M. Guo, Security data mining in an ontology for vulnerability manage-1107

ment, in: 2009 International Joint Conference on Bioinformatics, Systems Biology1108

and Intelligent Computing, IEEE, 2009, pp. 597–603.1109

[16] R. Syed, Cybersecurity vulnerability management: A conceptual ontology and1110

cyber intelligence alert system, Information & Management 57 (6) (2020) 103334.1111

doi:https://doi.org/10.1016/j.im.2020.103334.1112

URL https://www.sciencedirect.com/science/article/pii/1113

S03787206203027181114

[17] Y. Jia, Y. Qi, H. Shang, R. Jiang, A. Li, A practical approach to constructing a1115

knowledge graph for cybersecurity, Engineering 4 (1) (2018) 53 – 60, cybersecurity.1116

[18] Common Vulnerability Scoring System SIG, Available from FIRST (2020).1117

URL https://www.first.org/cvss/1118

[19] A. Kenner, S. Dassow, C. Lausberger, J. Krüger, T. Leich, Using variability mod-1119

eling to support security evaluations: virtualizing the right attack scenarios, in: Va-1120

MoS ’20, 2020, pp. 10:1–10:9.1121

40

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of[20] Á. J. Varela-Vaca, R. M. Gasca, J. A. Carmona-Fombella, M. T. G. López,1122

AMADEUS: towards the automated security testing, in: SPLC ’20, ACM, 2020,1123

pp. 11:1–11:12.1124

[21] M. Parmelee, H. Booth, D. Waltermire, K. Scarfone, Common platform enumera-1125

tion: Name matching specification version 2.3 (2011-08-19 2011).1126

[22] Common Vulnerability Exposure, Available from MITRE (2020).1127

URL http://cve.mitre.org/1128

[23] Exploit Database, Offensive Security (2021).1129

URL https://www.exploit-db.com/1130

[24] W. Xiong, R. Lagerström, Threat modeling – a systematic literature review,1131

Computers & Security 84 (2019) 53–69. doi:https://doi.org/10.1016/1132

j.cose.2019.03.010.1133

URL https://www.sciencedirect.com/science/article/pii/1134

S01674048183074781135

[25] P. Clements, L. Northrop, Software product lines, Addison-Wesley Boston, 2002.1136

[26] F. Roos Frantz, D. F. Benavides Cuevas, A. Ruiz Cortés, Feature model to orthogonal1137

variability model transformation towards interoperability between tools, in: Kiss1138

Workshop@ ASE2009, Auckland, New Zealand, 2009.1139

[27] D. Benavides, S. Segura, A. Ruiz-Cortés, Automated analysis of feature models 201140

years later, Information Systems 35 (6) (2010) 615–636.1141

[28] A. J. Varela-Vaca, R. M. Gasca, R. Ceballos, M. T. Gómez-López, P. B. Torres,1142

Cyberspl: A framework for the verification of cybersecurity policy compliance of1143

system configurations using software product lines, Applied Sciences 9 (24) (2019).1144

[29] M. Acher, P. Collet, P. Lahire, R. B. France, FAMILIAR: A domain-specific lan-1145

guage for large scale management of feature models, Science of Computer Pro-1146

gramming (SCP) 78 (6) (2013) 657–681.1147

[30] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, T. Leich, Featureide: An1148

extensible framework for feature-oriented software development, Science of Com-1149

puter Programming 79 (2014) 70–85.1150

[31] D. Benavides, P. Trinidad, A. R. Cortés, S. Segura, FaMa, Springer Berlin Heidel-1151

berg, 2013, Ch. FaMa, pp. 163–171.1152

41

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of[32] J. A. Galindo, D. Benavides, A python framework for the automated analysis of1153

feature models: A first step to integrate community efforts, SPLC ’20, Association1154

for Computing Machinery, New York, NY, USA, 2020, p. 52–55.1155

[33] M. Mendonca, M. Branco, D. Cowan, S.p.l.o.t.: Software product lines online tools,1156

OOPSLA ’09, Association for Computing Machinery, New York, NY, USA, 2009,1157

p. 761–762.1158

[34] R. Mazo, J. C. Muñoz Fernández, L. Rincón, C. Salinesi, G. Tamura, Variamos: An1159

extensible tool for engineering (dynamic) product lines, SPLC ’15, Association for1160

Computing Machinery, New York, NY, USA, 2015, p. 374–379.1161

[35] A. Schmitt, G. Rock, C. Bettinger, Glencoe – a tool for specification, visualization1162

and formal analysis of product lines, 2018.1163

[36] A. Oyler, H. Saiedian, Security in automotive telematics: a survey of threats and risk1164

mitigation strategies to counter the existing and emerging attack vectors, Security1165

and Communication Networks 9 (17) (2016) 4330–4340.1166

[37] F. Skopik, R. Fiedler, O. Lendl, Cyber attack information sharing, Datenschutz und1167

Datensicherheit 38 (4) (2014) 251–256.1168

[38] P. Foreman, Vulnerability Management, Second Edition, Auerbach Publications,1169

Milton, 2019.1170

[39] S. Shah, B. M. Mehtre, An overview of vulnerability assessment and penetration1171

testing techniques, J. Comput. Virol. Hacking Tech. 11 (1) (2015) 27–49.1172

[40] M. Backes, J. Hoffmann, R. Künnemann, P. Speicher, M. Steinmetz, Simulated pen-1173

etration testing and mitigation analysis, CoRR abs/1705.05088 (2017). arXiv:1174

1705.05088.1175

[41] The Community-Driven Vulnerability Database, Available from VULDB (2020).1176

URL https://vuldb.com/1177

[42] R. Lopez-Herrejon, L. Linsbauer, J. Galindo, J. Parejo, D. Benavides, S. Segura,1178

A. Egyed, An assessment of search-based techniques for reverse engineering feature1179

models, JSS 103 (2015) 353–369.1180

[43] Ángel Jesús Varela-Vaca, R. M. Gasca, Towards the automatic and optimal selection1181

of risk treatments for business processes using a constraint programming approach,1182

Information & Software Technology 55 (11) (2013) 1948–1973.1183

42

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of[44] S. She, R. Lotufo, T. Berger, A. Wa¸sowski, K. Czarnecki, Reverse engineering1184

feature models, in: ICSE, 2011, pp. 461–470.1185

[45] A. S. Karataş, H. Oğuztüzün, A. Doğru, From extended feature models to constraint1186

logic programming, Science of Computer Programming 78 (12) (2013) 2295 – 2312,1187

special Section on SPLC 2010 and FSEN 2011.1188

[46] C. Seidl, T. Winkelmann, I. Schaefer, A software product line of feature modeling1189

notations and cross-tree constraint languages, in: A. Oberweis, R. Reussner (Eds.),1190

Modellierung 2016, Gesellschaft für Informatik e.V., Bonn, 2016, pp. 157–172.1191

[47] P. Sterlini, F. Massacci, N. Kadenko, T. Fiebig, M. van Eeten, Governance chal-1192

lenges for european cybersecurity policies: Stakeholder views, IEEE Secur. Priv.1193

18 (1) (2020) 46–54.1194

[48] M. Jimenez, R. Rwemalika, M. Papadakis, F. Sarro, Y. L. Traon, M. Harman, The1195

importance of accounting for real-world labelling when predicting software vulner-1196

abilities, ACM, 2019, pp. 695–705.1197

[49] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl, Y. Acar,1198

Vccfinder: Finding potential vulnerabilities in open-source projects to assist code1199

audits, CCS ’15, Association for Computing Machinery, New York, NY, USA, 2015,1200

p. 426–437.1201

[50] M. Jimenez, Y. Le Traon, M. Papadakis, [engineering paper] enabling the continuous1202

analysis of security vulnerabilities with vuldata7, in: 2018 IEEE 18th International1203

Working Conference on Source Code Analysis and Manipulation (SCAM), 2018,1204

pp. 56–61.1205

[51] C. Y. Cho, D. Babić, P. Poosankam, K. Z. Chen, E. X. Wu, D. Song, Mace: Model-1206

inference-assisted concolic exploration for protocol and vulnerability discovery, in:1207

Proceedings of the 20th USENIX Conference on Security, SEC’11, USENIX Asso-1208

ciation, USA, 2011, p. 10.1209

[52] S. Neuhaus, T. Zimmermann, C. Holler, A. Zeller, Predicting vulnerable software1210

components, in: Proceedings of the 14th ACM Conference on Computer and Com-1211

munications Security, CCS ’07, Association for Computing Machinery, New York,1212

NY, USA, 2007, p. 529–540.1213

[53] L. A. B. Sanguino, R. Uetz, Software vulnerability analysis using cpe and cve1214

(2017). arXiv:1705.05347.1215

43

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of[54] V. Mulwad, W. Li, A. Joshi, T. Finin, K. Viswanathan, Extracting information about1216

security vulnerabilities from web text, in: 2011 IEEE/WIC/ACM International Con-1217

ferences on Web Intelligence and Intelligent Agent Technology, Vol. 3, 2011, pp.1218

257–260.1219

[55] B. O. Emeka, S. Liu, Assessing and extracting software security vulnerabilities in1220

sofl formal specifications, in: 2018 International Conference on Electronics, Infor-1221

mation, and Communication (ICEIC), 2018, pp. 1–4.1222

[56] S. S. Weerawardhana, S. Mukherjee, I. Ray, A. E. Howe, Automated extraction of1223

vulnerability information for home computer security, in: FPS, 2014.1224

[57] J. Jacobs, S. Romanosky, I. Adjerid, W. Baker, Improving vulnerability remediation1225

through better exploit prediction, J. Cybersecur. 6 (1) (2020).1226

[58] O. Suciu, C. Nelson, Z. Lyu, T. Bao, T. Dumitras, Expected exploitability: Pre-1227

dicting the development of functional vulnerability exploits (2021). arXiv:1228

2102.07869.1229

[59] M. Bozorgi, L. Saul, S. Savage, G. M. Voelker, Beyond heuristics: Learning to1230

classify vulnerabilities and predict exploits, in: Proceedings of the Sixteenth ACM1231

Conference on Knowledge Discovery and Data Mining (KDD-2010), 2010, pp. 105–1232

113.1233

[60] M. H. ter Beek, A. Legay, A. L. Lafuente, A. Vandin, Variability meets security:1234

Qantitative security modeling and analysis of highly customizable attack scenarios,1235

VAMOS ’20, Association for Computing Machinery, New York, NY, USA, 2020.1236

[61] K. Czarnecki, A. Wasowski, Feature diagrams and logics: There and back again, in:1237

11th International Software Product Line Conference (SPLC 2007), IEEE, 2007, pp.1238

23–34.1239

[62] N. Weston, R. Chitchyan, A. Rashid, A framework for constructing semantically1240

composable feature models from natural language requirements, in: Proceedings of1241

the 13th International Software Product Line Conference, 2009, pp. 211–220.1242

[63] E. N. Haslinger, R. E. Lopez-Herrejon, A. Egyed, On extracting feature models from1243

sets of valid feature combinations, in: FASE, Springer, 2013, pp. 53–67.1244

[64] M. Acher, A. Cleve, G. Perrouin, P. Heymans, C. Vanbeneden, P. Collet, P. Lahire,1245

On extracting feature models from product descriptions, in: VAMOS, 2012, pp. 45–1246

54.1247

44

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of[65] E. N. Haslinger, R. E. Lopez-Herrejon, A. Egyed, Reverse engineering feature mod-1248

els from programs’ feature sets, in: 2011 18th Working Conference on Reverse1249

Engineering, IEEE, 2011, pp. 308–312.1250

45

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofAppendix A. Feature model construction algorithms1251

For a better understanding of each part of the algorithm, some concepts are intro-1252

duced. Let L be a list of n configurations (CPEs) and LEXP a list of exploits for a given1253

CVE. L could be considered as a composition of two smaller lists, LV UL = {cpe1, cpe2,1254

. . . , cpej} and LRC = {cpej+1, cpej+2, . . . , cpen}, containing vulnerable configurations1255

and running configurations (i.e., execution environments), respectively. In the same way,1256

LEXP is the list of exploits {exp1, exp2, exp3, . . . , expm}, if any. The content of both1257

lists with respect to the running example in Table 3 would be: LV UL = {cpe1, cpe2, cpe3,1258

cpe4, cpe5}, LRC= {cpe6}, and LEXP = {exp1, exp2, exp3}.1259

Derived from the special characteristics mentioned of the CPE attributes (product,1260

vendor and part), some functions are defined below:1261

• getV endors(L) returns the vendors associated with the list L of CPEs. For exam-1262

ple, getVendors(L) = {‘oteachy’, ‘olearni’, ‘origin’}.1263

• getProducts(L, vi) returns a list of products for a vendor vi for a given list L of1264

CPEs. For example, getProducts(L, ‘oteachy’) = {‘lynx’, ‘ocelot’}.1265

• getAttributes(L, pi) returns a list of attributes that are relevant for the product pi1266

because they do not have ‘*’ in every CPE of L. For example, getAttributes(L,1267

‘civet’)={‘version’, ‘language’}.1268

• getV alues(L, pi, aj) returns a list of values for the attribute aj for a product pi in1269

a list L of CPEs. For example, getValues(L, ‘civet’, ‘version’)={‘1.0.0’, ‘1.0.1’,1270

‘1.0.2’}.1271

• getTypes(L) returns the parts associated to the list L of CPEs. For example, there1272

is only CPEs with ‘a’ (application) part, hence getTypes(L) = {‘application’}.1273

Other operators have been defined when developing the algorithms. These operators1274

are grouped into two categories:1275

1. Operators to get information from a list L of CPEs:1276

• vul(L) takes a list L of CPEs as input and returns the list of vulnerable con-1277

figurations, LV UL. For the example, vul(L)={cpe1, cpe2, cpe3, cpe4, cpe5}.1278

• rc(L) takes a list L of CPEs as input and returns a map (list of pairs key→value)1279

indexing the running environment configurations in LRC . For the example,1280

rc(L)=[‘rc1’→ {cpe6}].1281

• getRC(L, rci) returns a list of CPEs associated to the rci in the running1282

configurations LRC . For the example, getValues(LRC , ‘rc1’)={cpe6}.1283

46

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of2. Operators to build FM structures:1284

• createRootF (FM,n) creates a new feature in the FM named n and estab-1285

lishes it as root.1286

• man(FM, f1, f2) creates two new features if they do not already exist, and1287

a mandatory relationship between them.1288

• opt(FM, f1, f2) creates two new features if they do not already exist, and an1289

optional relation between them.1290

• xor(FM, f,A) creates a new feature f in FM if it does not already exist,1291

and an XOR-Alternative relation between it and the set of alternative features1292

A ⊂ FM .1293

• children(FM, f, C) creates a new feature f in FM if it does not already1294

exist, and a relation with a set of children features C ⊂ FM :1295

– If |C| = 1, a new mandatory relation is added between f and c ∈ C;1296

i.e., man(FM, f, c).1297

– If |C| > 1, a new XOR-Alternative relation is added between r and1298

∀c ∈ C; i.e., xor(FM, f, C).1299

• merge(FM, f, S) creates a new feature f in FM if it does not already exist,1300

and a relation with set S of FMs. Let R be the set of roots ∀FMi ∈ S, the1301

operator merge creates a new relation between f and every rootj ∈ R; i.e.,1302

children(FM, f,R).1303

A set of operators is introduced to facilitate understanding of Algorithm 3:1304

• getLeaves(FM) takes a feature model FM , and returns the set of leaves of FM ,1305

which are the values of the relevant attributes. For the example, getLeaves(FM)1306

= {‘1.0.0’, ‘1.0.1’, ‘1.0.2’, ‘fr’, ‘ANY’, ‘es’, ‘NA’}.1307

• isRC(L, f) takes a list L of CPEs and a value f which represents a feature, return-1308

ing true value if f belongs to any running configuration of L, false otherwise. For1309

the example, isRC(L, ‘fr’) = false or isRC(L, ‘NA′) = true.1310

• getSiblings(L, f) takes a list L of CPEs and a value f which represents a feature,1311

returning a list of values that are siblings of it and belong to the same product in1312

L. For the example, getSiblings(L, ‘1.0.0’) = ‘fr’ or getSiblings(L, ‘1.0.1’) =1313

‘ANY ’ or getSiblings(L, ‘es’) = {}.1314

• getRelatedRC(L, f) takes a list L of CPEs and a value f which represents a1315

feature, returning a list of values that represent the related running configurations in1316

L. For the example, getRelatedRC(L, ‘1.0.0’) = {} or getSiblings(L, ‘ocelot’)1317

= ‘rc1’ or getRelatedRC(L, ‘es’) = {‘rc1’}.1318

47

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofAlgorithm 1: Build unrestricted FM from a CVE.

Input: CVE-ID, L : {cpe1, cpe2, . . . , cpen}, LEXP : {exp1, exp2, . . . , expm}
Result: fm: Feature Model

1 listOfFMV UL−EXP ← {}; listOfFMRC ← {}; fm← {};
2 LV UL = vul(L); LRC = rc(L);
3 /* Create the root of FM */
4 createRootF (fm, CVE-ID);
5 /* Create FMs for the list of CPEs */
6 listOfFMV UL−EXP ← createSubFMs(LV UL, LEXP);
7 /* Merge the FMs from Exploits and CPEs*/
8 for fmvuli ∈ listOfFMV UL−EXP do
9 merge(fm, CVE-ID, fmvuli);

10 end
11 /* Create a branch for part in the FM */
12 children(fm, ‘type′, getTypes(L));
13 /* Include the Running Configurations in FM*/
14 if |LRC | > 0 then
15 /* Create a node that will contain all RCs */
16 opt(fm, CVE-ID, “rc”);
17 /* Create an FM for each RC */
18 for rci ∈ LRC do
19 /* Retrieve list of sub-models by Algorithm 2 */

listOfFMV UL−EXP ← createSubFMs(getRC(LRC , rci));
20 /* Merge FMs together */
21 for fmrci ∈ listOfFMRC do
22 merge(fm, rci, fmrci);
23 end
24 end
25 end

• getProducts(L) takes a list L of CPEs, and returns a list of values that represent1319

the products in L. For the example, getProducts(L) = {‘ocelot’, ‘civet’, ‘lynx’1320

}.1321

• getRelatedType(L, p) takes a list L of CPEs, a value f representing a product1322

feature, and returns a list of values that represent the related type in L. For the1323

example, getRelatedType(L, ‘civet’) = {application} or getRelatedType(L,1324

‘ocelot’) = {application}.1325

48

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofAlgorithm 2: Create sub-FMs.

Input: L : {cpe1, cpe2, cpe3, . . . , cpen}, LEXP : {exp1, exp2, . . . , expm}
Result: listOfFM : List of FMs

1 listOfFM ← {};
2 /* Create new FM representing each vendor */
3 for vi ∈ getV endors(L) do
4 fm← {};
5 /* Include all vendors as root feature */
6 createRootF (fm, vi);
7 for pj ∈ getProducts(L, vi) do
8 for ak ∈ getAttributes(L, pj) do
9 /* Create features and relations between them, representing the

values ak that the attributes may take */
10 children(fm, ak, getV alues(L, ak, pj));
11 end
12 /* Create features and relations between the product pk and their

attributes */
13 children(fm, pj , getAttributes(L, pj));
14 end
15 /* Create features and relations representing the vendor vi and the products

*/
16 children(fm, vi, getProducts(L, vi));
17 listOfFM ← fm;
18 end
19 /* Create new FM representing the exploits */
20 fmexp ← {};
21 if |LEXP | > 0 then
22 /* Create root feature for exploits */
23 createRootF (fmexp,

′ exploits′);
24 for expi ∈ LEXP do
25 /* Create features and relations between ‘exploits’ and concrete exploit

expi */
26 children(fmexp, ‘exploits

′, expi);
27 end
28 end
29 listOfFM ← fmexp;

• const(FM, f, C) takes a source feature f ∈ FM and a set of target features C ⊂1326

49

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofFM :1327

– If |C| = 1, a new Require constraint relation is added between f and c ∈ C.1328

– If |C| > 1, a new XOR-require constraint is added between f and ∀c ∈ C.1329

Algorithm 3: Create Cross-tree Constraints for unrestricted FM.
Input: L : {cpe1, cpe2, cpe3, . . . , cpen}, FM : Feature Model
Result: FM : Feature Model with Constraints

1 /* For each product in L */
2 products← getProducts(L);
3 for pi ∈ products do
4 /* Include a new cross-tree for each relative Type */
5 types← getRelatedType(FM, pi);
6 const(FM, types, pi);
7 end
8 /* Obtain the FM leaves */
9 leaves← getLeaves(FM);

10 /* For each leaf */
11 for leaf ∈ leaves do
12 if ¬isRC(L, leaf) then
13 /* Get other leaves related to the same CPE */
14 listSiblings← getSiblings(L, leaf);
15 /* Include a new cross-tree for each relative leaf */
16 for si ∈ listSiblingsAttr do
17 const(FM, leaf, si);
18 end
19 /* Get RC related to the leaf */
20 listRelatedRC ← getRelatedRC(L, leaf);
21 /* Include a new cross-tree for each relative RC */
22 for rci ∈ listRelatedRC do
23 const(FM, leaf, rci);
24 end
25 end
26 end

Appendix B. Information about vulnerabilities, exploits, and known vulner-1330

able configurations.1331

50

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofVulnerability Nº of at-

tack vec-
tors

Exploits
(EDB-ID)

Type Vendors Products Versions

CVE-2012-1493 848 {exploit 19099
exploit 19091
exploit 19064}

App - OS
- Hw

1 5 14

CVE-2008-0265 2 exploit 31024 OS 1 1 1
CVE-2008-0539 2 exploit 31065 OS 1 1 1
CVE-2008-7032 2 exploit 31133 Hw 1 1 1
CVE-2014-2927 390 exploit 34465 App 1 19 2
CVE-2014-2928 172 exploit 34927 App 1 9 1
CVE-2014-8727 58 exploit 35222 App 1 1 14
CVE-2012-2997 8 exploit 38233 App 1 1 18
CVE-2015-4040 796 exploit 38448 App 1 14 1
CVE-2015-3628 194 exploit 38764 App 1 18 9
CVE-2018-5511 114 exploit 46600 App 2 16 13
CVE-1999-1550 2 - OS 1 1 5
CVE-2005-2245 10 - OS 1 1 1
CVE-2008-1503 2 - OS 1 1 19
CVE-2008-6474 2 - OS 1 1 9
CVE-2009-4420 22 - App - Hw 1 3 1
CVE-2012-3000 98 - App - Hw 1 10 16
CVE-2013-0150 22 - App - Hw 1 2 1
CVE-2013-5975 12 - App - Hw 1 1 1
CVE-2013-5976 20 - App - Hw 1 1 1
CVE-2013-6016 172 - App 1 9 1
CVE-2013-6024 42 - App - Hw 1 3 3
CVE-2013-7408 10 - App 1 1 10
CVE-2014-3959 56 - App 1 14 1
CVE-2014-4023 300 - App - Hw 1 14 9
CVE-2014-4024 312 - App 1 13 3
CVE-2014-6031 352 - App 1 14 1
CVE-2014-8730 272 - App 1 14 14
CVE-2014-9326 78 - App 1 9 13
CVE-2014-9342 2 - App 1 1 14
CVE-2015-1050 72 - App 1 1 14
CVE-2015-4637 14 - App 1 4 1
CVE-2015-4638 114 - App 1 10 4

51

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofCVE-2015-5058 62 - App 1 12 10

CVE-2015-5516 386 - App 1 18 12
CVE-2015-6546 202 - App 1 13 18
CVE-2015-7394 252 - App 1 18 13
CVE-2015-8021 142 - App 1 13 18
CVE-2015-8022 236 - App 1 14 13
CVE-2015-8098 14 - App 1 1 14
CVE-2015-8099 218 - App 1 21 1
CVE-2015-8240 56 - App 1 10 21
CVE-2016-1497 272 - App 1 14 10
CVE-2016-2084 212 - App 1 18 14
CVE-2016-3686 36 - App 1 2 18
CVE-2016-3687 20 - App 1 2 2
CVE-2016-4545 18 - App 1 9 2
CVE-2016-5020 278 - App 1 14 9
CVE-2016-5021 146 - App 1 16 14
CVE-2016-5022 286 - App 1 22 16
CVE-2016-5023 100 - App 1 13 22
CVE-2016-5024 54 - App 1 10 13
CVE-2016-5700 134 - App 1 8 10
CVE-2016-5736 188 - App 1 15 8
CVE-2016-5745 32 - App 1 1 15
CVE-2016-6249 160 - App 1 11 1
CVE-2016-6876 256 - App 1 14 11
CVE-2016-7467 12 - App 1 1 14
CVE-2016-7468 130 - App 1 10 1
CVE-2016-7472 4 - App 1 1 10
CVE-2016-7474 246 - App 1 14 1
CVE-2016-7476 136 - App 1 10 14
CVE-2016-9245 60 - App 1 10 10
CVE-2016-9250 268 - App 1 14 10
CVE-2016-9251 80 - App 1 10 14
CVE-2016-9252 312 - App 1 14 10
CVE-2016-9253 60 - App 1 10 14
CVE-2016-9256 80 - App 1 10 10
CVE-2016-9257 8 - App 1 1 10
CVE-2017-0301 22 - App 1 1 1
CVE-2017-0302 10 - App 1 1 1

52

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofCVE-2017-0303 184 - App 1 8 1

CVE-2017-0305 4 - App 1 1 8
CVE-2017-6128 206 - App 1 21 1
CVE-2017-6129 4 - App 1 1 21
CVE-2017-6131 90 - App 1 9 1
CVE-2017-6132 300 - App 1 11 9
CVE-2017-6133 112 - App 1 10 11
CVE-2017-6134 528 - App 1 11 10
CVE-2017-6135 22 - App 1 11 11
CVE-2017-6136 124 - App 1 11 11
CVE-2017-6137 100 - App 1 11 11
CVE-2017-6138 124 - App 1 11 11
CVE-2017-6139 4 - App 1 1 11
CVE-2017-6141 48 - App 1 8 1
CVE-2017-6142 18 - App 1 1 8
CVE-2017-6143 82 - App 1 2 1
CVE-2017-6144 6 - App 1 1 2
CVE-2017-6145 80 - App 1 10 1
CVE-2017-6147 40 - App 1 10 10
CVE-2017-6148 368 - App 1 8 10
CVE-2017-6150 146 - App 1 10 8
CVE-2017-6151 26 - App 1 13 10
CVE-2017-6152 4 - App 1 1 13
CVE-2017-6153 1718 - App 1 1 1
CVE-2017-6154 20 - App 1 1 1
CVE-2017-6155 452 - App 1 11 1
CVE-2017-6156 438 - App 1 13 11
CVE-2017-6157 206 - App 1 8 13
CVE-2017-6158 534 - App 1 13 8
CVE-2017-6159 86 - App 1 8 13
CVE-2017-6160 52 - App 1 2 8
CVE-2017-6161 344 - App 1 11 2
CVE-2017-6162 212 - App 1 8 11
CVE-2017-6163 234 - App 1 8 8
CVE-2017-6164 352 - App 1 13 8
CVE-2017-6165 220 - App 1 11 13
CVE-2017-6167 112 - App 1 10 11
CVE-2017-6169 18 - App 1 1 10

53

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofCVE-2018-15311 924 - App 1 13 1

CVE-2018-15312 778 - App 1 13 13
CVE-2018-15313 62 - App 1 1 13
CVE-2018-15314 62 - App 1 1 1
CVE-2018-15315 778 - App 1 13 1
CVE-2018-15316 42 - App 1 2 13
CVE-2018-15332 276 - App 1 2 2
CVE-2018-5500 4 - OS 1 1 2
CVE-2018-5501 416 - App 1 13 1
CVE-2018-5502 278 - App 1 13 13
CVE-2018-5503 40 - App 1 1 13
CVE-2018-5504 436 - App 1 13 1
CVE-2018-5505 20 - App 1 2 13
CVE-2018-5506 556 - App 1 13 2
CVE-2018-5507 1998 - App 1 13 13
CVE-2018-5508 52 - App 1 1 13
CVE-2018-5509 288 - App 1 8 1
CVE-2018-5510 156 - App 1 13 8
CVE-2018-5512 168 - App 1 13 13
CVE-2018-5513 824 - App 1 13 13
CVE-2018-5514 168 - App 1 13 13
CVE-2018-5515 168 - App 1 13 13
CVE-2018-5516 858 - App 1 16 16
CVE-2018-5517 168 - App 1 13 13
CVE-2018-5518 352 - App 1 13 13
CVE-2018-5519 868 - App 1 13 13
CVE-2018-5520 868 - App 1 13 13
CVE-2018-5521 558 - App 1 13 13
CVE-2018-5522 638 - App 1 13 13
CVE-2018-5523 614 - App 1 14 14
CVE-2018-5524 328 - App 1 11 11
CVE-2018-5525 702 - App 1 13 13
CVE-2018-5526 14 - App 1 1 1
CVE-2018-5529 244 - App 1 2 2
CVE-2018-5530 484 - App 1 9 9
CVE-2018-5531 1168 - App 1 13 13
CVE-2018-5532 760 - App 1 13 13
CVE-2018-5533 638 - App 1 13 13

54

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofCVE-2018-5534 870 - App 1 13 13

CVE-2018-5535 1176 - App 1 13 13
CVE-2018-5536 56 - App 1 1 1
CVE-2018-5537 806 - App 1 10 10
CVE-2018-5538 118 - App 1 4 4
CVE-2018-5539 52 - App 1 1 1
CVE-2018-5540 118 - App 1 5 5
CVE-2018-5541 48 - App 1 1 1
CVE-2018-5542 866 - App 1 13 13
CVE-2018-5543 20 - App 1 1 1
CVE-2018-5544 48 - App 1 1 1
CVE-2018-5546 48 - App 1 2 2
CVE-2018-5547 6 - App 1 1 1
CVE-2019-6595 46 - App 1 1 1
CVE-2019-6609 26450 - App 1 14 14
CVE-2019-6648 3 - App 2 1 1
CVE-2019-6649 1314 - App 1 14 14
CVE-2019-6650 106 - App 1 1 1
CVE-2019-6665 104 - App 1 4 4
CVE-2020-5944 2 - App 1 1 1

55

Journal Pre-proof

De

☒

th

☐
as

Jo
ur

na
l P

re
-p

ro
of

claration of interests

 The authors declare that they have no known competing financial interests or personal relationships

at could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered
 potential competing interests:

