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NUMERICAL ANALYSIS FOR A CHEMOTAXIS-NAVIER–STOKES SYSTEM

Abelardo Duarte-Rodŕıguez1, Maŕıa Ángeles Rodŕıguez-Bellido2,
Diego A. Rueda-Gómez1 and Élder J. Villamizar-Roa1,*

Abstract. In this paper we develop a numerical scheme for approximating a 𝑑-dimensional chemotaxis-
Navier–Stokes system, 𝑑 = 2, 3, modeling cellular swimming in incompressible fluids. This model de-
scribes the chemotaxis-fluid interaction in cases where the chemical signal is consumed with a rate
proportional to the amount of organisms. We construct numerical approximations based on the Finite
Element method and analyze optimal error estimates and convergence towards regular solutions. In or-
der to construct the numerical scheme, we use a splitting technique to deal with the chemo-attraction
term in the cell-density equation, leading to introduce a new variable given by the gradient of the
chemical concentration. Having the equivalent model, we consider a fully discrete Finite Element ap-
proximation which is well-posed and mass-conservative. We obtain uniform estimates and analyze the
convergence of the scheme. Finally, we present some numerical simulations to verify the good behavior
of our scheme, as well as to check numerically the optimal error estimates proved in our theoretical
analysis.
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1. Introduction

Chemotaxis is the oriented movement of cells towards the concentration gradient of certain chemicals in
their environment. In particular, when the movement of cells is directed towards the increasing concentration
of a signal, the phenomenon is known as chemotaxis by attraction. This kind of phenomena, which play an
outstanding role in a large range of biological applications, are modeled, in their simplest form, by the Keller–
Segel system. However, some experimental studies, as reported in [17,30], reveal that the chemotactic motion in
liquid environments affects substantially the migration of cells. Some examples of these facts are the phenomenon
of broadcast spawning, the pattern generation and spontaneous emergence of turbulence in populations of
aerobic bacteria suspended in sessile drops of water [29]. This kind of interaction can be modeled through a
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chemotaxis-Navier–Stokes system. This model is given by the following system of PDE:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜂𝑡 + u · ∇𝜂 = 𝐷𝑛∆𝜂 − 𝜒∇ · (𝜂∇𝑐),
𝑐𝑡 + u · ∇𝑐 = 𝐷𝑐∆𝑐− 𝛾𝜂𝑐,

𝜌 (u𝑡 + (u · ∇)u) = 𝐷u∆u−∇𝜋 + 𝜂∇𝜑,

∇ · u = 0,

(1.1)

where 𝜂 = 𝜂(x, 𝑡), 𝑐 = 𝑐(x, 𝑡), 𝜋(x, 𝑡) and u(x, 𝑡) denote respectively the cell density, the concentration of an
attractive chemical signal, the hydrostatic pressure, and the velocity field of the fluid at position x ∈ Ω ⊂ R𝑑,
𝑑 = 2, 3, and time 𝑡 ∈ (0, 𝑇 ]. This model describes the interaction between a type of cells (e.g., bacteria), and a
chemical signal which is consumed with a rate proportional to the amount of organisms. The cells and chemical
substance are transported by a viscous incompressible fluid under the influence of a force due to the aggregation
of cells. The equation for the velocity field u is described by the incompressible Navier–Stokes system with forcing
term given by −𝜂∇𝜑 (where the function 𝜑 is given and depends only on x), which represents the effects due to
density variations caused by cell aggregation. The parameters 𝛾, 𝜒, 𝐷𝑛, 𝐷𝑐, 𝜌 and 𝐷u are positive constants that
represent the consumption rate of the chemical signal, the chemotactic coefficient, the cell diffusion constant,
the chemical diffusion constant, the fluid density and the viscosity of fluid, respectively.

System (1.1) is completed with the following initial and boundary data:⎧⎨⎩ [𝜂(x, 0), 𝑐(x, 0), u(x, 0)] = [𝜂0(x), 𝑐0(x), u0(x)] , x ∈ Ω,

𝜕𝜂(x,𝑡)
𝜕𝜈 = 𝜕𝑐(x,𝑡)

𝜕𝜈 = 0, u(x, 𝑡) = 0, x ∈ 𝜕Ω, 𝑡 ∈ (0, 𝑇 ).
(1.2)

The mathematical understanding of the existence and uniqueness of a solution for (1.1) and (1.2) is quite
challenging, due the coupling between the Navier–Stokes equations and the chemotaxis system. However, there
are several results of existence, uniqueness, regularity and qualitative properties of the solutions for system
(1.1) and (1.2) and related models (see for instance, [8, 18, 20, 31–33, 35] and references therein). In [31], the
existence of global classical solutions in two-dimensional bounded convex domains was proved. The results of [31]
were extended to nonconvex domains in [18]. Results of convergence of classical solutions to the corresponding
stationary model were analyzed in [32, 35]. In [33], the existence of global weak solutions in bounded three-
dimensional convex domains was proved, considering the Stokes system instead of the Navier–Stokes equations,
that is, neglecting the nonlinear term (u · ∇)u in the fluid equation. The existence of global weak solutions for
the full three-dimensional chemotaxis-Navier–Stokes model in bounded convex domains was obtained in [33].
In [33], Winkler also proved that any eventual energy solution becomes smooth after some waiting time. The
existence of weak solutions for general bounded domains of R3 for the chemotaxis-Navier–Stokes system with
logistic source was proved in [20]. In the same paper, Lankeit also proved that after some waiting time, the
weak solutions become smooth and converge to some steady state. Results of global existence of mild solutions
in bounded domains of R𝑑 , 𝑑 = 2, 3, for small initial data in 𝐿𝑝-spaces were obtained in [8].

From the numerical point of view, there are only a few works focused on system (1.1) and (1.2) and related
systems. For Keller–Segel system (i.e., with chemo-attraction and linear production) and assuming that there is
no interaction with the fluid, we refer [9,10,23,26,27]. In [10], the convergence of a finite volume was analyzed;
and in [26, 27], some error estimates for a conservative Finite Element (FE) approximation were obtained. In
[9], some error estimates for a fully discrete discontinuous FE method were proved for a chemotaxis-production
model. A mixed FE approximation was analyzed in [23]. In the same framework of Keller–Segel system, some
previous energy stable numerical schemes have also been analyzed (cf. [2]). In addition, unconditionally energy
stable time-discrete numerical schemes and fully discrete FE schemes for a chemo-repulsion model with quadratic
production has been analyzed in [14,15]. Some unconditionally energy stable fully discrete schemes for a parabolic
repulsive-productive chemotaxis model (with linear production term) were recently analyzed in [13]. On the other
hand, when the interaction with a fluid is assumed, as far as we know, the literature related to the numerical
analysis of chemotaxis-Navier–Stokes system is scarce, see [3,22]. In [22], some numerical evidence that solutions
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to the elliptic-parabolic 2D-Keller–Segel–Stokes system exist for initial mass larger than 8𝜋, was considered.
Even for the 2D-Keller–Segel–Stokes, the convergence of a numerical scheme given by the combination of the
finite volume method and the nonconforming FE method has been studied in [3]. For the chemotaxis-Navier–
Stokes system (1.1) (with other boundary conditions), we only know that some numerical simulations have
been made in order to investigate the patterns formation and predict numerically the nonlinear dynamic of the
chemotaxis-fluid system (see for instance, [4, 6, 19,21,30]).

This paper is focused on the proof of optimal convergence rates for a FE method approaching the solutions of
(1.1) and (1.2). The main difficulties to deal with the numerical analysis of (1.1) and (1.2) come from the strong
coupling nonlinear term ∇ · (𝜂∇𝑐) and the transport terms u · ∇𝜂, u · ∇𝑐 and u · ∇u. Therefore, in order to
use the Finite Element method and deal with the chemotaxis term ∇ · (𝜂∇𝑐) we introduce a new variable given
by the gradient of the chemical concentration, that is, 𝜎 = ∇𝑐, which allows us to control the strong regularity
requested by the system. On the other hand, the transport terms have the difficulty that the corresponding
discrete forms do not preserve the alternance property as in the continuous case, and we need to introduce some
skew-symmetric trilinear forms (see (3.9) and (3.10)). We concentrate our analysis by introducing a splitting
FE method for approximating the weak solutions of (1.1) and (1.2) and analyze optimal error estimates. This
scheme is well-posed and mass-conservative. We obtain uniform estimates and analyze the convergence towards
regular solutions. We also present some numerical simulations in order to validate the theoretical results.

The plan of this paper is as follows. In Section 2, we first establish some basic notations and recall some
existence and uniqueness results of (1.1) and (1.2) in the continuous case. We also define the weak formulation
of (1.1) and (1.2), which will be used to construct the numerical approximation. In Section 3, we construct
a mass-conservative numerical approximation for the weak solutions of the chemotaxis-fluid system (1.1) with
initial and boundary data (1.2), by using FE approximations in space and finite differences in time, and give
some preliminary results concerning the FE spaces. In Section 4, we analyze the well-posedness and the mass-
conservation property (see (2.10)) for the numerical scheme; and following an inductive procedure, in Section 5,
we obtain some uniform estimates for any solution of scheme (3.15), subsequently required in the convergence
analysis. The analysis of Section 5 is focused on the two-dimensional case. In Section 6, we make some comments
about the extensions of these results to the three-dimensional case. Finally, in Section 7, we provide some
numerical simulations in agreement with the theoretical results.

2. The continuous problem

In this section, we establish a variational formulation of (1.1) and (1.2) which will be used to construct
the numerical scheme. In order to deal with the chemotaxis term in the cell density equation, we introduce a
splitting variational formulation for the chemoattractant concentration, which yields to consider an auxiliary
variable representing the gradient of the chemical signal. In this section, after establishing the basic notations
which will be used, we recall some existence results for two and three dimensional bounded domains, and define
a variational formulation of the continuous problem.

2.1. Notations

We consider the standard Sobolev and Lebesgue spaces 𝑊 𝑘,𝑝(Ω) and 𝐿𝑝(Ω), with respective norms ‖ · ‖𝑊 𝑘,𝑝

and ‖ · ‖𝐿𝑝 . In particular, we denote 𝑊 𝑘,2(Ω) = 𝐻𝑘(Ω). Also, 𝑊 1,𝑝
0 (Ω) denotes the elements of 𝑊 1,𝑝(Ω) with

trace zero on the boundary of Ω. The 𝐿2(Ω)-inner product will be represented by (·, ·). Corresponding Sobolev
spaces of vector valued functions will be denoted by W𝑘,𝑝(Ω), L𝑝(Ω), and so on. Also, we will use the following
function spaces

V := {v ∈ H1
0(Ω) : ∇ · v = 0 in Ω},

H1
𝜎(Ω) := {v ∈ H1(Ω) : v · 𝜈 = 0 on 𝜕Ω},
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𝐿2
0(Ω) :=

{︂
𝑝 ∈ 𝐿2(Ω) :

∫︁
Ω

𝑝 = 0
}︂

,

̂︀𝐻1(Ω) := 𝐻1(Ω) ∩ 𝐿2
0(Ω) =

{︂
𝑤 ∈ 𝐻1(Ω) :

∫︁
Ω

𝑤 = 0
}︂

,

where 𝜈 denotes the unit outward normal vector to the boundary. We will use the following equivalent norms
in 𝐻1(Ω) and H1

𝜎(Ω), respectively (see [25] and [1], Cor. 3.5):

‖𝑢‖2𝐻1 = ‖∇𝑢‖2𝐿2 +
(︂∫︁

Ω

𝑢

)︂2

, ∀𝑢 ∈ 𝐻1(Ω), (2.1)

‖𝜎‖2𝐻1 = ‖𝜎‖2𝐿2 + ‖rot 𝜎‖2𝐿2 + ‖∇ · 𝜎‖2𝐿2 , ∀𝜎 ∈ H1
𝜎(Ω). (2.2)

We recall the well known Poincaré and embedding inequalities

‖v‖𝐻1 ≤ 𝐶𝑃 ‖∇v‖𝐿2 , ∀v ∈ H1
0(Ω), (2.3)

‖𝑢‖𝐿∞ ≤ 𝐶‖𝑢‖𝐻2 , ∀𝑢 ∈ 𝐻2(Ω), (2.4)

for some constants 𝐶𝑃 , 𝐶 > 0, which depend on Ω, but are independent of v and 𝑢, respectively. Also, we will
use the classical interpolation inequalities

‖𝑢‖𝐿4 ≤ 𝐶‖𝑢‖1/2
𝐿2 ‖𝑢‖1/2

𝐻1 ∀𝑢 ∈ 𝐻1(Ω) (in 2D domains), (2.5)

‖𝑢‖𝐿3 ≤ ‖𝑢‖1/2
𝐿2 ‖𝑢‖1/2

𝐿6 ∀𝑢 ∈ 𝐻1(Ω) (in 3D domains). (2.6)

Finally, the letter 𝐶 denotes different positive constants (independent of discrete parameters) which may change
from line to line (or even within the same line).

2.2. Variational formulation

In this subsection we give a variational formulation for (1.1) and (1.2). We start by recalling a result in
[31] which provides the existence and uniqueness of global classical solution for (1.1) and (1.2) in bounded
and convex domains of R2 with boundary 𝜕Ω smooth enough. Let us assume that the initial data satisfy the
following regularity conditions:⎧⎨⎩ 𝜂0 ∈ 𝐶0(Ω), 𝜂0 > 0 in Ω,

𝑐0 ∈ 𝑊 1,𝑞(Ω) for some 𝑞 > 2, 𝑐0 > 0 in Ω,
u0 ∈ 𝐷(𝐴𝛼) for some 𝛼 ∈

(︀
1
2 , 1
)︀
, ∇𝜑 ∈ 𝐶1(Ω),

(2.7)

where 𝐴𝛼 denotes the fractional Stokes operator with domain 𝐷(𝐴𝛼). Then, the following theorem holds.

Theorem 2.1. Let Ω ⊂ R2 be a bounded domain with smooth boundary, and suppose that 𝜂0, 𝑐0,u0, 𝜑 satisfy
(2.7). Then (1.1) and (1.2) possesses a classical solution which is global in time. This solution is unique, up to
addition of constants to the pressure 𝜋, and for all 𝑇 ∈ (0,∞) the solution has the following regularity properties⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜂 ∈ 𝐶([0, 𝑇 ); 𝐿2(Ω)) ∩ 𝐿∞((0, 𝑇 ); 𝐶(Ω̄)) ∩ 𝐶2,1(Ω̄× (0, 𝑇 )),

𝑐 ∈ 𝐶([0, 𝑇 ); 𝐿2(Ω)) ∩ 𝐿∞((0, 𝑇 ); 𝑊 1,𝑞(Ω)) ∩ 𝐶2,1(Ω̄× (0, 𝑇 )),

u ∈ 𝐶([0, 𝑇 ); 𝐿2(Ω)) ∩ 𝐿∞((0, 𝑇 ); 𝐷(𝐴𝛼)) ∩ 𝐶2,1(Ω̄× (0, 𝑇 )),

𝜋 ∈ 𝐿1((0, 𝑇 ); 𝑊 1,2).

(2.8)

Proof. The proof is given in Theorem 1.1 of [31]. Indeed, the proof of [31] requires that Ω is a bounded convex
domain. This condition comes from an integration term on the boundary which appears dealing with the
differentiation of

∫︀
Ω
|∇
√

𝑐|2. That boundary term takes the form
∫︀

𝜕Ω
𝜕
𝜕𝜈 |∇𝑐|2 d𝑆. Thus, if Ω is convex, the last

boundary integral turns out to be non-positive and thus, this term can be neglected. However, the convexity
condition can be removed by using Lemma 4.2 in [24], as used in [18,20]. �
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For the three-dimensional setting of (1.1) and (1.2) and large initial data, Winkler in [33] proved the existence
of weak solutions (for bounded convex domains). The notion of weak solution considered in [33] is the following
one:

Definition 2.2 (Weak solution). A weak solution of (1.1) and (1.2) is a triple [𝜂, 𝑐,u] of functions such that
𝜂 ∈ 𝐿1([0, 𝑇 ], 𝑊 1,1(Ω)), 𝑐 ∈ 𝐿1([0, 𝑇 ], 𝑊 1,1(Ω)), u ∈ 𝐿1([0, 𝑇 ], 𝑊 1,1), verifying 𝜂 ≥ 0 and 𝑐 ≥ 0 a.e. in Ω×(0, 𝑇 ),
u⊗ u, 𝜂∇𝑐, 𝜂𝑐 and 𝜂u ∈ 𝐿1(0, 𝑇 ; 𝐿1(Ω)), ∇ · u = 0 a.e. in Ω× (0, 𝑇 ), and such that

−
∫︁ 𝑇

0

∫︁
Ω

𝜂𝜙𝑡 −
∫︁

Ω

𝜂0𝜙(·, 0)−
∫︁ 𝑇

0

∫︁
Ω

𝜂u · ∇𝜙 + 𝐷𝑛

∫︁ 𝑇

0

∫︁
Ω

∇𝜂 · ∇𝜙 = 𝜒

∫︁ 𝑇

0

∫︁
Ω

𝜂∇𝑐 · ∇𝜙,

−
∫︁ 𝑇

0

∫︁
Ω

𝑐𝜙𝑡 −
∫︁

Ω

𝑐0𝜙(·, 0)−
∫︁ 𝑇

0

∫︁
Ω

𝑐u · ∇𝜙 + 𝐷𝑐

∫︁ 𝑇

0

∫︁
Ω

∇𝑐 · ∇𝜙 = −𝛾

∫︁ 𝑇

0

∫︁
Ω

𝜂𝑐𝜙,

−𝜌

∫︁ 𝑇

0

∫︁
Ω

u ·𝜓𝑡 − 𝜌

∫︁
Ω

u0 ·𝜓(·, 0)− 𝜌

∫︁ 𝑇

0

∫︁
Ω

u⊗ u · ∇𝜓 + 𝐷u

∫︁ 𝑇

0

∫︁
Ω

∇u · ∇𝜓 =
∫︁ 𝑇

0

∫︁
Ω

𝜂∇𝜑 ·𝜓,

for all 𝜙 ∈ 𝐶∞0 ([0, 𝑇 ]× Ω̄) with 𝜙(𝑇 ) = 0, and 𝜓 in 𝐶∞0 ([0, 𝑇 ]× Ω̄)3 with 𝜓(𝑇 ) = 0.

By assuming 𝜑 ∈ 𝑊 2,∞(Ω) and the initial data [𝜂0, 𝑐0,u0] satisfying⎧⎨⎩ 𝜂0 ∈ 𝐿 log 𝐿(Ω) is nonnegative with 𝜂0 ̸= 0,
𝑐0 ∈ 𝐿∞(Ω) is nonnegative with

√
𝑐0 ∈ 𝑊 1,2(Ω),

u0 ∈ 𝐿2(Ω), ∇ · u0 = 0,
(2.9)

in [33], Winkler proves the following theorem of global existence of weak solutions.

Theorem 2.3. Assume that the initial data [𝜂0, 𝑐0,u0] satisfies (2.9) and 𝜑 ∈ 𝑊 2,∞(Ω). Then there exist
𝜂 ∈ 𝐿∞(0, 𝑇 ; 𝐿1(Ω)) ∩ 𝐿

5
4 ([0, 𝑇 ], 𝑊 1, 5

4 (Ω)), 𝑐 ∈ 𝐿∞(0, 𝑇 ; 𝐿∞(Ω)) ∩ 𝐿4([0, 𝑇 ]; 𝑊 1,4(Ω)), u ∈ 𝐿2([0, 𝑇 ],V), such
that [𝜂, 𝑐,u] is a weak solution of (1.1) and (1.2) in the sense of Definition 2.2.

It is well known that system (1.1) and (1.2) conserves in time the total mass of bacteria (cf. [27]), that is,∫︁
Ω

𝜂(·, 𝑡) dx =
∫︁

Ω

𝜂0 dx. (2.10)

In order to design the scheme, taking into account the property (2.10), we first consider the auxiliary variable
𝑛 := 𝜂 − 1

|Ω|
∫︀
Ω

𝜂 = 𝜂 − 1
|Ω|
∫︀
Ω

𝜂0 := 𝜂 − 𝛼0. Also, in order to control numerically the second order nonlinear
term in the density equation, we will use the idea introduced by [36], in which the auxiliary variable 𝜎 = ∇𝑐
is considered, which will lead us to find one FE scheme with less restrictions relating the discrete parameters,
in order to develop the convergence analysis (see Rem. 5.10). Thus, we obtain the following mixed variational
form for the variables 𝑛, 𝑐,𝜎,u and 𝜋:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(𝑛𝑡, 𝑛̄) + 𝐷𝑛(∇𝑛,∇𝑛̄) + (u · ∇𝑛, 𝑛̄) = 𝜒((𝑛 + 𝛼0)𝜎,∇𝑛̄), ∀𝑛̄ ∈ ̂︀𝐻1(Ω),

(𝜎, 𝜎̄) + (𝑐,∇ · 𝜎̄) = 0, ∀𝜎̄ ∈ H1
𝜎(Ω),

(𝑐𝑡, 𝑐)−𝐷𝑐(∇ · 𝜎, 𝑐) + (u · 𝜎, 𝑐) = −𝛾((𝑛 + 𝛼0)𝑐, 𝑐), ∀𝑐 ∈ 𝐿2(Ω),

𝜌(u𝑡, ū) + 𝐷u(∇u,∇ū) + 𝜌((u · ∇)u, ū)− (𝜋,∇ · ū) = ((𝑛 + 𝛼0)∇𝜑, ū), ∀ū ∈ H1
0(Ω),

(𝜋̄,∇ · u) = 0, ∀𝜋̄ ∈ 𝐿2
0(Ω).

(2.11)

Taking the time derivative in the equation (2.11)2 we have

(𝜎𝑡, 𝜎̄) + (𝑐𝑡,∇ · 𝜎̄) = 0, ∀𝜎̄ ∈ H1
𝜎(Ω). (2.12)
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Then, choosing 𝑐 = ∇ · 𝜎̄ in (2.11)3, replacing it into (2.12), and adding the term 𝐷𝑐(rot 𝜎, rot 𝜎̄) using that
rot 𝜎 = rot(∇𝑐) = 0, we get the following variational formulation:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(𝑛𝑡, 𝑛̄) + 𝐷𝑛(∇𝑛,∇𝑛̄) + (u · ∇𝑛, 𝑛̄) = 𝜒((𝑛 + 𝛼0)𝜎,∇𝑛̄),

(𝜎𝑡, 𝜎̄) + 𝐷𝑐(∇ · 𝜎,∇ · 𝜎̄) + 𝐷𝑐(rot 𝜎, rot 𝜎̄)− (u · 𝜎,∇ · 𝜎̄) = 𝛾((𝑛 + 𝛼0)𝑐,∇ · 𝜎̄),
(𝑐𝑡, 𝑐) + 𝐷𝑐(∇𝑐,∇𝑐) + (u · ∇𝑐, 𝑐) = −𝛾((𝑛 + 𝛼0)𝑐, 𝑐),
𝜌(u𝑡, ū) + 𝐷u(∇u,∇ū) + 𝜌((u · ∇)u, ū)− (𝜋,∇ · ū) = ((𝑛 + 𝛼0)∇𝜑, ū),
(𝜋̄,∇ · u) = 0,

(2.13)

for all [𝑛̄, 𝜎̄, 𝑐, ū, 𝜋̄] ∈ ̂︀𝐻1(Ω)×H1
𝜎(Ω)×𝐻1(Ω)×H1

0(Ω)×𝐿2
0(Ω). Notice that (2.13) defines a variational form of

(1.1) and (1.2). Thus, if [𝑛, 𝑐,u, 𝜋] is a classical solution of (1.1) and (1.2), defining 𝜎 = ∇𝑐, previous procedure
implies that [𝑛, 𝑐,𝜎,u, 𝜋] satisfies (2.13). Reciprocally, if [𝑛, 𝑐,𝜎,u, 𝜋] is a smooth solution of (2.13), integrating
by parts equation (2.13)3 we get

𝑐𝑡 −𝐷𝑐∆𝑐 + u · ∇𝑐 = −𝛾(𝑛 + 𝛼0)𝑐 𝑎.𝑒. in Ω. (2.14)

Thus, computing the gradient in (2.14), testing by 𝜎̄ ∈ H1
𝜎(Ω), and subtracting the resulting equation from

(2.13)2 we obtain that w = ∇𝑐− 𝜎 satisfies:

(w𝑡, 𝜎̄) + 𝐷𝑐 (∇ ·w,∇ · 𝜎̄) + 𝐷𝑐 (rotw, rot𝜎̄)− (u ·w,∇ · 𝜎̄) = 0 ∀𝜎̄ ∈ H1
𝜎(Ω).

Then, taking w ∈ H1
𝜎(Ω) as test function, we dedude that:

1
2

d
d𝑡
‖w‖2𝐿2 + 𝐷𝑐

(︀
‖∇ ·w‖2𝐿2 + ‖rotw‖2𝐿2

)︀
≤ (u ·w,∇ ·w) ≤ ‖u‖𝐿6‖w‖𝐿3‖∇ ·w‖𝐿2

≤ 𝜀‖∇ ·w‖2𝐿2 + 𝐶𝜀‖u‖2𝐿6‖w‖2𝐿3

≤ 𝜀‖∇ ·w‖2𝐿2 + 𝐶𝜀‖u‖2𝐿6

(︀
‖w‖2𝐿2 + ‖w‖𝐿2‖∇w‖𝐿2

)︀
≤ 𝜀

(︀
‖∇ ·w‖2𝐿2 + ‖rotw‖2𝐿2

)︀
+ 𝐶𝜀

(︀
‖u‖4𝐿6 + ‖u‖2𝐿6

)︀
‖w‖2𝐿2

for 𝜀 > 0 small enough. Taking into account that w(0) = 0, we deduce that w = 0 and therefore 𝜎 = ∇𝑐.
Finally, replacing 𝜎 = ∇𝑐 in (2.13)1 and integrating by parts once again, we conclude that [𝑛, 𝑐,u, 𝜋] is a smooth
solution of (1.1) and (1.2). For more details, we refer [14] where a similar argument (without interaction with
fluid) is presented.

3. Numerical scheme

In this section, we construct a mass-conservative numerical approximation for the weak solutions of the
chemotaxis-fluid system (1.1) with initial and boundary data (1.2). The idea is to use Finite Element approxi-
mations in space and finite differences in time (considered for simplicity on a uniform partition of [0, 𝑇 ] with time
step ∆𝑡 = 𝑇/𝑁 : (𝑡𝑚 = 𝑚∆𝑡)𝑚=𝑁

𝑚=0 ), combined with splitting ideas to decouple the computation of the fluid part
from the chemotaxis one. Moreover, in order to deal with the velocity trilinear form and the nonlinear convective
terms, we will use the skew-symmetric forms 𝐴 and 𝐵 given in (3.9) and (3.10). Concerning the space discretiza-
tion, we consider conforming FE spaces: 𝒳𝑛×𝒳𝑐×𝒳𝜎 ×𝒳u×𝒳𝜋 ⊂ ̂︀𝐻1(Ω)×𝐻1(Ω)×H1

𝜎(Ω)×H1
0(Ω)×𝐿2

0(Ω)
corresponding to a family of shape-regular and quasi-uniform triangulations of Ω, {𝒯ℎ}ℎ>0, made up of sim-
plexes 𝐾 (triangles in 2D and tetrahedra en 3D), so that Ω = ∪𝐾∈𝒯ℎ

𝐾, where ℎ = max𝐾∈𝒯ℎ
ℎ𝐾 , with ℎ𝐾 being

the diameter of 𝐾.
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3.1. Hyphoteses and preliminary results

We assume that 𝒳u and 𝒳𝜋 satisfy the following discrete inf-sup condition: There exists a constant 𝛽 > 0,
independent of ℎ, such that

sup
v∈𝒳u∖{0}

−(𝑤,∇ · v)
‖v‖𝒳u

≥ 𝛽‖𝑤‖𝒳𝜋
, ∀𝑤 ∈ 𝒳𝜋. (3.1)

Remark 3.1 (Some possibilities for the choice of the discrete spaces). For the spaces [𝒳u,𝒳𝜋], we can choose
the Taylor-Hood approximation P𝑟 × P𝑟−1 (for 𝑟 ≥ 2) ([11, 28]); or the approximation P1 − 𝑏𝑢𝑏𝑏𝑙𝑒 × P1 ([11])
(for 𝑟 = 1). On the other hand, the spaces [𝒳𝑛,𝒳𝑐,𝒳𝜎] are approximated by P𝑟1 × P𝑟2 × P𝑟3 – continuous FE,
with 𝑟𝑖 ≥ 1 (𝑖 = 1, 2, 3).

Then, we can define the well-known Stokes operator (Pu, P𝜋) : H1
0(Ω) × 𝐿2

0(Ω) → 𝒳u × 𝒳𝜋 such that
[Puu, P𝜋𝜋] ∈ 𝒳u ×𝒳𝜋 satisfies{︂

𝐷u(∇(Puu− u),∇ū)− (P𝜋𝜋 − 𝜋,∇ · ū) = 0, ∀ū ∈ 𝒳u,

(∇ · (Puu− u), 𝜋̄) = 0, ∀𝜋̄ ∈ 𝒳𝜋,
(3.2)

and the following approximation and stability properties hold ([12]):

‖[u− Puu, 𝜋 − P𝜋𝜋]‖𝐻1×𝐿2 +
1
ℎ
‖u− Puu‖𝐿2 ≤ 𝐾ℎ𝑟‖[u, 𝜋]‖𝐻𝑟+1×𝐻𝑟 , (3.3)

‖[Puu, P𝜋𝜋]‖𝑊 1,6×𝐿6 ≤ 𝐶‖[u, 𝜋]‖𝐻2×𝐻1 . (3.4)

Moreover, we consider the following interpolation operators:

P𝑛 : ̂︀𝐻1(Ω) → 𝒳𝑛, P𝑐 : 𝐻1(Ω) → 𝒳𝑐, P𝜎 : H1
𝜎(Ω) → 𝒳𝜎,

such that for all 𝑛 ∈ ̂︀𝐻1(Ω), 𝑐 ∈ 𝐻1(Ω) and 𝜎 ∈ H1
𝜎(Ω), P𝑛𝑛 ∈ 𝒳𝑛, P𝑐𝑐 ∈ 𝒳𝑐 and P𝜎𝜎 ∈ 𝒳𝜎 satisfy⎧⎪⎨⎪⎩

(∇(P𝑛𝑛− 𝑛),∇𝑛̄) = 0, ∀𝑛̄ ∈ 𝒳𝑛,

(∇(P𝑐𝑐− 𝑐),∇𝑐) + (P𝑐𝑐− 𝑐, 𝑐) = 0, ∀𝑐 ∈ 𝒳𝑐,

(∇ · (P𝜎𝜎 − 𝜎),∇ · 𝜎̄) + (rot(P𝜎𝜎 − 𝜎), rot 𝜎̄) + (P𝜎𝜎 − 𝜎, 𝜎̄) = 0, ∀𝜎̄ ∈ 𝒳𝜎,
(3.5)

respectively. Observe that from Lax–Milgram theorem, we have that the interpolation operators P𝑛, P𝑐 and P𝜎

are well defined. Moreover, it is well known that the following interpolation errors hold:⎧⎪⎨⎪⎩
‖𝑛− P𝑛𝑛‖𝐿2 + ℎ‖𝑛− P𝑛𝑛‖𝐻1 ≤ 𝐾ℎ𝑟1+1‖𝑛‖𝐻𝑟1+1 , ∀𝑛 ∈ 𝐻𝑟1+1(Ω),

‖𝑐− P𝑐𝑐‖𝐿2 + ℎ‖𝑐− P𝑐𝑐‖𝐻1 ≤ 𝐾ℎ𝑟2+1‖𝑐‖𝐻𝑟2+1 , ∀𝑐 ∈ 𝐻𝑟2+1(Ω),

‖𝜎 − P𝜎𝜎‖𝐿2 + ℎ‖𝜎 − P𝜎𝜎‖𝐻1 ≤ 𝐶ℎ𝑟3+1‖𝜎‖𝐻𝑟3+1 , ∀𝜎 ∈ H𝑟3+1(Ω).

(3.6)

Also, the stability properties

‖[P𝑛𝑛, P𝑐𝑐, P𝜎𝜎]‖𝐻1 ≤ ‖[𝑛, 𝑐,𝜎]‖𝐻1 , (3.7)
‖[P𝑛𝑛, P𝑐𝑐, P𝜎𝜎]‖𝑊 1,6 ≤ 𝐶‖[𝑛, 𝑐,𝜎]‖𝐻2 , (3.8)

hold. Inequality (3.7) can be deduced from (3.5), and (3.8) can be obtained from (3.6) using the inverse inequality

‖[𝑛ℎ, 𝑐ℎ,𝜎ℎ]‖𝑊 1,6 ≤ 𝐶ℎ−𝑝‖[𝑛ℎ, 𝑐ℎ,𝜎ℎ]‖𝐻1 for all [𝑛ℎ, 𝑐ℎ,𝜎ℎ] ∈ P𝑛 × P𝑐 × P𝜎,

with 𝑝 = 2/3 (in the 2D case) and 𝑝 = 1 (in the 3D case), and comparing P𝑛,𝑐,𝜎 with an average interpolation of
Clement or Scott-Zhang type (which are stable in 𝑊 1,6-norm). Finally, we consider the following skew-symmetric
trilinear forms which will be used in the formulation of the numerical scheme:

𝐵(v1,v2,v3) =
1
2

[((v1 · ∇)v2,v3)− ((v1 · ∇)v3,v2)] , ∀v1,v2,v3 ∈ H1(Ω), (3.9)
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𝐴(v, 𝑤1, 𝑤2) =
1
2

[((v · ∇)𝑤1, 𝑤2)− ((v · ∇)𝑤2, 𝑤1)] , ∀v ∈ H1(Ω), 𝑤1, 𝑤2 ∈ 𝐻1(Ω). (3.10)

It is easy to verify that

𝐵(v1,v2,v3) = ((v1 · ∇)v2,v3), ∀v1 ∈ V, v2,v3 ∈ H1(Ω), (3.11)
𝐴(v1, 𝑤1, 𝑤2) = ((v1 · ∇)𝑤1, 𝑤2), ∀v1 ∈ V, 𝑤1, 𝑤2 ∈ 𝐻1(Ω), (3.12)
𝐵(v1,v2,v2) = 0, ∀v1,v2 ∈ H1(Ω), (3.13)

𝐴(v, 𝑤, 𝑤) = 0, ∀𝑤 ∈ 𝐻1(Ω), v ∈ H1(Ω). (3.14)

3.2. Definition of the scheme

Taking into account (2.13), we consider the following first order in time, linear and semi-coupled scheme:

Initialization. Let [𝑛0
ℎ, 𝑐0

ℎ,𝜎0
ℎ,u0

ℎ] = [P𝑛𝑛0, P𝑐𝑐0, P𝜎𝜎0, Puu0] ∈ 𝒳𝑛 ×𝒳𝑐 ×𝒳𝜎 ×𝒳u.

Time step 𝑚. Given the vector [𝑛𝑚−1
ℎ , 𝑐𝑚−1

ℎ ,𝜎𝑚−1
ℎ ,u𝑚−1

ℎ ] ∈ 𝒳𝑛×𝒳𝑐×𝒳𝜎×𝒳u, compute [𝑛𝑚
ℎ , 𝑐𝑚

ℎ ,𝜎𝑚
ℎ ,u𝑚

ℎ , 𝜋𝑚
ℎ ] ∈

𝒳𝑛 ×𝒳𝑐 ×𝒳𝜎 ×𝒳u ×𝒳𝜋 such that for each [𝑛̄, 𝑐, 𝜎̄, ū, 𝜋̄] ∈ 𝒳𝑛 ×𝒳𝑐 ×𝒳𝜎 ×𝒳u ×𝒳𝜋 it holds:

(a) (𝛿𝑡𝑛
𝑚
ℎ , 𝑛̄) + 𝐷𝑛(∇𝑛𝑚

ℎ ,∇𝑛̄) + 𝐴(u𝑚−1
ℎ , 𝑛𝑚

ℎ , 𝑛̄)− 𝜒((𝑛𝑚−1
ℎ + 𝛼0)𝜎𝑚−1

ℎ ,∇𝑛̄) = 0,

(b) (𝛿𝑡𝜎
𝑚
ℎ , 𝜎̄) + 𝐷𝑐(∇ · 𝜎𝑚

ℎ ,∇ · 𝜎̄) + 𝐷𝑐(rot 𝜎𝑚
ℎ , rot 𝜎̄) = (u𝑚−1

ℎ · 𝜎𝑚−1
ℎ + 𝛾(𝑛𝑚−1

ℎ + 𝛼0)𝑐𝑚−1
ℎ ,∇ · 𝜎̄),

(c) (𝛿𝑡𝑐
𝑚
ℎ , 𝑐) + 𝐷𝑐(∇𝑐𝑚

ℎ ,∇𝑐) + 𝐴(u𝑚−1
ℎ , 𝑐𝑚

ℎ , 𝑐) = −𝛾((𝑛𝑚−1
ℎ + 𝛼0)𝑐𝑚−1

ℎ , 𝑐), (3.15)

(d) (𝛿𝑡u𝑚
ℎ , ū) + 𝐵(u𝑚−1

ℎ ,u𝑚
ℎ , ū) +

𝐷u

𝜌
(∇u𝑚

ℎ ,∇ū)− 1
𝜌

(𝜋𝑚
ℎ ,∇ · ū) =

1
𝜌

((𝑛𝑚−1
ℎ + 𝛼0)∇𝜑, ū),

(e) (∇ · u𝑚
ℎ , 𝜋̄) = 0,

where, in general, we denote 𝛿𝑡𝑎
𝑚
ℎ = 𝑎𝑚

ℎ −𝑎𝑚−1
ℎ

Δ𝑡 .

Remark 3.2. The skew-symmetric forms 𝐴 and 𝐵 verifying the properties (3.11)–(3.14) will be important in
order to get uniform estimates for the discrete solutions and to develop convergence analysis.

4. Well-posedness and mass-conservation

In this section, we analyze the well-posedness of the scheme (3.15) and the mass-conservation property. To
this aim, we define 𝜂𝑚

ℎ := 𝑛𝑚
ℎ + 𝛼0. Then 𝜂𝑚

ℎ verifies

(𝛿𝑡𝜂
𝑚
ℎ , 𝑛̄) + 𝐷𝑛(∇𝜂𝑚

ℎ ,∇𝑛̄) + 𝐴(u𝑚−1
ℎ , 𝜂𝑚

ℎ − 𝛼0, 𝑛̄)− 𝜒(𝜂𝑚−1
ℎ 𝜎𝑚−1

ℎ ,∇𝑛̄) = 0.

Lemma 4.1 (Mass conservation). The discrete cell density 𝜂𝑚
ℎ satisfies the mass-conservation property (2.10).

Proof. From the construction of scheme (3.15), for each 𝑚 ≥ 0 it holds that
∫︀
Ω

𝑛𝑚
ℎ = 0 (since 𝑛𝑚

ℎ ∈ 𝒳𝑛 ⊂ ̂︀𝐻1(Ω));
therefore we deduce that 𝜂𝑚

ℎ satisfies∫︁
Ω

𝜂𝑚
ℎ =

∫︁
Ω

𝜂𝑚−1
ℎ = · · · =

∫︁
Ω

𝜂0
ℎ = 𝛼0.

�

Now, in the next result, we prove the well-posedness of the scheme (3.15).

Theorem 4.2 (Unconditional well-posedness). The numerical scheme (3.15) is well-posed, that is, there exists
a unique [𝑛𝑚

ℎ , 𝑐𝑚
ℎ ,𝜎𝑚

ℎ ,u𝑚
ℎ , 𝜋𝑚

ℎ ] ∈ 𝒳𝑛 ×𝒳𝑐 ×𝒳𝜎 ×𝒳u ×𝒳𝜋 solution of the scheme (3.15).
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Proof. Taking into account that the scheme (3.15) is an algebraic linear system, it suffices to prove the unique-
ness. For that, suppose that there exist [𝑛𝑚

ℎ,1, 𝑐
𝑚
ℎ,1,𝜎

𝑚
ℎ,1,u

𝑚
ℎ,1, 𝜋

𝑚
ℎ,1], [𝑛𝑚

ℎ,2, 𝑐
𝑚
ℎ,2,𝜎

𝑚
ℎ,2,u

𝑚
ℎ,2, 𝜋

𝑚
ℎ,2] ∈ 𝒳𝑛 ×𝒳𝑐 ×𝒳𝜎 ×

𝒳u × 𝒳𝜋 two possible solutions of the scheme (3.15). Then defining 𝑛𝑚
ℎ = 𝑛𝑚

ℎ,1 − 𝑛𝑚
ℎ,2, 𝑐𝑚

ℎ = 𝑐𝑚
ℎ,1 − 𝑐𝑚

ℎ,2, 𝜎𝑚
ℎ =

𝜎𝑚
ℎ,1−𝜎𝑚

ℎ,2 u𝑚
ℎ = u𝑚

ℎ,1−u𝑚
ℎ,2 and 𝜋𝑚

ℎ = 𝜋𝑚
ℎ,1−𝜋𝑚

ℎ,2, we have that [𝑛𝑚
ℎ , 𝑐𝑚

ℎ ,𝜎𝑚
ℎ ,u𝑚

ℎ , 𝜋𝑚
ℎ ] ∈ 𝒳𝑛×𝒳𝑐×𝒳𝜎×𝒳u×𝒳𝜋

satisfies ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(𝑛𝑚
ℎ , 𝑛̄) + ∆𝑡𝐷𝑛(∇𝑛𝑚

ℎ ,∇𝑛̄) + ∆𝑡𝐴(u𝑚−1
ℎ , 𝑛𝑚

ℎ , 𝑛̄) = 0,

(𝜎𝑚
ℎ , 𝜎̄) + ∆𝑡𝐷𝑐(∇ · 𝜎𝑚

ℎ ,∇ · 𝜎̄) + ∆𝑡𝐷𝑐(rot 𝜎𝑚
ℎ , rot 𝜎̄) = 0,

(𝑐𝑚
ℎ , 𝑐) + ∆𝑡𝐷𝑐(∇𝑐𝑚

ℎ ,∇𝑐) + ∆𝑡𝐴(u𝑚−1
ℎ , 𝑐𝑚

ℎ , 𝑐) = 0,

𝜌(u𝑚
ℎ , ū) + ∆𝑡𝜌𝐵(u𝑚−1

ℎ ,u𝑚
ℎ , ū) + ∆𝑡𝐷u(∇u𝑚

ℎ ,∇ū)−∆𝑡(𝜋𝑚
ℎ ,∇ · ū) = 0,

(𝜋̄,∇ · u𝑚
ℎ ) = 0,

(4.1)

for all [𝑛̄, 𝑐, 𝜎̄, ū, 𝜋̄] ∈ 𝒳𝑛 × 𝒳𝑐 × 𝒳𝜎 × 𝒳u × 𝒳𝜋. Taking [𝑛̄, 𝑐, 𝜎̄, ū, 𝜋̄] = [𝑛𝑚
ℎ , 𝑐𝑚

ℎ ,𝜎𝑚
ℎ ,u𝑚

ℎ , ∆𝑡𝜋𝑚
ℎ ] in (4.1), using

the properties (3.13) and (3.14), and adding, we obtain⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
‖𝑛𝑚

ℎ ‖2𝐿2 + ∆𝑡𝐷𝑛‖∇𝑛𝑚
ℎ ‖2𝐿2 = 0,

‖𝜎𝑚
ℎ ‖2𝐿2 + ∆𝑡𝐷𝑐‖∇ · 𝜎𝑚

ℎ ‖2𝐿2 + ∆𝑡𝐷𝑐‖rot 𝜎𝑚
ℎ ‖2𝐿2 = 0,

‖𝑐𝑚
ℎ ‖2𝐿2 + ∆𝑡𝐷𝑐‖∇𝑐𝑚

ℎ ‖2𝐿2 = 0,

𝜌‖u𝑚
ℎ ‖2𝐿2 + ∆𝑡𝐷u‖∇u𝑚

ℎ ‖2𝐿2 = 0,

which implies that [𝑛𝑚
ℎ , 𝑐𝑚

ℎ ,𝜎𝑚
ℎ ,u𝑚

ℎ ] = [0, 0,0,0]. Finally, using that u𝑚
ℎ = 0 in (4.1)4, and using the discrete

inf-sup condition (3.1) we deduce that 𝜋𝑚
ℎ = 0. �

5. Uniform estimates and convergence

In this section, we will obtain some uniform estimates for any solution of scheme (3.15) that will be used in
the convergence analysis. Here, we focus on the two-dimensional case. Later, in Section 6, we study the three-
dimensional case. To this aim, we make the following inductive hypothesis: there exists a positive constant
𝐾 > 0, independent of 𝑚, such that

‖𝜎𝑚−1
ℎ ‖𝐻1 ≤ 𝐾, ∀𝑚 ≥ 1. (5.1)

After the convergence analysis we verify the vality of (5.1). It is worthwhile to remark that the use of induction
hypothesis to deal with the convergence analysis of approximating schemes in nonlinear partial differential
equations has been considered by several authors (see for instance, [5, 7, 34, 36]). In [7], Douglas and Roberts
analyzed a numerical method for a model describing compressible miscible displacement in porous media, and
considered an inductive hypothesis on the difference of pressures 𝜋 = 𝑝 − 𝑝ℎ coming from the Darcy model,
in norm 𝑊 1,∞. In the same spirit, by using inductive hypotheses, a superconvergence estimate of a combined
mixed FE and discontinuous Galerkin method for a compressible miscible displacement problem was obtained
in [34] (see also [5]). In the context of the Keller–Segel system without fluid influence, in [36], an inductive
hypothesis on ‖𝜎𝑚

ℎ ‖𝑊 1,∞ is considered. Observe that the norm in (5.1) is in 𝐻1(Ω) instead of 𝑊 1,∞(Ω).
Additionally, we will use the following discrete Gronwall lemma:

Lemma 5.1 ([16], p. 369). Assume that ∆𝑡 > 0 and 𝐵, 𝑏𝑘, 𝑑𝑘, 𝑔𝑘, ℎ𝑘 ≥ 0 satisfy:

𝑑𝑚+1 + ∆𝑡

𝑚∑︁
𝑘=0

𝑏𝑘+1 ≤ ∆𝑡

𝑚∑︁
𝑘=0

𝑔𝑘 𝑑𝑘 + ∆𝑡

𝑚∑︁
𝑘=0

ℎ𝑘 + 𝐵, ∀𝑚 ≥ 0.

Then, it holds

𝑑𝑚+1 + ∆𝑡

𝑚∑︁
𝑘=0

𝑏𝑘+1 ≤ exp

(︃
∆𝑡

𝑚∑︁
𝑘=0

𝑔𝑘

)︃ (︃
∆𝑡

𝑚∑︁
𝑘=0

ℎ𝑘 + 𝐵

)︃
, ∀𝑚 ≥ 0.
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5.1. Uniform estimates in finite time

We can prove the following uniform estimates in finite time for the discrete cell and chemical variables, 𝑛𝑚
ℎ

and 𝑐𝑚
ℎ , in weak norms.

Lemma 5.2 (Uniform estimates for 𝑛𝑚
ℎ ). Assume the inductive hypothesis (5.1). Then 𝑛𝑚

ℎ is bounded in
𝑙∞(𝐿2) ∩ 𝑙2(𝐻1).

Proof. Testing (3.15)𝑎 by 𝑛̄ = 2∆𝑡𝑛𝑚
ℎ , using the equality (𝑎− 𝑏, 2𝑎) = |𝑎|2 − |𝑏|2 + |𝑎− 𝑏|2, taking into account

the property (3.14) and using the fact that
∫︀
Ω

𝑛𝑚
ℎ = 0 (since 𝑛𝑚

ℎ ∈ 𝒳𝑛), we have

‖𝑛𝑚
ℎ ‖2𝐿2 − ‖𝑛𝑚−1

ℎ ‖2𝐿2 + ‖𝑛𝑚
ℎ − 𝑛𝑚−1

ℎ ‖2𝐿2 + 2𝐷𝑛∆𝑡‖𝑛𝑚
ℎ ‖2𝐻1 = 2∆𝑡𝜒((𝑛𝑚−1

ℎ + 𝛼0)𝜎𝑚−1
ℎ ,∇𝑛𝑚

ℎ ). (5.2)

Using the Hölder and Young inequalities and the 2D interpolation inequality (2.5), we get

2∆𝑡𝜒((𝑛𝑚−1
ℎ + 𝛼0)𝜎𝑚−1

ℎ ,∇𝑛𝑚
ℎ ) ≤ 𝐶∆𝑡𝜒(‖𝑛𝑚−1

ℎ ‖𝐿4 + 𝛼0)‖𝜎𝑚−1
ℎ ‖𝐿4‖∇𝑛𝑚

ℎ ‖𝐿2

≤ 𝐶∆𝑡𝜒(‖𝑛𝑚−1
ℎ ‖1/2

𝐿2 ‖𝑛𝑚−1
ℎ ‖1/2

𝐻1 + 𝛼0)‖𝜎𝑚−1
ℎ ‖𝐿4‖∇𝑛𝑚

ℎ ‖𝐿2

≤ 𝐷𝑛∆𝑡‖𝑛𝑚
ℎ ‖2𝐻1 +

𝐷𝑛∆𝑡

2
‖𝑛𝑚−1

ℎ ‖2𝐻1 +
𝐶∆𝑡𝜒2

𝐷𝑛
‖𝜎𝑚−1

ℎ ‖2𝐿4

(︂
𝜒2

𝐷2
𝑛

‖𝑛𝑚−1
ℎ ‖2𝐿2‖𝜎𝑚−1

ℎ ‖2𝐿4 + 𝛼2
0

)︂
. (5.3)

Thus, taking into account the inductive hypothesis (5.1), from (5.2) and (5.3) we arrive at

‖𝑛𝑚
ℎ ‖2𝐿2 − ‖𝑛𝑚−1

ℎ ‖2𝐿2 + 𝐷𝑛∆𝑡‖𝑛𝑚
ℎ ‖2𝐻1 −

𝐷𝑛∆𝑡

2
‖𝑛𝑚−1

ℎ ‖2𝐻1 ≤ 𝐶
𝜒4

𝐷3
𝑛

∆𝑡‖𝑛𝑚−1
ℎ ‖2𝐿2 + 𝐶

𝜒2

𝐷𝑛
∆𝑡𝛼2

0. (5.4)

Then, summing in (5.4) from 𝑚 = 1 to 𝑚 = 𝑟, we arrive at

‖𝑛𝑟
ℎ‖2𝐿2 +

𝐷𝑛

2
∆𝑡

𝑟∑︁
𝑚=1

‖𝑛𝑚
ℎ ‖2𝐻1 +

𝐷𝑛

2
∆𝑡‖𝑛𝑟

ℎ‖2𝐻1

≤ ‖𝑛0
ℎ‖2𝐿2 +

𝐷𝑛∆𝑡

2
‖𝑛0

ℎ‖2𝐻1 + 𝐶
𝜒4

𝐷3
𝑛

∆𝑡

𝑟∑︁
𝑚=1

‖𝑛𝑚−1
ℎ ‖2𝐿2 + 𝐶

𝜒2

𝐷𝑛
∆𝑡

𝑟∑︁
𝑚=1

𝛼2
0. (5.5)

Therefore, applying Lemma 5.1 to (5.5) we deduce

‖𝑛𝑟
ℎ‖2𝐿2 + ∆𝑡

𝑟∑︁
𝑚=1

‖𝑛𝑚
ℎ ‖2𝐻1 ≤ 𝐶, ∀𝑚 ≥ 1,

where the constant 𝐶 > 0 depends on (𝜒, 𝐷𝑛, 𝛼0, 𝑇, 𝑛0), but is independent of (∆𝑡, ℎ) and 𝑟; thus we conclude
the proof. �

Lemma 5.3 (Uniform estimates for 𝑐𝑚
ℎ ). Assume the inductive hypothesis (5.1). Then, 𝑐𝑚

ℎ is bounded in
𝑙∞(𝐿2) ∩ 𝑙2(𝐻1).

Proof. Testing (3.15)𝑐 by 𝑐 = 2∆𝑡𝑐𝑚
ℎ , using the equality (𝑎−𝑏, 2𝑎) = |𝑎|2−|𝑏|2 + |𝑎−𝑏|2 and taking into account

the property (3.14), we obtain

‖𝑐𝑚
ℎ ‖2𝐿2 − ‖𝑐𝑚−1

ℎ ‖2𝐿2 + ‖𝑐𝑚
ℎ − 𝑐𝑚−1

ℎ ‖2𝐿2 + 2𝐷𝑐∆𝑡‖∇𝑐𝑚
ℎ ‖2𝐿2 = −2𝛾∆𝑡((𝑛𝑚−1

ℎ + 𝛼0)𝑐𝑚−1
ℎ , 𝑐𝑚

ℎ ). (5.6)

Using the Hölder and Young inequalities, we have

2𝛾∆𝑡((𝑛𝑚−1
ℎ + 𝛼0)𝑐𝑚−1

ℎ , 𝑐𝑚
ℎ ) ≤ 2𝛾∆𝑡‖𝑛𝑚−1

ℎ + 𝛼0‖𝐿4‖𝑐𝑚−1
ℎ ‖𝐿2‖𝑐𝑚

ℎ ‖𝐿4
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≤ 𝐶𝛾∆𝑡‖𝑛𝑚−1
ℎ + 𝛼0‖𝐿4‖𝑐𝑚−1

ℎ ‖𝐿2(‖∇𝑐𝑚
ℎ ‖𝐿2 + ‖𝑐𝑚

ℎ ‖𝐿2)

≤ 𝐷𝑐∆𝑡‖∇𝑐𝑚
ℎ ‖2𝐿2 +

1
2
‖𝑐𝑚

ℎ − 𝑐𝑚−1
ℎ ‖2𝐿2 + ∆𝑡‖𝑐𝑚−1

ℎ ‖2𝐿2

+ 𝐶𝛾2∆𝑡

[︂
1

𝐷𝑐
+ ∆𝑡 + 1

]︂
‖𝑛𝑚−1

ℎ + 𝛼0‖2𝐿4‖𝑐𝑚−1
ℎ ‖2𝐿2 . (5.7)

Therefore, from (5.6) and (5.7), we arrive at

‖𝑐𝑚
ℎ ‖2𝐿2 − ‖𝑐𝑚−1

ℎ ‖2𝐿2 +
1
2
‖𝑐𝑚

ℎ − 𝑐𝑚−1
ℎ ‖2𝐿2 + 𝐷𝑐∆𝑡‖∇𝑐𝑚

ℎ ‖2𝐿2

≤ 𝐶𝛾2∆𝑡

[︂
1

𝐷𝑐
+ ∆𝑡 + 1

]︂
‖𝑛𝑚−1

ℎ + 𝛼0‖2𝐿4‖𝑐𝑚−1
ℎ ‖2𝐿2 + ∆𝑡‖𝑐𝑚−1

ℎ ‖2𝐿2 . (5.8)

Then, summing in (5.8) from 𝑚 = 1 to 𝑚 = 𝑟, applying Lemma 5.1 and taking into account that 𝑛𝑚
ℎ is bounded

in 𝑙2(𝐻1) (see Lem. 5.2), we arrive at

‖𝑐𝑟
ℎ‖2𝐿2 + ∆𝑡

𝑟∑︁
𝑚=1

‖∇𝑐𝑚
ℎ ‖2𝐿2 ≤ 𝐶, ∀𝑚 ≥ 1,

the constant 𝐶 > 0 depends on (𝜒, 𝐷𝑐, 𝐷𝑛, 𝛾, 𝛼0, 𝑇, 𝑛0, 𝑐0), but is independent of (∆𝑡, ℎ) and 𝑟. �

Remark 5.4. Notice that estimate (5.3) is independent of the dimension. In fact, in the three-dimensional case,
one can bound the first inequality in (5.3) with ‖𝑛𝑚

ℎ ‖𝐿3 instead of ‖𝑛𝑚
ℎ ‖𝐿4 and ‖𝜎𝑚

ℎ ‖𝐿6 instead of ‖𝜎𝑚
ℎ ‖𝐿4 ,

and using the 3D interpolation inequality (2.6), (5.3) remains true; consequently, (5.4) also holds. Therefore,
Lemmas 5.2 and 5.3 are true in both dimensions two and three, only by assuming the inductive hypothesis (5.1).

5.2. Error estimates

The aim of this subsection is to obtain optimal error estimates for any solution [𝑛𝑚
ℎ , 𝑐𝑚

ℎ ,𝜎𝑚
ℎ ,u𝑚

ℎ , 𝜋𝑚
ℎ ] of

the scheme (3.15), with respect to a sufficiently regular solution [𝑛, 𝑐,𝜎,u, 𝜋] of (2.13) in the two dimensional
case. For that we proceed recursively, bounding the error estimates at time 𝑡𝑚 by quantities depending only
on norms of a sufficiently regular solution and preceeding errors at time 𝑡𝑚−1. We start by introducing the
following notations for the errors at 𝑡 = 𝑡𝑚: 𝑒𝑚

𝑛 = 𝑛𝑚−𝑛𝑚
ℎ , 𝑒𝑚

𝑐 = 𝑐𝑚− 𝑐𝑚
ℎ , 𝑒𝑚

𝜎 = 𝜎𝑚−𝜎𝑚
ℎ , 𝑒𝑚

u = u𝑚−u𝑚
ℎ and

𝑒𝑚
𝜋 = 𝜋𝑚 − 𝜋𝑚

ℎ , where 𝑤𝑚 denotes, in general, the value of 𝑤 at time 𝑡𝑚. Then, subtracting the scheme (3.15)
to (2.13) at 𝑡 = 𝑡𝑚, we obtain that [𝑒𝑚

𝑛 , 𝑒𝑚
𝑐 , 𝑒𝑚

𝜎 , 𝑒𝑚
u , 𝑒𝑚

𝜋 ] satisfies

(𝛿𝑡𝑒
𝑚
𝑛 , 𝑛̄) + 𝐷𝑛(∇𝑒𝑚

𝑛 ,∇𝑛̄) + 𝐴(u𝑚 − u𝑚−1, 𝑛𝑚, 𝑛̄) + 𝐴(u𝑚−1
ℎ , 𝑒𝑚

𝑛 , 𝑛̄) + 𝐴(𝑒𝑚−1
u , 𝑛𝑚, 𝑛̄) = (𝜔𝑚

𝑛 , 𝑛̄)
+ 𝜒((𝑛𝑚−1+ 𝛼0)(𝜎𝑚 − 𝜎𝑚−1) + (𝑛𝑚 − 𝑛𝑚−1)𝜎𝑚 + (𝑛𝑚−1+ 𝛼0)𝑒𝑚−1

𝜎 + 𝑒𝑚−1
𝑛 𝜎𝑚−1

ℎ ,∇𝑛̄), (5.9)

(𝛿𝑡𝑒
𝑚
𝜎 , 𝜎̄) + 𝐷𝑐(∇ · 𝑒𝑚

𝜎 ,∇ · 𝜎̄) + 𝐷𝑐(rot 𝑒𝑚
𝜎 , rot 𝜎̄) = (𝜔𝑚

𝜎 , 𝜎̄) + ((u𝑚 − u𝑚−1) · 𝜎𝑚,∇ · 𝜎̄)
+ (u𝑚−1(𝜎𝑚 − 𝜎𝑚−1) + 𝑒𝑚−1

u 𝜎𝑚−1 + u𝑚−1
ℎ 𝑒𝑚−1

𝜎 + 𝛾(𝑛𝑚− 𝑛𝑚−1)𝑐𝑚,∇ · 𝜎̄)
+ 𝛾((𝑛𝑚−1+ 𝛼0)(𝑐𝑚− 𝑐𝑚−1) + 𝑒𝑚−1

𝑛 𝑐𝑚−1
ℎ + (𝑛𝑚−1+ 𝛼0)𝑒𝑚−1

𝑐 ,∇ · 𝜎̄), (5.10)

(𝛿𝑡𝑒
𝑚
𝑐 , 𝑐) + 𝐷𝑐(∇𝑒𝑚

𝑐 ,∇𝑐) + 𝐴(u𝑚 − u𝑚−1, 𝑐𝑚, 𝑐) + 𝐴(u𝑚−1
ℎ , 𝑒𝑚

𝑐 , 𝑐) + 𝐴(𝑒𝑚−1
u , 𝑐𝑚, 𝑐) = (𝜔𝑚

𝑐 , 𝑐)
− 𝛾((𝑛𝑚− 𝑛𝑚−1)𝑐𝑚 + (𝑛𝑚−1+ 𝛼0)(𝑐𝑚− 𝑐𝑚−1) + 𝑒𝑚−1

𝑛 𝑐𝑚−1 + (𝑛𝑚−1
ℎ + 𝛼0)𝑒𝑚−1

𝑐 , 𝑐), (5.11)

(𝛿𝑡𝑒
𝑚
u , ū) +

𝐷u

𝜌
(∇𝑒𝑚

u ,∇ū) = (𝜔𝑚
u , ū)−𝐵(u𝑚 − u𝑚−1,u𝑚, ū)−𝐵(𝑒𝑚−1

u ,u𝑚, ū)

−𝐵(u𝑚−1
ℎ , 𝑒𝑚

u , ū) +
1
𝜌

(𝑒𝑚
𝜋 ,∇ · ū) +

1
𝜌

((𝑛𝑚 − 𝑛𝑚−1)∇𝜑, ū) +
1
𝜌

(𝑒𝑚−1
𝑛 ∇𝜑, ū), (5.12)

(∇ · 𝑒𝑚
u , 𝜋̄) = 0, (5.13)
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for all [𝑛̄, 𝑐, 𝜎̄, ū, 𝜋̄] ∈ 𝒳𝑛 ×𝒳𝑐 ×𝒳𝜎 ×𝒳u ×𝒳𝜋, where 𝜔𝑚
𝑛 , 𝜔𝑚

𝑐 , 𝜔𝑚
𝜎 , 𝜔𝑚

u are the consistency errors associated
to the scheme (3.15), that is, 𝜔𝑚

𝑛 = 𝛿𝑡𝑛
𝑚 − (𝑛𝑡)𝑚 and so on.

Considering the interpolation operators P𝑛, P𝑐, P𝜎, Pu and P𝜋 defined in (3.5) and (3.2), we decompose the
total errors 𝑒𝑚

𝑛 , 𝑒𝑚
𝑐 , 𝑒𝑚

𝜎 , 𝑒𝑚
u and 𝑒𝑚

𝜋 as follows:

𝑒𝑚
𝑛 = (𝑛𝑚 − P𝑛𝑛𝑚) + (P𝑛𝑛𝑚 − 𝑛𝑚

ℎ ) = 𝜃𝑚
𝑛 + 𝜉𝑚

𝑛 , (5.14)
𝑒𝑚
𝑐 = (𝑐𝑚 − P𝑐𝑐

𝑚) + (P𝑐𝑐
𝑚 − 𝑐𝑚

ℎ ) = 𝜃𝑚
𝑐 + 𝜉𝑚

𝑐 , (5.15)
𝑒𝑚
𝜎 = (𝜎𝑚 − P𝜎𝜎

𝑚) + (P𝜎𝜎
𝑚 − 𝜎𝑚

ℎ ) = 𝜃𝑚
𝜎 + 𝜉𝑚

𝜎 , (5.16)
𝑒𝑚
u = (u𝑚 − Puu𝑚) + (Puu𝑚 − u𝑚

ℎ ) = 𝜃𝑚
u + 𝜉𝑚

u , (5.17)
𝑒𝑚
𝜋 = (𝜋𝑚 − P𝜋𝜋𝑚) + (P𝜋𝜋𝑚 − 𝜋𝑚

ℎ ) = 𝜃𝑚
𝜋 + 𝜉𝑚

𝜋 , (5.18)

where, in general, 𝜃𝑚
𝑎 and 𝜉𝑚

𝑎 denote the interpolation and discrete errors with respect to the 𝑎 variable,
respectively. Thus, the aim of this section is to prove the following result:

Theorem 5.5. Assuming (5.1), the following estimates for the discrete errors hold

‖[𝜉𝑚
𝑛 , 𝜉𝑚

𝑐 , 𝜉𝑚
u , 𝜉𝑚

𝜎 ]‖𝑙∞(𝐿2)∩𝑙2(𝐻1) ≤ 𝐶(𝑇 )
(︀
∆𝑡 + max{ℎ𝑟1+1, ℎ𝑟2+1, ℎ𝑟3+1, ℎ𝑟+1}

)︀
, (5.19)

‖𝜉𝑚
u ‖𝑙∞(𝐻1)∩𝑙2(𝑊 1,6) + ‖𝜉𝑚

𝜋 ‖𝑙2(𝐿6) ≤ 𝐶(𝑇 )
(︀
∆𝑡 + max{ℎ𝑟1+1, ℎ𝑟2+1, ℎ𝑟3+1, ℎ𝑟}

)︀
, (5.20)

where the constant 𝐶(𝑇 ) > 0 is independent of 𝑚, ∆𝑡 and ℎ.

From decompositions (5.14)–(5.18), Theorem 5.5 and interpolation errors (3.3) and (3.6), one can deduce:

Corollary 5.6. Under the assumptions of Theorem 5.5, the following estimates for the total errors hold

‖[𝑒𝑚
𝑛 , 𝑒𝑚

𝑐 , 𝑒𝑚
u , 𝑒𝑚

𝜎 ]‖𝑙∞(𝐿2) ≤ 𝐶(𝑇 )
(︀
∆𝑡 + max{ℎ𝑟1+1, ℎ𝑟2+1, ℎ𝑟3+1, ℎ𝑟+1}

)︀
,

‖[𝑒𝑚
𝑛 , 𝑒𝑚

𝑐 , 𝑒𝑚
u , 𝑒𝑚

𝜎 ]‖𝑙2(𝐻1) ≤ 𝐶(𝑇 )
(︀
∆𝑡 + max{ℎ𝑟1 , ℎ𝑟2 , ℎ𝑟3 , ℎ𝑟}

)︀
,

‖𝑒𝑚
u ‖𝑙∞(𝐻1) ≤ 𝐶(𝑇 )

(︀
∆𝑡 + max{ℎ𝑟1+1, ℎ𝑟2+1, ℎ𝑟3+1, ℎ𝑟}

)︀
,

where the constant 𝐶(𝑇 ) > 0 is independent of 𝑚, ∆𝑡 and ℎ.

Also, the following result is obtained directly as a consequence of Theorem 5.5.

Corollary 5.7. Let [𝑛𝑚
ℎ , 𝑐𝑚

ℎ ,𝜎𝑚
ℎ ,u𝑚

ℎ , 𝜋𝑚
ℎ ] be any solution of the scheme (3.15) and consider a sufficiently regular

solution [𝑛, 𝑐,𝜎,u, 𝜋] of (2.13). Then, [𝑛𝑚
ℎ , 𝑐𝑚

ℎ ,𝜎𝑚
ℎ ,u𝑚

ℎ , 𝜋𝑚
ℎ ] converges to [𝑛, 𝑐,𝜎,u, 𝜋] in 𝑙∞(𝐿2), 𝑙2(𝐻1)-norms,

when the parameters ∆𝑡 and ℎ go to 0.

Remark 5.8. From (5.19) and (5.20), in particular we deduce that ‖[u𝑚
ℎ ,𝜎𝑚

ℎ ]‖𝑙∞(𝐿2)∩𝑙2(𝐻1) ≤ 𝐶(𝑇 ) and
‖[u𝑚

ℎ , 𝜋𝑚
ℎ ]‖𝑙∞(𝐻1)×𝑙2(𝐿6) ≤ 𝐶(𝑇 ), for all 𝑚 = 1, ..., 𝑁 .

5.2.1. Preliminary error estimates

Now, before proving Theorem 5.5, we will obtain some bounds for the discrete errors of the cell density 𝑛,
the chemical concentration 𝑐, the flux 𝜎 and the velocity u.

(1) Error estimate for the cell density 𝑛

Taking into account (3.5)1, from (5.9), (5.14), (5.16) and (5.17) we have

(𝛿𝑡𝜉
𝑚
𝑛 , 𝑛̄) + 𝐷𝑛(∇𝜉𝑚

𝑛 ,∇𝑛̄) + 𝐴(u𝑚−1
ℎ , 𝜉𝑚

𝑛 , 𝑛̄) = (𝜔𝑚
𝑛 , 𝑛̄)− (𝛿𝑡𝜃

𝑚
𝑛 , 𝑛̄)−𝐴(u𝑚−1

ℎ , 𝜃𝑚
𝑛 , 𝑛̄)

− 𝐴(u𝑚 − u𝑚−1, 𝑛𝑚, 𝑛̄)−𝐴((𝜉𝑚−1
u + 𝜃𝑚−1

u ), 𝑛𝑚, 𝑛̄) + 𝜒((𝑛𝑚−1+ 𝛼0)(𝜎𝑚 − 𝜎𝑚−1),∇𝑛̄)
+ 𝜒((𝑛𝑚 − 𝑛𝑚−1)𝜎𝑚 + (𝑛𝑚−1+ 𝛼0)(𝜉𝑚−1

𝜎 + 𝜃𝑚−1
𝜎 ) + (𝜉𝑚−1

𝑛 + 𝜃𝑚−1
𝑛 )𝜎𝑚−1

ℎ ,∇𝑛̄), (5.21)
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for all 𝑛̄ ∈ 𝒳𝑛. Taking 𝑛̄ = 𝜉𝑚
𝑛 in (5.21), using (3.14) and taking into account that

∫︀
Ω

𝜉𝑚
𝑛 = 0 (since 𝜉𝑚

𝑛 ∈ 𝒳𝑛),
we get

1
2
𝛿𝑡‖𝜉𝑚

𝑛 ‖2𝐿2 +
∆𝑡

2
‖𝛿𝑡𝜉

𝑚
𝑛 ‖2𝐿2 + 𝐷𝑛‖𝜉𝑚

𝑛 ‖2𝐻1 = (𝜔𝑚
𝑛 , 𝜉𝑚

𝑛 )− (𝛿𝑡𝜃
𝑚
𝑛 , 𝜉𝑚

𝑛 )−𝐴(u𝑚−1
ℎ , 𝜃𝑚

𝑛 , 𝜉𝑚
𝑛 )

− 𝐴(u𝑚 − u𝑚−1, 𝑛𝑚, 𝜉𝑚
𝑛 )−𝐴((𝜉𝑚−1

u + 𝜃𝑚−1
u ), 𝑛𝑚, 𝜉𝑚

𝑛 ) + 𝜒((𝑛𝑚−1+ 𝛼0)(𝜎𝑚 − 𝜎𝑚−1),∇𝜉𝑚
𝑛 )

+ 𝜒((𝑛𝑚 − 𝑛𝑚−1)𝜎𝑚,∇𝜉𝑚
𝑛 ) + 𝜒((𝑛𝑚−1+ 𝛼0)(𝜉𝑚−1

𝜎 + 𝜃𝑚−1
𝜎 ),∇𝜉𝑚

𝑛 )

+ 𝜒((𝜉𝑚−1
𝑛 + 𝜃𝑚−1

𝑛 )𝜎𝑚−1
ℎ ,∇𝜉𝑚

𝑛 ) =
9∑︁

𝑘=1

𝐼𝑘. (5.22)

Then, we control the terms on the right hand side of (5.22) as follows: First, using the Hölder and Young
inequalities, and (3.6) we get

𝐼1 ≤
𝐷𝑛

12
‖𝜉𝑚

𝑛 ‖2𝐻1 +
𝐶

𝐷𝑛
‖𝜔𝑚

𝑛 ‖2(𝐻1)′ ≤
𝐷𝑛

12
‖𝜉𝑚

𝑛 ‖2𝐻1 +
𝐶∆𝑡

𝐷𝑛

∫︁ 𝑡𝑚

𝑡𝑚−1

‖𝑛𝑡𝑡(𝑡)‖2(𝐻1)′d𝑡, (5.23)

and

𝐼2 ≤ ‖𝜉𝑚
𝑛 ‖𝐿2‖(ℐ − P𝑛)𝛿𝑡𝑛

𝑚‖𝐿2 ≤ 𝐷𝑛

12
‖𝜉𝑚

𝑛 ‖2𝐿2 +
𝐶ℎ2(𝑟1+1)

𝐷𝑛
‖𝛿𝑡𝑛

𝑚‖2𝐻𝑟1+1

≤ 𝐷𝑛

12
‖𝜉𝑚

𝑛 ‖2𝐿2 +
𝐶ℎ2(𝑟1+1)

𝐷𝑛∆𝑡

∫︁ 𝑡𝑚

𝑡𝑚−1

‖𝑛𝑡‖2𝐻𝑟1+1d𝑡. (5.24)

From the definition of the skew-symmetric trilinear form (3.10), the Hölder and Young inequalities, (2.4), (3.4),
(3.6) and (3.8) we obtain

𝐼3 = 𝐴(𝜉𝑚−1
u , 𝜃𝑚

𝑛 , 𝜉𝑚
𝑛 )−𝐴(Puu𝑚−1, 𝜃𝑚

𝑛 , 𝜉𝑚
𝑛 )

≤ ‖𝜉𝑚−1
u ‖𝐿2‖𝜃𝑚

𝑛 ‖𝐿∞∩𝑊 1,3‖𝜉𝑚
𝑛 ‖𝐻1 + ‖Puu𝑚−1‖𝐿∞∩𝑊 1,3‖𝜃𝑚

𝑛 ‖𝐿2‖𝜉𝑚
𝑛 ‖𝐻1

≤ 𝐷𝑛

12
‖𝜉𝑚

𝑛 ‖2𝐻1 +
𝐶

𝐷𝑛
‖𝑛𝑚‖2𝐻2‖𝜉𝑚−1

u ‖2𝐿2 +
𝐶

𝐷𝑛
ℎ2(𝑟1+1)‖[u𝑚−1, 𝜋𝑚−1]‖2𝐻2×𝐻1‖𝑛𝑚‖2𝐻𝑟1+1 . (5.25)

Now, using the Hölder and Young inequalities, (2.4) and (3.3), we have

𝐼4 + 𝐼5 ≤ (‖u𝑚 − u𝑚−1‖𝐿2 + ‖𝜉𝑚−1
u ‖𝐿2 + ‖𝜃𝑚−1

u ‖𝐿2)‖𝑛𝑚‖𝐿∞∩𝑊 1,3‖𝜉𝑚
𝑛 ‖𝐻1

≤ 𝐷𝑛

12
‖𝜉𝑚

𝑛 ‖2𝐻1 +
𝐶

𝐷𝑛
‖u𝑚 − u𝑚−1‖2𝐿2‖𝑛𝑚‖2𝐻2

+
𝐶

𝐷𝑛
(ℎ2(𝑟+1)‖[u𝑚−1, 𝜋𝑚−1]‖2𝐻𝑟+1×𝐻𝑟 + ‖𝜉𝑚−1

u ‖2𝐿2)‖𝑛𝑚‖2𝐻2 . (5.26)

Also, from the Hölder and Young inequalities, and (3.6) we get

8∑︁
𝑘=6

𝐼𝑘 ≤ 𝜒‖
[︀
𝜎𝑚−𝜎𝑚−1, 𝑛𝑚−𝑛𝑚−1, 𝜉𝑚−1

𝜎 , 𝜃𝑚−1
𝜎

]︀
‖𝐿2‖

[︀
𝑛𝑚−1 + 𝛼0,𝜎

𝑚
]︀
‖𝐿∞‖𝜉𝑚

𝑛 ‖𝐻1

≤ 𝐷𝑛

12
‖𝜉𝑚

𝑛 ‖2𝐻1 +
𝐶𝜒2

𝐷𝑛

(︀
‖
[︀
𝜎𝑚−𝜎𝑚−1, 𝑛𝑚−𝑛𝑚−1

]︀
‖2𝐿2 + ‖𝜉𝑚−1

𝜎 ‖2𝐿2

)︀
‖[𝑛𝑚−1 + 𝛼0,𝜎

𝑚]‖2𝐿∞

+
𝐶𝜒2

𝐷𝑛
ℎ2(𝑟3+1)‖𝜎𝑚−1‖2𝐻𝑟3+1‖[𝑛𝑚−1+ 𝛼0,𝜎

𝑚]‖2𝐿∞ . (5.27)
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Finally, from the Hölder and Young inequalities, (2.4), (3.6), (3.8), the 2D interpolation inequality (2.5) and
the inductive hypothesis (5.1), we can bound

𝐼9 = 𝜒(𝜉𝑚−1
𝑛 𝜎𝑚−1

ℎ ,∇𝜉𝑚
𝑛 )− 𝜒(𝜃𝑚−1

𝑛 𝜉𝑚−1
𝜎 ,∇𝜉𝑚

𝑛 ) + 𝜒(𝜃𝑚−1
𝑛 P𝜎𝜎

𝑚−1,∇𝜉𝑚
𝑛 )

≤ 𝜒𝐶(‖𝜉𝑚−1
𝑛 ‖1/2

𝐿2 ‖𝜉𝑚−1
𝑛 ‖1/2

𝐻1 ‖𝜎𝑚−1
ℎ ‖𝐿4 + ‖𝜉𝑚−1

𝜎 ‖𝐿2‖𝜃𝑚−1
𝑛 ‖𝐿∞ + ‖P𝜎𝜎

𝑚−1‖𝐿∞‖𝜃𝑚−1
𝑛 ‖𝐿2)‖𝜉𝑚

𝑛 ‖𝐻1

≤ 𝐷𝑛

12
‖𝜉𝑚

𝑛 ‖2𝐻1 +
𝐷𝑛

8
‖𝜉𝑚−1

𝑛 ‖2𝐻1 +
𝐶𝜒4

𝐷3
𝑛

‖𝜉𝑚−1
𝑛 ‖2𝐿2

+
𝐶𝜒2

𝐷𝑛
‖𝑛𝑚−1‖2𝐻2‖𝜉𝑚−1

𝜎 ‖2𝐿2 +
𝐶𝜒2

𝐷𝑛
ℎ2(𝑟1+1)‖𝜎𝑚−1‖2𝐻2‖𝑛𝑚−1‖2𝐻𝑟1+1 . (5.28)

Therefore, from (5.22) to (5.28), we arrive at

1
2
𝛿𝑡‖𝜉𝑚

𝑛 ‖2𝐿2 +
∆𝑡

2
‖𝛿𝑡𝜉

𝑚
𝑛 ‖2𝐿2 +

𝐷𝑛

2
‖𝜉𝑚

𝑛 ‖2𝐻1 −
𝐷𝑛

8
‖𝜉𝑚−1

𝑛 ‖2𝐻1 ≤
𝐶ℎ2(𝑟1+1)

𝐷𝑛∆𝑡

∫︁ 𝑡𝑚

𝑡𝑚−1

‖𝑛𝑡‖2𝐻𝑟1+1d𝑡

+
𝐶∆𝑡

𝐷𝑛

∫︁ 𝑡𝑚

𝑡𝑚−1

‖𝑛𝑡𝑡(𝑡)‖2(𝐻1)′d𝑡 +
𝐶

𝐷𝑛
‖𝑛𝑚‖2𝐻2‖𝜉𝑚−1

u ‖2𝐿2

+
𝐶

𝐷𝑛
ℎ2(𝑟1+1)‖[u𝑚−1, 𝜋𝑚−1]‖2𝐻2×𝐻1‖𝑛𝑚‖2𝐻𝑟1+1

+
𝐶

𝐷𝑛
‖u𝑚 − u𝑚−1‖2𝐿2‖𝑛𝑚‖2𝐻2 +

𝐶

𝐷𝑛
ℎ2(𝑟+1)‖[u𝑚−1, 𝜋𝑚−1]‖2𝐻𝑟+1×𝐻𝑟‖𝑛𝑚‖2𝐻2

+
𝐶𝜒2

𝐷𝑛
(‖[𝜎𝑚−𝜎𝑚−1, 𝑛𝑚−𝑛𝑚−1]‖2𝐿2 + ‖𝜉𝑚−1

𝜎 ‖2𝐿2 + ℎ2(𝑟3+1)‖𝜎𝑚−1‖2𝐻𝑟3+1)‖[𝑛𝑚−1 + 𝛼0,𝜎
𝑚]‖2𝐿∞

+
𝐶𝜒4

𝐷3
𝑛

‖𝜉𝑚−1
𝑛 ‖2𝐿2 +

𝐶𝜒2

𝐷𝑛
‖𝑛𝑚−1‖2𝐻2‖𝜉𝑚−1

𝜎 ‖2𝐿2 +
𝐶𝜒2

𝐷𝑛
ℎ2(𝑟1+1)‖𝜎𝑚−1‖2𝐻2‖𝑛𝑚−1‖2𝐻𝑟1+1 . (5.29)

(2) Error estimate for the chemical concentration 𝑐

Taking into account (3.5)2, from (5.11), (5.14), (5.15) and (5.17), we have

(𝛿𝑡𝜉
𝑚
𝑐 , 𝑐) + 𝐷𝑐(∇𝜉𝑚

𝑐 ,∇𝑐) + 𝐴(u𝑚−1
ℎ , 𝜉𝑚

𝑐 , 𝑐) = (𝜔𝑚
𝑐 , 𝑐)− (𝛿𝑡𝜃

𝑚
𝑐 , 𝑐)−𝐴(u𝑚 − u𝑚−1, 𝑐𝑚, 𝑐)

− 𝐴(u𝑚−1
ℎ , 𝜃𝑚

𝑐 , 𝑐)−𝐴((𝜉𝑚−1
u + 𝜃𝑚−1

u ), 𝑐𝑚, 𝑐)− 𝛾((𝑛𝑚− 𝑛𝑚−1)𝑐𝑚 + (𝑛𝑚−1+ 𝛼0)(𝑐𝑚− 𝑐𝑚−1), 𝑐)
− 𝛾((𝜉𝑚−1

𝑛 + 𝜃𝑚−1
𝑛 )𝑐𝑚−1 + (𝑛𝑚−1

ℎ + 𝛼0)(𝜉𝑚−1
𝑐 + 𝜃𝑚−1

𝑐 ), 𝑐) + 𝐷𝑐(𝜃𝑚
𝑐 , 𝑐), (5.30)

for all 𝑐 ∈ 𝒳𝑐. Taking 𝑐 = 𝜉𝑚
𝑐 in (5.30) and using (3.14), we get

1
2
𝛿𝑡‖𝜉𝑚

𝑐 ‖2𝐿2 +
∆𝑡

2
‖𝛿𝑡𝜉

𝑚
𝑐 ‖2𝐿2 + 𝐷𝑐‖∇𝜉𝑚

𝑐 ‖2𝐿2 = (𝜔𝑚
𝑐 , 𝜉𝑚

𝑐 )− (𝛿𝑡𝜃
𝑚
𝑐 , 𝜉𝑚

𝑐 )−𝐴(u𝑚 − u𝑚−1, 𝑐𝑚, 𝜉𝑚
𝑐 )

− 𝐴(u𝑚−1
ℎ , 𝜃𝑚

𝑐 , 𝜉𝑚
𝑐 )−𝐴((𝜉𝑚−1

u + 𝜃𝑚−1
u ), 𝑐𝑚, 𝜉𝑚

𝑐 )
− 𝛾((𝑛𝑚− 𝑛𝑚−1)𝑐𝑚 + (𝑛𝑚−1+ 𝛼0)(𝑐𝑚− 𝑐𝑚−1), 𝜉𝑚

𝑐 )
− 𝛾((𝜉𝑚−1

𝑛 + 𝜃𝑚−1
𝑛 )𝑐𝑚−1, 𝜉𝑚

𝑐 )− 𝛾((𝑛𝑚−1
ℎ + 𝛼0)(𝜉𝑚−1

𝑐 + 𝜃𝑚−1
𝑐 ), 𝜉𝑚

𝑐 )

+ 𝐷𝑐(𝜃𝑚
𝑐 , 𝜉𝑚

𝑐 ) =
9∑︁

𝑘=1

𝐽𝑘. (5.31)

Then, we control the terms on the right hand side of (5.31) as follows: First, using the Hölder and Young
inequalities we get

𝐽1 ≤ (‖𝜉𝑚
𝑐 ‖𝐿2 + ‖∇𝜉𝑚

𝑐 ‖𝐿2)‖𝜔𝑚
𝑐 ‖(𝐻1)′ ≤ (∆𝑡‖𝛿𝑡𝜉

𝑚
𝑐 ‖𝐿2 + ‖𝜉𝑚−1

𝑐 ‖𝐿2 + ‖∇𝜉𝑚
𝑐 ‖𝐿2)‖𝜔𝑚

𝑐 ‖(𝐻1)′
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≤ 𝐷𝑐

8
‖∇𝜉𝑚

𝑐 ‖2𝐿2 +
∆𝑡

24
‖𝛿𝑡𝜉

𝑚
𝑐 ‖2𝐿2 +

1
2
‖𝜉𝑚−1

𝑐 ‖2𝐿2 +
(︁ 𝐶

𝐷𝑐
+ 𝐶∆𝑡 +

1
2

)︁
‖𝜔𝑚

𝑐 ‖2(𝐻1)′

≤ 𝐷𝑐

8
‖∇𝜉𝑚

𝑐 ‖2𝐿2 +
∆𝑡

24
‖𝛿𝑡𝜉

𝑚
𝑐 ‖2𝐿2 +

1
2
‖𝜉𝑚−1

𝑐 ‖2𝐿2 +
(︁ 1

𝐷𝑐
+ ∆𝑡 + 1

)︁
𝐶∆𝑡

∫︁ 𝑡𝑚

𝑡𝑚−1

‖𝑐𝑡𝑡(𝑡)‖2(𝐻1)′d𝑡. (5.32)

Using the Hölder and Young inequalities and (3.6), we obtain

𝐽2 + 𝐽9 ≤ ‖𝜉𝑚
𝑐 ‖𝐿2‖(ℐ − P𝑐)𝛿𝑡𝑐

𝑚‖𝐿2 + 𝐷𝑐‖𝜉𝑚
𝑐 ‖𝐿2‖𝜃𝑚

𝑐 ‖𝐿2

≤ (‖(ℐ − P𝑐)𝛿𝑡𝑐
𝑚‖𝐿2 + 𝐷𝑐‖𝜃𝑚

𝑐 ‖𝐿2)(∆𝑡‖𝛿𝑡𝜉
𝑚
𝑐 ‖𝐿2 + ‖𝜉𝑚−1

𝑐 ‖𝐿2)

≤ ∆𝑡

24
‖𝛿𝑡𝜉

𝑚
𝑐 ‖2𝐿2 +

1
2
‖𝜉𝑚−1

𝑐 ‖2𝐿2 + (∆𝑡 + 1)𝐶ℎ2(𝑟2+1)
[︁
‖𝛿𝑡𝑐

𝑚‖2𝐻𝑟2+1 + 𝐷2
𝑐‖𝑐𝑚‖2𝐻𝑟2+1

]︁
≤ ∆𝑡

24
‖𝛿𝑡𝜉

𝑚
𝑐 ‖2𝐿2 +

1
2
‖𝜉𝑚−1

𝑐 ‖2𝐿2 + (∆𝑡 + 1)𝐶ℎ2(𝑟2+1)
[︁ 1

∆𝑡

∫︁ 𝑡𝑚

𝑡𝑚−1

‖𝑐𝑡‖2𝐻𝑟2+1d𝑡 + 𝐷2
𝑐‖𝑐𝑚‖2𝐻𝑟2+1

]︁
. (5.33)

From the definition of the skew-symmetric trilinear form (3.10), the Hölder and Young inequalities, (2.4), (3.4),
(3.6) and (3.8) we have

𝐽4 = 𝐴(𝜉𝑚−1
u , 𝜃𝑚

𝑐 , 𝜉𝑚
𝑐 )−𝐴(Puu𝑚−1, 𝜃𝑚

𝑐 , 𝜉𝑚
𝑐 )

≤ ‖𝜉𝑚−1
u ‖𝐿2‖𝜃𝑚

𝑐 ‖𝐿∞∩𝑊 1,3‖𝜉𝑚
𝑐 ‖𝐻1 + ‖Puu𝑚−1‖𝐿∞∩𝑊 1,3‖𝜃𝑚

𝑐 ‖𝐿2‖𝜉𝑚
𝑐 ‖𝐻1

≤ (‖𝜉𝑚−1
u ‖𝐿2‖𝜃𝑚

𝑐 ‖𝐿∞∩𝑊 1,3 + ‖Puu𝑚−1‖𝐿∞∩𝑊 1,3‖𝜃𝑚
𝑐 ‖𝐿2)(∆𝑡‖𝛿𝑡𝜉

𝑚
𝑐 ‖𝐿2 + ‖𝜉𝑚−1

𝑐 ‖𝐿2 + ‖∇𝜉𝑚
𝑐 ‖𝐿2)

≤ 𝐷𝑐

8
‖∇𝜉𝑚

𝑐 ‖2𝐿2 +
∆𝑡

24
‖𝛿𝑡𝜉

𝑚
𝑐 ‖2𝐿2 +

1
2
‖𝜉𝑚−1

𝑐 ‖2𝐿2 +
(︁ 1

𝐷𝑐
+ ∆𝑡 + 1

)︁
𝐶‖𝑐𝑚‖2𝐻2‖𝜉𝑚−1

u ‖2𝐿2

+
(︁ 1

𝐷𝑐
+ ∆𝑡 + 1

)︁
𝐶ℎ2(𝑟2+1)‖[u𝑚−1, 𝜋𝑚−1]‖2𝐻2×𝐻1‖𝑐𝑚‖2𝐻𝑟2+1 . (5.34)

Also, from the Hölder and Young inequalities, (2.4) and (3.3) we get

𝐽3 + 𝐽5 ≤ (‖u𝑚−u𝑚−1‖𝐿2 + ‖𝜉𝑚−1
u ‖𝐿2 + ‖𝜃𝑚−1

u ‖𝐿2)‖𝑐𝑚‖𝐿∞∩𝑊 1,3‖𝜉𝑚
𝑐 ‖𝐻1

≤ (‖u𝑚−u𝑚−1‖𝐿2 + ‖𝜉𝑚−1
u ‖𝐿2 + ‖𝜃𝑚−1

u ‖𝐿2)‖𝑐𝑚‖𝐿∞∩𝑊 1,3(∆𝑡‖𝛿𝑡𝜉
𝑚
𝑐 ‖𝐿2 + ‖𝜉𝑚−1

𝑐 ‖𝐿2 + ‖∇𝜉𝑚
𝑐 ‖𝐿2)

≤ 𝐷𝑐

8
‖∇𝜉𝑚

𝑐 ‖2𝐿2 +
∆𝑡

24
‖𝛿𝑡𝜉

𝑚
𝑐 ‖2𝐿2 +

1
2
‖𝜉𝑚−1

𝑐 ‖2𝐿2 +
(︁ 1

𝐷𝑐
+ ∆𝑡 + 1

)︁
𝐶‖u𝑚 − u𝑚−1‖2𝐿2‖𝑐𝑚‖2𝐻2

+
(︁ 1

𝐷𝑐
+ ∆𝑡 + 1

)︁
𝐶(ℎ2(𝑟+1)‖[u𝑚−1, 𝜋𝑚−1]‖2𝐻𝑟+1×𝐻𝑟 + ‖𝜉𝑚−1

u ‖2𝐿2)‖𝑐𝑚‖2𝐻2 . (5.35)

Again, from the Hölder and Young inequalities, (2.4) and (3.6) we have

7∑︁
𝑘=6

𝐽𝑘 ≤ 𝛾‖[𝑛𝑚−𝑛𝑚−1, 𝑐𝑚−𝑐𝑚−1, 𝜉𝑚−1
𝑛 , 𝜃𝑚−1

𝑛 ]‖𝐿2‖[𝑐𝑚, 𝑛𝑚−1+𝛼0, 𝑐
𝑚−1]‖𝐿∞(∆𝑡‖𝛿𝑡𝜉

𝑚
𝑐 ‖𝐿2 + ‖𝜉𝑚−1

𝑐 ‖𝐿2)

≤ ∆𝑡

24
‖𝛿𝑡𝜉

𝑚
𝑐 ‖2𝐿2 +

1
2
‖𝜉𝑚−1

𝑐 ‖2𝐿2 + (∆𝑡 + 1)𝛾2𝐶‖[𝑛𝑚−𝑛𝑚−1, 𝑐𝑚−𝑐𝑚−1]‖2𝐿2‖[𝑐𝑚, 𝑛𝑚−1+𝛼0, 𝑐
𝑚−1]‖2𝐻2

+ (∆𝑡 + 1)𝛾2𝐶(ℎ2(𝑟1+1)‖𝑛𝑚−1‖2𝐻𝑟1+1 + ‖𝜉𝑚−1
𝑛 ‖2𝐿2)‖[𝑐𝑚, 𝑛𝑚−1+𝛼0, 𝑐

𝑚−1]‖2𝐻2 , (5.36)

and

𝐽8 ≤ 𝛾‖[𝜉𝑚−1
𝑐 , 𝜃𝑚−1

𝑐 ]‖𝐿2‖𝑛𝑚−1
ℎ + 𝛼0‖𝐿3(∆𝑡‖𝛿𝑡𝜉

𝑚
𝑐 ‖𝐿2 + ‖𝜉𝑚−1

𝑐 ‖𝐿2 + ‖∇𝜉𝑚
𝑐 ‖𝐿2)

≤ 𝐷𝑐

8
‖∇𝜉𝑚

𝑐 ‖2𝐿2 +
∆𝑡

24
‖𝛿𝑡𝜉

𝑚
𝑐 ‖2𝐿2 +

1
2
‖𝜉𝑚−1

𝑐 ‖2𝐿2

+
(︁ 1

𝐷𝑐
+ ∆𝑡 + 1

)︁
𝛾2𝐶(ℎ2(𝑟2+1)‖𝑐𝑚−1‖2𝐻𝑟2+1 + ‖𝜉𝑚−1

𝑐 ‖2𝐿2)‖𝑛𝑚−1
ℎ + 𝛼0‖2𝐿3 . (5.37)
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Therefore, denoting 𝛾1 := 1
𝐷𝑐

+ ∆𝑡 + 1 and 𝛾2 := ∆𝑡 + 1, from (5.31) to (5.37), we arrive at

1
2
𝛿𝑡‖𝜉𝑚

𝑐 ‖2𝐿2 +
∆𝑡

4
‖𝛿𝑡𝜉

𝑚
𝑐 ‖2𝐿2 +

𝐷𝑐

2
‖∇𝜉𝑚

𝑐 ‖2𝐿2 ≤ 𝛾1𝐶

(︃
∆𝑡

∫︁ 𝑡𝑚

𝑡𝑚−1

‖𝑐𝑡𝑡(𝑡)‖2(𝐻1)′d𝑡 + ‖𝑐𝑚‖2𝐻2‖𝜉𝑚−1
u ‖2𝐿2

)︃

+ 𝛾2𝐶ℎ2(𝑟2+1)

[︃
1

∆𝑡

∫︁ 𝑡𝑚

𝑡𝑚−1

‖𝑐𝑡‖2𝐻𝑟2+1d𝑡 + 𝐷2
𝑐‖𝑐𝑚‖2𝐻𝑟2+1

]︃
+ 𝛾1𝐶ℎ2(𝑟2+1)‖[u𝑚−1, 𝜋𝑚−1]‖2𝐻2×𝐻1‖𝑐𝑚‖2𝐻𝑟2+1

+ 𝛾1𝐶‖u𝑚 − u𝑚−1‖2𝐿2‖𝑐𝑚‖2𝐻2 + 𝛾1𝐶(ℎ2(𝑟+1)‖[u𝑚−1, 𝜋𝑚−1]‖2𝐻𝑟+1×𝐻𝑟 )‖𝑐𝑚‖2𝐻2

+ 𝛾2𝛾
2𝐶(‖[𝑛𝑚−𝑛𝑚−1, 𝑐𝑚−𝑐𝑚−1]‖2𝐿2 + ℎ2(𝑟1+1)‖𝑛𝑚−1‖2𝐻𝑟1+1 + ‖𝜉𝑚−1

𝑛 ‖2𝐿2)
× ‖[𝑐𝑚, 𝑛𝑚−1+𝛼0, 𝑐

𝑚−1]‖2𝐻2

+ 𝛾1𝛾
2𝐶(ℎ2(𝑟2+1)‖𝑐𝑚−1‖2𝐻𝑟2+1 + ‖𝜉𝑚−1

𝑐 ‖2𝐿2)‖𝑛𝑚−1
ℎ + 𝛼0‖2𝐿3 + 3‖𝜉𝑚−1

𝑐 ‖2𝐿2 . (5.38)

(3) Error estimate for the velocity u

Taking into account (3.2), from (5.12), (5.13), (5.14), (5.17) and (5.18), we have

(𝛿𝑡𝜉
𝑚
u , ū) +

𝐷u

𝜌
(∇𝜉𝑚

u ,∇ū) = (𝜔𝑚
u , ū)− (𝛿𝑡𝜃

𝑚
u , ū)−𝐵(u𝑚 − u𝑚−1,u𝑚, ū)

−𝐵(𝜉𝑚−1
u + 𝜃𝑚−1

u ,u𝑚, ū)−𝐵(u𝑚−1
ℎ , 𝜉𝑚

u + 𝜃𝑚
u , ū) +

1
𝜌

(𝜉𝑚
𝜋 ,∇ · ū)

+
1
𝜌

((𝑛𝑚 − 𝑛𝑚−1)∇𝜑, ū) +
1
𝜌

((𝜉𝑚−1
𝑛 + 𝜃𝑚−1

𝑛 )∇𝜑, ū), (5.39)

(𝜋̄,∇ · 𝜉𝑚
u ) = 0, (5.40)

for all [ū, 𝜋̄] ∈ 𝒳u × 𝒳𝜋. Taking ū = 𝜉𝑚
u in (5.39), 𝜋̄ = 1

𝜌𝜉𝑚
𝜋 in (5.40), using (3.13) and adding the resulting

expressions, we obtain

1
2
𝛿𝑡‖𝜉𝑚

u ‖2𝐿2 +
∆𝑡

2
‖𝛿𝑡𝜉

𝑚
u ‖2𝐿2 +

𝐷u

𝜌
‖∇𝜉𝑚

u ‖2𝐿2 = (𝜔𝑚
u , 𝜉𝑚

u )− (𝛿𝑡𝜃
𝑚
u , 𝜉𝑚

u )−𝐵(u𝑚 − u𝑚−1,u𝑚, 𝜉𝑚
u )

−𝐵(𝜉𝑚−1
u + 𝜃𝑚−1

u ,u𝑚, 𝜉𝑚
u )−𝐵(u𝑚−1

ℎ , 𝜃𝑚
u , 𝜉𝑚

u ) +
1
𝜌

((𝑛𝑚 − 𝑛𝑚−1 + 𝜉𝑚−1
𝑛 + 𝜃𝑚−1

𝑛 )∇𝜑, 𝜉𝑚
u )

=
6∑︁

𝑘=1

𝐿𝑘. (5.41)

Then, we control the terms on the right hand side of (5.41) as follows: First, using the Hölder and Young
inequalities, the Poincaré inequality (2.3) and (3.3), we get

𝐿1 ≤
𝐷u

10𝜌
‖∇𝜉𝑚

u ‖2𝐿2 +
𝐶𝜌

𝐷u
‖𝜔𝑚

u ‖2(𝐻1)′ ≤
𝐷u

10𝜌
‖∇𝜉𝑚

u ‖2𝐿2 +
𝐶𝜌

𝐷u
∆𝑡

∫︁ 𝑡𝑚

𝑡𝑚−1

‖u𝑡𝑡(𝑡)‖2(𝐻1)′ d𝑡, (5.42)

𝐿2 ≤ ‖𝜉𝑚
u ‖𝐿2‖(ℐ − Pu)𝛿𝑡u𝑚‖𝐿2 ≤ 𝐷u

10𝜌
‖∇𝜉𝑚

u ‖2𝐿2 +
𝐶𝜌

𝐷u
ℎ2(𝑟+1)‖[𝛿𝑡u𝑚, 𝛿𝑡𝜋

𝑚]‖2𝐻𝑟+1×𝐻𝑟

≤ 𝐷u

10𝜌
‖∇𝜉𝑚

u ‖2𝐿2 +
𝐶𝜌

𝐷u∆𝑡
ℎ2(𝑟+1)

∫︁ 𝑡𝑚

𝑡𝑚−1

‖[u𝑡, 𝜋𝑡]‖2𝐻𝑟+1×𝐻𝑟 d𝑡. (5.43)

From the definition of the skew-symmetric trilinear form (3.9), the Hölder, Young and Poincaré inequalities,
(2.4) and (3.3), we have

𝐿3 + 𝐿4 ≤ (‖u𝑚 − u𝑚−1‖𝐿2 + ‖𝜉𝑚−1
u ‖𝐿2 + ‖𝜃𝑚−1

u ‖𝐿2)‖u𝑚‖𝐿∞∩𝑊 1,3‖𝜉𝑚
u ‖𝐻1
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≤ 𝐷u

10𝜌
‖∇𝜉𝑚

u ‖2𝐿2 +
𝐶𝜌

𝐷u
(‖u𝑚−u𝑚−1‖2𝐿2 + ℎ2(𝑟+1)‖[u𝑚−1, 𝜋𝑚−1]‖2𝐻𝑟+1×𝐻𝑟

+ ‖𝜉𝑚−1
u ‖2𝐿2)‖u𝑚‖2𝐻2 . (5.44)

Also, using the definition of the skew-symmetric trilinear form (3.9), the Hölder, Young and Poincaré inequalities,
(2.4), (3.3), (3.4) and (3.6), we get

𝐿5 = 𝐵(𝜉𝑚−1
u , 𝜃𝑚

u , 𝜉𝑚
u )−𝐵(Puu𝑚−1, 𝜃𝑚

u , 𝜉𝑚
u )

≤ ‖𝜉𝑚−1
u ‖𝐿2‖𝜃𝑚

u ‖𝐿∞∩𝑊 1,3‖𝜉𝑚
u ‖𝐻1 + ‖Puu𝑚−1‖𝐿∞∩𝑊 1,3‖𝜃𝑚

u ‖𝐿2‖𝜉𝑚
u ‖𝐻1

≤ 𝐷u

10𝜌
‖∇𝜉𝑚

u ‖2𝐿2 +
𝐶𝜌

𝐷u
‖[u𝑚, 𝜋𝑚]‖2𝐻2×𝐻1‖𝜉𝑚−1

u ‖2𝐿2

+
𝐶𝜌

𝐷u
ℎ2(𝑟+1)‖[u𝑚−1, 𝜋𝑚−1]‖2𝐻2×𝐻1‖[u𝑚, 𝜋𝑚]‖2𝐻𝑟+1×𝐻𝑟 , (5.45)

𝐿6 ≤
1
𝜌
‖[𝑛𝑚−𝑛𝑚−1, 𝜉𝑚−1

𝑛 , 𝜃𝑚−1
𝑛 ]‖𝐿2‖∇𝜑‖𝐿3‖𝜉𝑚

u ‖𝐻1

≤ 𝐷u

10𝜌
‖∇𝜉𝑚

u ‖2𝐿2 +
𝐶

𝜌𝐷u

(︀
‖𝑛𝑚−𝑛𝑚−1‖2𝐿2 + ℎ2(𝑟1+1)‖𝑛𝑚−1‖2𝐻𝑟1+1 + ‖𝜉𝑚−1

𝑛 ‖2𝐿2

)︀
‖∇𝜑‖2𝐿3 . (5.46)

Therefore, from (5.41) to (5.46), we arrive at

1
2
𝛿𝑡‖𝜉𝑚

u ‖2𝐿2 +
∆𝑡

2
‖𝛿𝑡𝜉

𝑚
u ‖2𝐿2 +

𝐷u

2𝜌
‖∇𝜉𝑚

u ‖2𝐿2 ≤
𝐶𝜌

𝐷u

∫︁ 𝑡𝑚

𝑡𝑚−1

(︂
∆𝑡‖u𝑡𝑡(𝑡)‖2(𝐻1)′ +

ℎ2(𝑟+1)

∆𝑡
‖[u𝑡, 𝜋𝑡]‖2𝐻𝑟+1×𝐻𝑟

)︂
d𝑡

+
𝐶𝜌

𝐷u

(︀
‖u𝑚−u𝑚−1‖2𝐿2 + ℎ2(𝑟+1)‖[u𝑚−1, 𝜋𝑚−1]‖2𝐻𝑟+1×𝐻𝑟 + ‖𝜉𝑚−1

u ‖2𝐿2

)︀
‖u𝑚‖2𝐻2

+
𝐶𝜌

𝐷u

(︀
‖[u𝑚, 𝜋𝑚]‖2𝐻2×𝐻1‖𝜉𝑚−1

u ‖2𝐿2 + ℎ2(𝑟+1)‖[u𝑚−1, 𝜋𝑚−1]‖2𝐻2×𝐻1‖[u𝑚, 𝜋𝑚]‖2𝐻𝑟+1×𝐻𝑟

)︀
+

𝐶

𝜌𝐷u

(︀
‖𝑛𝑚−𝑛𝑚−1‖2𝐿2 + ℎ2(𝑟1+1)‖𝑛𝑚−1‖2𝐻𝑟1+1 + ‖𝜉𝑚−1

𝑛 ‖2𝐿2

)︀
‖∇𝜑‖2𝐿3 . (5.47)

(4) Error estimate for the flux 𝜎

Taking into account (3.5)3, from (5.10) and (5.14)–(5.17), we have

(𝛿𝑡𝜉
𝑚
𝜎 , 𝜎̄) + 𝐷𝑐(∇ · 𝜉𝑚

𝜎 ,∇ · 𝜎̄) + 𝐷𝑐(rot 𝜉𝑚
𝜎 , rot 𝜎̄) = (𝜔𝑚

𝜎 , 𝜎̄)− (𝛿𝑡𝜃
𝑚
𝜎 , 𝜎̄)

+ ((u𝑚 − u𝑚−1) · 𝜎𝑚 + u𝑚−1(𝜎𝑚 − 𝜎𝑚−1) + (𝜉𝑚−1
u + 𝜃𝑚−1

u )𝜎𝑚−1,∇ · 𝜎̄)
+ (u𝑚−1

ℎ (𝜉𝑚−1
𝜎 + 𝜃𝑚−1

𝜎 ) + 𝛾(𝑛𝑚− 𝑛𝑚−1)𝑐𝑚 + 𝛾(𝑛𝑚−1+ 𝛼0)(𝑐𝑚− 𝑐𝑚−1),∇ · 𝜎̄)
+ 𝛾((𝜉𝑚−1

𝑛 + 𝜃𝑚−1
𝑛 )𝑐𝑚−1

ℎ + (𝑛𝑚−1+ 𝛼0)(𝜉𝑚−1
𝑐 + 𝜃𝑚−1

𝑐 ),∇ · 𝜎̄) + 𝐷𝑐(𝜃𝑚
𝜎 , 𝜎̄), (5.48)

for all 𝜎̄ ∈ 𝒳𝜎. Taking 𝜎̄ = 𝜉𝑚
𝜎 in (5.48), we arrive at

1
2
𝛿𝑡‖𝜉𝑚

𝜎 ‖2𝐿2 +
∆𝑡

2
‖𝛿𝑡𝜉

𝑚
𝜎 ‖2𝐿2 + 𝐷𝑐‖∇ · 𝜉𝑚

𝜎 ‖2𝐿2 + 𝐷𝑐‖rot 𝜉𝑚
𝜎 ‖2𝐿2 = (𝜔𝑚

𝜎 , 𝜉𝑚
𝜎 )− (𝛿𝑡𝜃

𝑚
𝜎 , 𝜉𝑚

𝜎 )

+ ((u𝑚 − u𝑚−1) · 𝜎𝑚 + u𝑚−1(𝜎𝑚 − 𝜎𝑚−1) + (𝜉𝑚−1
u + 𝜃𝑚−1

u )𝜎𝑚−1,∇ · 𝜉𝑚
𝜎 )

+ (u𝑚−1
ℎ (𝜉𝑚−1

𝜎 + 𝜃𝑚−1
𝜎 ),∇ · 𝜉𝑚

𝜎 ) + 𝛾((𝑛𝑚− 𝑛𝑚−1)𝑐𝑚 + (𝑛𝑚−1+ 𝛼0)(𝑐𝑚− 𝑐𝑚−1),∇ · 𝜉𝑚
𝜎 )

+ 𝛾((𝜉𝑚−1
𝑛 + 𝜃𝑚−1

𝑛 )𝑐𝑚−1
ℎ ,∇ · 𝜉𝑚

𝜎 ) + 𝛾((𝑛𝑚−1+ 𝛼0)(𝜉𝑚−1
𝑐 + 𝜃𝑚−1

𝑐 ),∇ · 𝜉𝑚
𝜎 ) + 𝐷𝑐(𝜃𝑚

𝜎 , 𝜉𝑚
𝜎 )

=
8∑︁

𝑘=1

𝑅𝑘. (5.49)
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Then, using the Hölder and Young inequalities, the equivalent norm in H1
𝜎(Ω) given in (2.2), as well as (3.3),

(3.4) and (3.6)–(3.8), we control the terms on the right hand side of (5.49) as follows

𝑅1 ≤ (‖𝜉𝑚
𝜎 ‖𝐿2 + ‖∇ · 𝜉𝑚

𝜎 ‖𝐿2 + ‖rot 𝜉𝑚
𝜎 ‖𝐿2)‖𝜔𝑚

𝜎 ‖(𝐻1)′

≤ (∆𝑡‖𝛿𝑡𝜉
𝑚
𝜎 ‖𝐿2 + ‖𝜉𝑚−1

𝜎 ‖𝐿2 + ‖∇ · 𝜉𝑚
𝜎 ‖𝐿2 + ‖rot 𝜉𝑚

𝜎 ‖𝐿2)‖𝜔𝑚
𝜎 ‖(𝐻1)′

≤ 𝐷𝑐

6
‖∇ · 𝜉𝑚

𝜎 ‖2𝐿2 +
𝐷𝑐

2
‖rot 𝜉𝑚

𝜎 ‖2𝐿2 +
∆𝑡

8
‖𝛿𝑡𝜉

𝑚
𝜎 ‖2𝐿2 +

1
2
‖𝜉𝑚−1

𝜎 ‖2𝐿2 +
(︂

𝐶

𝐷𝑐
+ 𝐶∆𝑡 +

1
2

)︂
‖𝜔𝑚

𝜎 ‖2(𝐻1)′

≤ 𝐷𝑐

6
‖∇ · 𝜉𝑚

𝜎 ‖2𝐿2 +
𝐷𝑐

2
‖rot 𝜉𝑚

𝜎 ‖2𝐿2 +
∆𝑡

8
‖𝛿𝑡𝜉

𝑚
𝜎 ‖2𝐿2 +

1
2
‖𝜉𝑚−1

𝜎 ‖2𝐿2 + 𝛾1𝐶∆𝑡

∫︁ 𝑡𝑚

𝑡𝑚−1

‖𝜎𝑡𝑡(𝑡)‖2(𝐻1)′ d𝑡,

(5.50)
𝑅2 + 𝑅8 ≤ ‖𝜉𝑚

𝜎 ‖𝐿2‖(ℐ − P𝜎)𝛿𝑡𝜎
𝑚‖𝐿2 + 𝐷𝑐‖𝜉𝑚

𝜎 ‖𝐿2‖𝜃𝑚
𝜎 ‖𝐿2

≤ (‖(ℐ − P𝜎)𝛿𝑡𝜎
𝑚‖𝐿2 + 𝐷𝑐‖𝜃𝑚

𝜎 ‖𝐿2)(∆𝑡‖𝛿𝑡𝜉
𝑚
𝜎 ‖𝐿2 + ‖𝜉𝑚−1

𝜎 ‖𝐿2)

≤ ∆𝑡

8
‖𝛿𝑡𝜉

𝑚
𝜎 ‖2𝐿2 +

1
2
‖𝜉𝑚−1

𝜎 ‖2𝐿2 + 𝛾2𝐶ℎ2(𝑟3+1)
[︁
‖𝛿𝑡𝜎

𝑚‖2𝐻𝑟3+1 + 𝐷2
𝑐‖𝜎𝑚‖2𝐻𝑟3+1

]︁
≤ ∆𝑡

8
‖𝛿𝑡𝜉

𝑚
𝜎 ‖2𝐿2 +

1
2
‖𝜉𝑚−1

𝜎 ‖2𝐿2 + 𝛾2𝐶ℎ2(𝑟3+1)
[︁ 1

∆𝑡

∫︁ 𝑡𝑚

𝑡𝑚−1

‖𝜎𝑡‖2𝐻𝑟3+1d𝑡 + 𝐷2
𝑐‖𝜎𝑚‖2𝐻𝑟3+1

]︁
, (5.51)

𝑅3 + 𝑅5 + 𝑅7 ≤
𝐷𝑐

6
‖∇ · 𝜉𝑚

𝜎 ‖2𝐿2 +
𝐶

𝐷𝑐
‖[u𝑚 − u𝑚−1,𝜎𝑚 − 𝜎𝑚−1]‖2𝐿2‖[𝜎𝑚,u𝑚−1]‖2𝐿∞

+
𝐶

𝐷𝑐
(ℎ2(𝑟+1)‖[u𝑚−1, 𝜋𝑚−1]‖2𝐻𝑟+1×𝐻𝑟 + ‖𝜉𝑚−1

u ‖2𝐿2)‖𝜎𝑚−1‖2𝐿∞

+
𝛾2𝐶

𝐷𝑐
‖[𝑛𝑚−𝑛𝑚−1, 𝑐𝑚−𝑐𝑚−1]‖2𝐿2‖[𝑐𝑚, 𝑛𝑚−1+𝛼0]‖2𝐿∞

+
𝛾2𝐶

𝐷𝑐
(ℎ2(𝑟2+1)‖𝑐𝑚−1‖2𝐻𝑟2+1 + ‖𝜉𝑚−1

𝑐 ‖2𝐿2)‖𝑛𝑚−1+𝛼0‖2𝐿∞ , (5.52)

𝑅4 + 𝑅6 = ((Puu𝑚−1 − 𝜉𝑚−1
u )(𝜉𝑚−1

𝜎 + 𝜃𝑚−1
𝜎 ) + 𝛾𝑐𝑚−1

ℎ 𝜉𝑚−1
𝑛 + 𝛾(P𝑐𝑐

𝑚−1 − 𝜉𝑚−1
𝑐 )𝜃𝑚−1

𝑛 ,∇ · 𝜉𝑚
𝜎 )

≤ 𝐷𝑐

6
‖∇ · 𝜉𝑚

𝜎 ‖2𝐿2 +
𝐶

𝐷𝑐
‖Puu𝑚−1‖2𝐿∞(‖𝜉𝑚−1

𝜎 ‖2𝐿2 + ‖𝜃𝑚−1
𝜎 ‖2𝐿2) +

𝐷u

4𝜌
‖∇𝜉𝑚−1

u ‖2𝐿2

+
𝐶𝜌

𝐷u𝐷2
𝑐

‖𝜉𝑚−1
u ‖2𝐿2(‖𝜉𝑚−1

𝜎 ‖4𝐿4 + ‖𝜃𝑚−1
𝜎 ‖4𝐿4) +

𝐷𝑛

8
‖𝜉𝑚−1

𝑛 ‖2𝐻1

+
𝐶𝛾4

𝐷𝑛𝐷2
𝑐

‖𝜉𝑚−1
𝑛 ‖2𝐿2‖𝑐𝑚−1

ℎ ‖2𝐻1 +
𝐶𝛾2

𝐷𝑐
‖P𝑐𝑐

𝑚−1‖2𝐿∞‖𝜃𝑚−1
𝑛 ‖2𝐿2

+
𝐶𝛾2

𝐷𝑐
‖𝜃𝑚−1

𝑛 ‖2𝐿∞‖𝜉𝑚−1
𝑐 ‖2𝐿2

≤ 𝐷𝑐

6
‖∇ · 𝜉𝑚

𝜎 ‖2𝐿2 +
𝐷u

4𝜌
‖∇𝜉𝑚−1

u ‖2𝐿2 +
𝐷𝑛

8
‖𝜉𝑚−1

𝑛 ‖2𝐻1 +
𝐶𝜌

𝐷u𝐷2
𝑐

‖𝜉𝑚−1
u ‖2𝐿2‖[𝜎𝑚−1

ℎ ,𝜎𝑚−1]‖2𝐻1

+
𝐶

𝐷𝑐
(ℎ2(𝑟3+1)‖𝜎𝑚−1‖2𝐻𝑟3+1 + ‖𝜉𝑚−1

𝜎 ‖2𝐿2)‖u𝑚−1‖2𝐻2 +
𝐶𝛾4

𝐷𝑛𝐷2
𝑐

‖𝜉𝑚−1
𝑛 ‖2𝐿2‖𝑐𝑚−1

ℎ ‖2𝐻1

+
𝐶𝛾2

𝐷𝑐
ℎ2(𝑟1+1)‖𝑐𝑚−1‖2𝐻2‖𝑛𝑚−1‖2𝐻𝑟1+1 +

𝐶𝛾2

𝐷𝑐
‖𝑛𝑚−1‖2𝐻2‖𝜉𝑚−1

𝑐 ‖2𝐿2 , (5.53)

where, in the first inequality of (5.53), the 2D interpolation inequality (2.5) was used. Therefore, from (5.49) to
(5.53), by using the inductive hypothesis (5.1), we arrive at

1
2
𝛿𝑡‖𝜉𝑚

𝜎 ‖2𝐿2 +
∆𝑡

4
‖𝛿𝑡𝜉

𝑚
𝜎 ‖2𝐿2 +

𝐷𝑐

2
‖∇ · 𝜉𝑚

𝜎 ‖2𝐿2 +
𝐷𝑐

2
‖rot 𝜉𝑚

𝜎 ‖2𝐿2 ≤ 𝛾1𝐶∆𝑡

∫︁ 𝑡𝑚

𝑡𝑚−1

‖𝜎𝑡𝑡(𝑡)‖2(𝐻1)′d𝑡
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+ ‖𝜉𝑚−1
𝜎 ‖2𝐿2 + 𝛾2𝐶ℎ2(𝑟3+1)

[︁ 1
∆𝑡

∫︁ 𝑡𝑚

𝑡𝑚−1

‖𝜎𝑡‖2𝐻𝑟3+1d𝑡 + 𝐷2
𝑐‖𝜎𝑚‖2𝐻𝑟3+1

]︁
+

𝐶

𝐷𝑐

(︁
‖[u𝑚 − u𝑚−1,𝜎𝑚 − 𝜎𝑚−1]‖2𝐿2‖[𝜎𝑚,u𝑚−1]‖2𝐿∞ + ℎ2(𝑟+1)‖[u𝑚−1, 𝜋𝑚−1]‖2𝐻𝑟+1×𝐻𝑟‖𝜎𝑚−1‖2𝐿∞

)︁
+

𝐶

𝐷𝑐
‖𝜉𝑚−1

u ‖2𝐿2‖𝜎𝑚−1‖2𝐿∞ +
𝛾2𝐶

𝐷𝑐
‖[𝑛𝑚−𝑛𝑚−1, 𝑐𝑚−𝑐𝑚−1]‖2𝐿2‖[𝑐𝑚, 𝑛𝑚−1+𝛼0]‖2𝐿∞

+
𝛾2𝐶

𝐷𝑐
(ℎ2(𝑟2+1)‖𝑐𝑚−1‖2𝐻𝑟2+1 + ‖𝜉𝑚−1

𝑐 ‖2𝐿2)‖𝑛𝑚−1+𝛼0‖2𝐿∞ +
𝐷u

4𝜌
‖∇𝜉𝑚−1

u ‖2𝐿2 +
𝐷𝑛

8
‖𝜉𝑚−1

𝑛 ‖2𝐻1

+
𝐶𝜌

𝐷u𝐷2
𝑐

‖𝜉𝑚−1
u ‖2𝐿2‖[𝜎𝑚−1

ℎ ,𝜎𝑚−1]‖2𝐻1 +
𝐶

𝐷𝑐
(ℎ2(𝑟3+1)‖𝜎𝑚−1‖2𝐻𝑟3+1 + ‖𝜉𝑚−1

𝜎 ‖2𝐿2)‖u𝑚−1‖2𝐻2

+
𝐶𝛾4

𝐷𝑛𝐷2
𝑐

‖𝜉𝑚−1
𝑛 ‖2𝐿2‖𝑐𝑚−1

ℎ ‖2𝐻1 +
𝐶𝛾2

𝐷𝑐
ℎ2(𝑟1+1)‖𝑐𝑚−1‖2𝐻2‖𝑛𝑚−1‖2𝐻𝑟1+1

+
𝐶𝛾2

𝐷𝑐
‖𝑛𝑚−1‖2𝐻2‖𝜉𝑚−1

𝑐 ‖2𝐿2 . (5.54)

(5) Estimate for the terms ‖𝑛𝑚 − 𝑛𝑚−1‖𝐿2 , ‖𝑐𝑚 − 𝑐𝑚−1‖𝐿2 , ‖u𝑚 − u𝑚−1‖𝐿2 and ‖𝜎𝑚 − 𝜎𝑚−1]‖𝐿2

Observe that the following estimate holds

∆𝑡

𝑟∑︁
𝑚=1

‖[𝑛𝑚 − 𝑛𝑚−1, 𝑐𝑚 − 𝑐𝑚−1,u𝑚 − u𝑚−1,𝜎𝑚 − 𝜎𝑚−1]‖2𝐿2

≤ 𝐶(∆𝑡)4‖[𝑛𝑡𝑡, 𝑐𝑡𝑡,u𝑡𝑡,𝜎𝑡𝑡]‖2𝐿2(𝐿2) + 𝐶(∆𝑡)2‖[𝑛𝑡, 𝑐𝑡,u𝑡,𝜎𝑡]‖2𝐿2(𝐿2). (5.55)

Indeed,

‖𝜔𝑚
𝑛 ‖𝐿2 = ‖𝛿𝑡𝑛

𝑚 − (𝑛𝑡)𝑚‖𝐿2 =
⃦⃦⃦ 1

∆𝑡
(𝑛𝑚 − 𝑛𝑚−1)− (𝑛𝑡)𝑚

⃦⃦⃦
𝐿2
≤ 𝐶(∆𝑡)1/2

(︃∫︁ 𝑡𝑚

𝑡𝑚−1

‖𝑛𝑡𝑡(𝑡)‖2𝐿2d𝑡

)︃1/2

,

where the last inequality was obtained as in (5.23), with the space norm in 𝐿2 instead of (𝐻1)′, the dual of 𝐻1.
Therefore, we deduce

∆𝑡

𝑟∑︁
𝑚=1

‖𝑛𝑚 − 𝑛𝑚−1‖2𝐿2 ≤ 𝐶(∆𝑡)4‖𝑛𝑡𝑡‖2𝐿2(𝐿2) + 𝐶(∆𝑡)2‖𝑛𝑡‖2𝐿2(𝐿2).

Analogously, we obtain the estimate for 𝑐,u and 𝜎.

5.2.2. Proof of Theorem 5.5

Proof. The proof of (5.19) follows adding the four inequalities (5.29), (5.38), (5.47) and (5.54), multiplying the
resulting expression by ∆𝑡, adding from 𝑚 = 1 to 𝑚 = 𝑠, using (5.55), (2.8) and Lemmas 5.2, 5.3, and applying
the discrete Gronwall Lemma 5.1 (recalling that [𝜉0

𝑛, 𝜉0
𝑐 , 𝜉0

u, 𝜉0
𝜎] = [0, 0,0,0]).

Now we prove (5.20). Subtracting (5.40) at time 𝑡 = 𝑡𝑚−1 from (5.40) at time 𝑡 = 𝑡𝑚 and multiplying the
resulting expression by 1/(𝜌∆𝑡), we have that

1
𝜌

(𝜋̄,∇ · 𝛿𝑡𝜉
𝑚
u ) = 0 ∀𝜋̄ ∈ 𝒳𝜋. (5.56)

Then, testing (5.39) by ū = 𝛿𝑡𝜉
𝑚
u , (5.56) by 𝜋̄ = 𝜉𝑚

𝜋 and adding the resulting expressions, the terms 1
𝜌 (𝜉𝑚

𝜋 ,∇ ·
𝛿𝑡𝜉

𝑚
u ) cancel and we obtain

𝐷u

2𝜌
𝛿𝑡‖𝜉𝑚

u ‖2𝐻1 +
∆𝑡𝐷u

2𝜌
‖𝛿𝑡𝜉

𝑚
u ‖2𝐻1 + ‖𝛿𝑡𝜉

𝑚
u ‖2𝐿2 = (𝜔𝑚

u − 𝛿𝑡𝜃
𝑚
u , 𝛿𝑡𝜉

𝑚
u )
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− 𝐵(u𝑚 − u𝑚−1,u𝑚, 𝛿𝑡𝜉
𝑚
u )−𝐵(𝜉𝑚−1

u + 𝜃𝑚−1
u ,u𝑚, 𝛿𝑡𝜉

𝑚
u )−𝐵(u𝑚−1

ℎ , 𝜉𝑚
u + 𝜃𝑚

u , 𝛿𝑡𝜉
𝑚
u )

+
1
𝜌

((𝑛𝑚 − 𝑛𝑚−1 + 𝜉𝑚−1
𝑛 + 𝜃𝑚−1

𝑛 )∇𝜑, 𝛿𝑡𝜉
𝑚
u ) := (𝑔, 𝛿𝑡𝜉

𝑚
u ) ≤ 1

2
(‖𝛿𝑡𝜉

𝑚
u ‖2𝐿2 + ‖𝑔‖2𝐿2). (5.57)

We will give some details of the boundedness of ‖𝑔‖𝐿2 : First, using the Hölder inequality, as well as the property
(3.11), for all 𝜙 ∈ 𝐿2, one has⃒⃒⃒⃒

(𝜔𝑚
u − 𝛿𝑡𝜃

𝑚
u , 𝜙)−𝐵(u𝑚 − u𝑚−1,u𝑚, 𝜙) +

1
𝜌

((𝑛𝑚 − 𝑛𝑚−1 + 𝜉𝑚−1
𝑛 + 𝜃𝑚−1

𝑛 )∇𝜑, 𝜙)
⃒⃒⃒⃒

≤ 𝐶(‖𝜔𝑚
u ‖𝐿2 + ‖𝛿𝑡𝜃

𝑚
u ‖𝐿2 + ‖u𝑚 − u𝑚−1‖𝐿2‖∇u𝑚‖𝐿∞)‖𝜙‖𝐿2

+ 𝐶‖∇𝜑‖𝐿∞(‖𝑛𝑚 − 𝑛𝑚−1‖𝐿2 + ‖𝜉𝑚−1
𝑛 ‖𝐿2 + ‖𝜃𝑚−1

𝑛 ‖𝐿2)‖𝜙‖𝐿2 . (5.58)

Now, using again the Hölder inequality, and integrating by parts conveniently, we have

|𝐵(𝜉𝑚−1
u + 𝜃𝑚−1

u ,u𝑚, 𝜙)| ≤ 𝐶(‖𝜉𝑚−1
u ‖𝐻1 + ‖𝜃𝑚−1

u ‖𝐻1)‖u𝑚‖𝐿∞∩𝑊 1,3‖𝜙‖𝐿2 (5.59)

and

|𝐵(u𝑚−1
ℎ , 𝜉𝑚

u + 𝜃𝑚
u , 𝜙)| = |𝐵(Puu𝑚−1, 𝜉𝑚

u + 𝜃𝑚
u , 𝜙)−𝐵(𝜉𝑚−1

u , 𝜉𝑚
u + 𝜃𝑚

u , 𝜙)|
≤ 𝐶‖Puu𝑚−1‖𝐿∞∩𝑊 1,3(‖𝜃𝑚

u ‖𝐻1 + ‖𝜉𝑚
u ‖𝐻1)‖𝜙‖𝐿2 + 𝐶‖𝜉𝑚−1

u ‖𝐻1‖𝜃𝑚
u ‖𝐿∞∩𝑊 1,3‖𝜙‖𝐿2

+ 𝐶‖∇𝜉𝑚
u ‖𝐿4‖𝜉𝑚−1

u ‖𝐿4‖𝜙‖𝐿2 + 𝐶‖∇𝜉𝑚−1
u ‖𝐿4‖𝜉𝑚

u ‖𝐿4‖𝜙‖𝐿2

≤ 𝐶‖Puu𝑚−1‖𝐿∞∩𝑊 1,3(‖𝜃𝑚
u ‖𝐻1 + ‖𝜉𝑚

u ‖𝐻1)‖𝜙‖𝐿2 + 𝐶‖𝜉𝑚−1
u ‖𝐻1‖𝜃𝑚

u ‖𝐿∞∩𝑊 1,3‖𝜙‖𝐿2

+ 𝐶‖𝜉𝑚
u ‖

1/2
𝑊 1,6‖𝜉𝑚

u ‖
1/2
𝐻1 ‖𝜉𝑚−1

u ‖𝐻1‖𝜙‖𝐿2 + 𝐶‖𝜉𝑚−1
u ‖1/2

𝑊 1,6‖𝜉𝑚−1
u ‖1/2

𝐻1 ‖𝜉𝑚
u ‖𝐻1‖𝜙‖𝐿2 ,

(5.60)

where, in (5.60), the 2D interpolation inequality was used. Therefore from (5.58) to (5.60) we have

‖𝑔‖𝐿2 = sup{|(𝑔, 𝜙)| : 𝜙 ∈ 𝐿2(Ω), ‖𝜙‖𝐿2 ≤ 1}
≤ 𝐶(‖𝜔𝑚

u ‖𝐿2 + ‖𝛿𝑡𝜃
𝑚
u ‖𝐿2 + ‖u𝑚 − u𝑚−1‖𝐿2‖∇u𝑚‖𝐿∞

+ (‖𝜉𝑚−1
u ‖𝐻1 + ‖𝜃𝑚−1

u ‖𝐻1)‖u𝑚‖𝐿∞∩𝑊 1,3 + ‖𝜉𝑚−1
u ‖𝐻1‖𝜃𝑚

u ‖𝐿∞∩𝑊 1,3

+ ‖Puu𝑚−1‖𝐿∞∩𝑊 1,3(‖𝜃𝑚
u ‖𝐻1 + ‖𝜉𝑚

u ‖𝐻1) + ‖𝜉𝑚
u ‖

1/2
𝑊 1,6‖𝜉𝑚

u ‖
1/2
𝐻1 ‖𝜉𝑚−1

u ‖𝐻1

+ ‖𝜉𝑚−1
u ‖1/2

𝑊 1,6‖𝜉𝑚−1
u ‖1/2

𝐻1 ‖𝜉𝑚
u ‖𝐻1 + (‖𝑛𝑚−𝑛𝑚−1‖𝐿2 + ‖𝜉𝑚−1

𝑛 ‖𝐿2 + ‖𝜃𝑚−1
𝑛 ‖𝐿2)‖∇𝜑‖𝐿∞). (5.61)

Therefore from (5.57) to (5.61), we arrive at

𝐷u

2𝜌
𝛿𝑡‖𝜉𝑚

u ‖2𝐻1 +
1
2
‖𝛿𝑡𝜉

𝑚
u ‖2𝐿2 ≤

1
2
‖𝑔‖2𝐿2 ≤ 𝐶(‖𝜔𝑚

u ‖2𝐿2 + ‖𝛿𝑡𝜃
𝑚
u ‖2𝐿2 + ‖u𝑚 − u𝑚−1‖2𝐿2‖∇u𝑚‖2𝐿∞

+ (‖𝜉𝑚−1
u ‖2𝐻1 + ‖𝜃𝑚−1

u ‖2𝐻1)‖u𝑚‖2𝐿∞∩𝑊 1,3 + ‖𝜉𝑚−1
u ‖2𝐻1‖𝜃𝑚

u ‖2𝐿∞∩𝑊 1,3

+ ‖Puu𝑚−1‖2𝐿∞∩𝑊 1,3(‖𝜃𝑚
u ‖2𝐻1 + ‖𝜉𝑚

u ‖2𝐻1) + 𝜀(‖𝜉𝑚
u ‖2𝑊 1,6 + ‖𝜉𝑚−1

u ‖2𝑊 1,6)
+ 𝐶𝜀‖𝜉𝑚

u ‖2𝐻1(‖𝜉𝑚−1
u ‖4𝐻1 + ‖𝜉𝑚−1

u ‖2𝐻1‖𝜉𝑚
u ‖2𝐻1)

+ (‖𝑛𝑚 − 𝑛𝑚−1‖2𝐿2 + ‖𝜉𝑚−1
𝑛 ‖2𝐿2 + ‖𝜃𝑚−1

𝑛 ‖2𝐿2)‖∇𝜑‖2𝐿∞). (5.62)

On the other hand, applying Lemma 11 of [12] to (5.39) and (5.40), we have

‖[𝜉𝑚
u , 𝜉𝑚

𝜋 ]‖2𝑊 1,6×𝐿6 ≤ 𝐶(‖𝛿𝑡𝜉
𝑚
u ‖2𝐿2 + ‖𝑔‖2𝐿2), (5.63)

with 𝑔 as in (5.57) and (5.62). Thus, adding (5.62) with 𝜆 (5.63) (for 0 < 𝜆 < 1), we arrive at

𝐷u

2𝜌
𝛿𝑡‖𝜉𝑚

u ‖2𝐻1 +
1
2
‖𝛿𝑡𝜉

𝑚
u ‖2𝐿2 + 𝜆‖[𝜉𝑚

u , 𝜉𝑚
𝜋 ]‖2𝑊 1,6×𝐿6 ≤ 𝐶(𝜆‖𝛿𝑡𝜉

𝑚
u ‖2𝐿2 + ‖𝜔𝑚

u ‖2𝐿2 + ‖𝛿𝑡𝜃
𝑚
u ‖2𝐿2
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+ ‖u𝑚 − u𝑚−1‖2𝐿2‖∇u𝑚‖2𝐿∞ + (‖𝜉𝑚−1
u ‖2𝐻1 + ‖𝜃𝑚−1

u ‖2𝐻1)‖u𝑚‖2𝐿∞∩𝑊 1,3

+ ‖𝜉𝑚−1
u ‖2𝐻1‖𝜃𝑚

u ‖2𝐿∞∩𝑊 1,3

+ ‖Puu𝑚−1‖2𝐿∞∩𝑊 1,3(‖𝜃𝑚
u ‖2𝐻1 + ‖𝜉𝑚

u ‖2𝐻1) + 𝜀(‖𝜉𝑚
u ‖2𝑊 1,6 + ‖𝜉𝑚−1

u ‖2𝑊 1,6)
+ 𝐶𝜀‖𝜉𝑚

u ‖2𝐻1(‖𝜉𝑚−1
u ‖4𝐻1 + ‖𝜉𝑚−1

u ‖2𝐻1‖𝜉𝑚
u ‖2𝐻1)

+ (‖𝑛𝑚 − 𝑛𝑚−1‖2𝐿2 + ‖𝜉𝑚−1
𝑛 ‖2𝐿2 + ‖𝜃𝑚−1

𝑛 ‖2𝐿2)‖∇𝜑‖2𝐿∞). (5.64)

We take 𝜆 small enough in order to absorb the term 𝐶𝜆‖𝛿𝑡𝜉
𝑚
u ‖2𝐿2 at the right hand side, and 𝜀 small enough

with respect to 𝜆. Moreover, observe that

‖𝜉𝑚−1
u ‖4𝐻1 + ‖𝜉𝑚−1

u ‖2𝐻1‖𝜉𝑚
u ‖2𝐻1 ≤ 𝐶. (5.65)

Indeed, recalling that ℎmax := max{ℎ𝑟1+1, ℎ𝑟2+1, ℎ𝑟3+1, ℎ𝑟+1}, from estimate (5.19) we have in particular that
‖𝜉𝑚

u ‖2𝐻1 ≤ 𝐶(𝑇 )
(︁

∆𝑡 + 1
Δ𝑡ℎ

2
max

)︁
, which implies that

‖𝜉𝑚−1
u ‖4𝐻1 + ‖𝜉𝑚−1

u ‖2𝐻1‖𝜉𝑚
u ‖2𝐻1 ≤ 𝐶(𝑇 )

(︁
∆𝑡 +

1
∆𝑡

ℎ2
max

)︁2

.

Therefore, we conclude (5.65) under the hypothesis

ℎ4
max

(∆𝑡)2
≤ 𝐶. (5.66)

On the other hand, from (5.19) we also have ‖𝜉𝑚
u ‖2𝐿2 ≤ 𝐶(𝑇 )

(︁
(∆𝑡)2 + ℎ2

max

)︁
for each 𝑚. Therefore, by using

the inverse inequality ‖𝜉𝑚
u ‖𝐻1 ≤ ℎ−1‖𝜉𝑚

u ‖𝐿2 we obtain

‖𝜉𝑚−1
u ‖4𝐻1 + ‖𝜉𝑚−1

u ‖2𝐻1‖𝜉𝑚
u ‖2𝐻1 ≤ 𝐶(𝑇 )

1
ℎ4

(︁
(∆𝑡)2 + ℎ2

max

)︁2

.

Therefore, we conclude (5.65) under the hypothesis

(∆𝑡)4

ℎ4
≤ 𝐶. (5.67)

Thus, if ∆𝑡 and ℎ are less than or equal to 1, we conclude (5.65) because for any choice of (∆𝑡, ℎ) either (5.66)
or (5.67) holds. Therefore, multiplyng (5.64) by ∆𝑡, adding from 𝑚 = 1 to 𝑚 = 𝑠, bounding the terms ‖𝜔𝑚

u ‖2𝐿2

and ‖𝛿𝑡𝜃
𝑚
u ‖2𝐿2 as in (5.42) and (5.43) respectively, using (2.8), (3.3), (3.4), (3.6)1, (5.55), (5.19) and taking into

account that 𝜉0
u = 0, we conclude (5.20). �

Remark 5.9. Notice that estimate (5.60) is independent of the dimension; that is, in the three-dimensional
case, the 3D interpolation inequality (2.6) can also be used and (5.60) remains true.

It is clear that the error estimates in Theorem 5.5 were derived under the inductive hypothesis (5.1). Now we
have to check it. We derive (5.1) by using (5.19) recursively. First, observe that ‖P𝜎𝜎

𝑚−1‖𝐻1 ≤ ‖𝜎‖𝐿∞(𝐻1) := 𝐶0

for all 𝑚 ≥ 1, from which we deduce that ‖𝜎0
ℎ‖𝐻1 = ‖P𝜎𝜎0‖𝐻1 ≤ 𝐶0 ≤ 𝐶0 + 1 := 𝐾. Now, notice that

‖𝜎𝑚−1
ℎ ‖𝐻1 ≤ ‖𝜉𝑚−1

𝜎 ‖𝐻1 + ‖P𝜎𝜎
𝑚−1‖𝐻1 . (5.68)

Then, it is enough to show that ‖𝜉𝑚−1
𝜎 ‖𝐻1 ≤ 1, for each 𝑚 ≥ 2. For that, we consider two cases: First, if (Δ𝑡)1/2

ℎ ≤
𝐶, then, by using the inverse inequality ‖𝜉𝑚

𝜎 ‖𝐻1 ≤ ℎ−1‖𝜉𝑚
𝜎 ‖𝐿2 , denoting ℎmax := max{ℎ𝑟1+1, ℎ𝑟2+1, ℎ𝑟3+1, ℎ𝑟+1},

recalling that ℎmax = ℎ𝑘, (for some 𝑘 ≥ 2), and from the calculation of the norm 𝑙∞(𝐿2) in (5.19), we get

‖𝜉1
𝜎‖𝐻1 ≤ 1

ℎ
‖𝜉1

𝜎‖𝐿2 ≤ 𝐶(𝑇, ‖𝜎0
ℎ‖𝐻1)

1
ℎ

(∆𝑡 + ℎmax) ≤ 𝐶(𝑇, ‖𝜎0
ℎ‖𝐻1)(𝐶(∆𝑡)1/2 + ℎ𝑘−1). (5.69)
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On the other hand, if (Δ𝑡)1/2

ℎ is not bounded, then ℎmax
Δ𝑡 ≤ ℎ2

Δ𝑡 ≤ 𝐶; thus, from the calculation of the norm
𝑙2(𝐻1) in (5.19), we get

‖𝜉1
𝜎‖2𝐻1 ≤ 𝐶(𝑇, ‖𝜎0

ℎ‖𝐻1)
1

∆𝑡
((∆𝑡)2 + ℎ2

max) ≤ 𝐶(𝑇, ‖𝜎0
ℎ‖𝐻1)(∆𝑡 + 𝐶ℎmax). (5.70)

In any case, assuming ∆𝑡 and ℎ small enough (without any additional restriction relating the discrete parameters
(∆𝑡, ℎ)), we conclude that ‖𝜉1

𝜎‖𝐻1 ≤ 1, which implies ‖𝜎1
ℎ‖𝐻1 ≤ 𝐾. Analogously, by using ‖𝜎1

ℎ‖𝐻1 ≤ 𝐾, we
can obtain ‖𝜉2

𝜎‖𝐻1 ≤ 1, and therefore, ‖𝜎2
ℎ‖𝐻1 ≤ 𝐾. Arguing recursively we conclude that ‖𝜎𝑚−1

ℎ ‖𝐻1 ≤ 𝐾, for
all 𝑚 ≥ 1.

Remark 5.10. For the scheme (3.15), the inductive hypothesis (5.1) used to prove the convergence was verified
only by assuming ∆𝑡 and ℎ small enough (without any additional restriction relating the discrete parameters
(∆𝑡, ℎ)). On the other hand, if we do not use the auxiliary variable 𝜎 = ∇𝑐, the inductive hypothesis required
to control the chemotaxis term would fall on 𝑐; in this case, it would be

‖∇𝑐𝑛−1
ℎ ‖𝐿6 ≤ 𝐾, ∀𝑛 ≥ 1. (5.71)

Therefore, given that in the error estimates for 𝑐 does not appear the 𝑊 1,6-norm, in order to prove recursively
the inductive hypothesis (5.71), we only could use the error estimates for 𝑐 in the 𝑙∞(𝐿2) and 𝑙2(𝐻1)-norms
and the inverse inequalities

‖𝑐𝑛
ℎ‖𝑊 1,6 ≤ 𝐶ℎ−2/3‖𝑐𝑛

ℎ‖𝐻1 , ∀𝑐𝑛
ℎ ∈ 𝒳𝑐, (5.72)

‖𝑐𝑛
ℎ‖𝑊 1,6 ≤ 𝐶ℎ−5/3‖𝑐𝑛

ℎ‖𝐿2 , ∀𝑐𝑛
ℎ ∈ 𝒳𝑐. (5.73)

It is straighforward to check that if we use the 𝑙2(𝐻1)-norm and the inverse inequality (5.72), the relations
(Δ𝑡)𝑎

ℎ4 ≤ 𝐶1 and ℎ𝑏

(Δ𝑡)3 ≤ 𝐶2, for some real numbers 𝑎, 𝑏, 𝐶1, 𝐶2 > 0 with 𝑎 < 3 and 𝑏 < 8, must be satisfied.
However, these conditions are not necessarily satisfied for any ∆𝑡 and ℎ small enough. On the other hand, if
we use the 𝑙∞(𝐿2)-norm and the inverse inequality (5.73), in addition to assumption ℎ and ∆𝑡 small enough,
the relation (Δ𝑡)𝑑

ℎ5 ≤ 𝐶, for some 𝑑, 𝐶 > 0 with 𝑑 < 3, must be satisfied. In both cases, the conditions on the
discrete parameters to ensure convergence are more restrictive than those required to ensure convergence of the
scheme using the variable 𝜎 = ∇𝑐.

6. Some comments on the three-dimensional case

The results obtained in Section 5 can be proved also in the three-dimensional case. Observe that the uncondi-
tional well-posedness of the scheme (3.15) and the mass-conservation property (2.10) were proved independently
on the dimension (see Lem. 4.1 and Thm. 4.2, respectively). Now, in order to analyze the convergence in the
3D case, we need to modify the inductive hypothesis (5.1) by the following one: there exists a positive constant
𝐾 > 0, independent of 𝑚, such that

‖[𝜎𝑚−1
ℎ , 𝑐𝑚−1

ℎ ]‖𝐻1 ≤ 𝐾, ∀𝑚 ≥ 1. (6.1)

Here it is worthwhile to observe that the inductive hypothesis ‖𝑐𝑚−1
ℎ ‖𝐻1 ≤ 𝐾, for all 𝑚 ≥ 1, comes from using

the interpolation inequality (2.6) in place of (2.5) to bound the term 𝛾(𝑐𝑚−1
ℎ 𝜉𝑚−1

𝑛 ,∇ · 𝜉𝑚
𝜎 ) in (5.49) in the

three-dimensional case. Then, we can prove error estimates for any solution of the scheme (3.15), with respect
to a sufficiently regular solution of (2.13).

Theorem 6.1. Assume that there exists a sufficiently regular solution of (2.13). If the inductive hypothesis
(6.1) is satisfied, then the following error estimates hold

‖[𝜉𝑚
𝑛 , 𝜉𝑚

𝑐 , 𝜉𝑚
u , 𝜉𝑚

𝜎 ]‖𝑙∞(𝐿2)∩𝑙2(𝐻1) ≤ 𝐶(𝑇 )
(︁

∆𝑡 + max{ℎ𝑟1+1, ℎ𝑟2+1, ℎ𝑟3+1, ℎ𝑟+1}
)︁
,
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‖𝜉𝑚
u ‖𝑙∞(𝐻1)∩𝐿2(𝑊 1,6) + ‖𝜉𝑚

𝜋 ‖𝑙2(𝐿6) ≤ 𝐶(𝑇 )
(︁

∆𝑡 + max{ℎ𝑟1+1, ℎ𝑟2+1, ℎ𝑟3+1, ℎ𝑟}
)︁
,

where the constant 𝐶(𝑇 ) > 0 is independent of 𝑚, ∆𝑡 and ℎ.

Proof. The proof follows as in Theorem 5.5, but in this case, in order to bound the terms in the estimates (5.28)
and (5.53), we need to use the 3D interpolation inequality (2.6) and the inductive hypothesis (6.1), as follows:

𝐼9 = 𝜒(𝜉𝑚−1
𝑛 𝜎𝑚−1

ℎ ,∇𝜉𝑚
𝑛 )− 𝜒(𝜃𝑚−1

𝑛 𝜉𝑚−1
𝜎 ,∇𝜉𝑚

𝑛 ) + 𝜒(𝜃𝑚−1
𝑛 P𝜎𝜎

𝑚−1,∇𝜉𝑚
𝑛 )

≤ 𝜒(‖𝜉𝑚−1
𝑛 ‖1/2

𝐿2 ‖𝜉𝑚−1
𝑛 ‖1/2

𝐻1 ‖𝜎𝑚−1
ℎ ‖𝐿6 + ‖𝜉𝑚−1

𝜎 ‖𝐿2‖𝜃𝑚−1
𝑛 ‖𝐿∞ + ‖P𝜎𝜎

𝑚−1‖𝐿∞‖𝜃𝑚−1
𝑛 ‖𝐿2)‖𝜉𝑚

𝑛 ‖𝐻1

≤ 𝐷𝑛

12
‖𝜉𝑚

𝑛 ‖2𝐻1 +
𝐷𝑛

4
‖𝜉𝑚−1

𝑛 ‖2𝐻1 +
𝐶𝜒4

𝐷3
𝑛

‖𝜉𝑚−1
𝑛 ‖2𝐿2

+
𝐶𝜒2

𝐷𝑛
‖𝑛𝑚−1‖2𝐻2‖𝜉𝑚−1

𝜎 ‖2𝐿2 +
𝐶𝜒2

𝐷𝑛
ℎ2(𝑟1+1)‖𝜎𝑚−1‖2𝐻2‖𝑛𝑚−1‖2𝐻𝑟1+1 ,

and

𝑅4 + 𝑅6 = ((Puu𝑚−1 − 𝜉𝑚−1
u )(𝜉𝑚−1

𝜎 + 𝜃𝑚−1
𝜎 ) + 𝛾𝑐𝑚−1

ℎ 𝜉𝑚−1
𝑛 + 𝛾(P𝑐𝑐

𝑚−1 − 𝜉𝑚−1
𝑐 )𝜃𝑚−1

𝑛 ,∇ · 𝜉𝑚
𝜎 )

≤ 𝐷𝑐

6
‖∇ · 𝜉𝑚

𝜎 ‖2𝐿2 +
𝐶

𝐷𝑐
‖Puu𝑚−1‖2𝐿∞(‖𝜉𝑚−1

𝜎 ‖2𝐿2 + ‖𝜃𝑚−1
𝜎 ‖2𝐿2) +

𝐷u

4𝜌
‖∇𝜉𝑚−1

u ‖2𝐿2

+
𝐶𝜌

𝐷u𝐷2
𝑐

‖𝜉𝑚−1
u ‖2𝐿2(‖𝜉𝑚−1

𝜎 ‖4𝐿6 + ‖𝜃𝑚−1
𝜎 ‖4𝐿6) +

𝐷𝑛

8
‖𝜉𝑚−1

𝑛 ‖2𝐻1 +
𝐶𝛾4

𝐷𝑛𝐷2
𝑐

‖𝜉𝑚−1
𝑛 ‖2𝐿2‖𝑐𝑚−1

ℎ ‖4𝐿6

+
𝐶𝛾2

𝐷𝑐
‖P𝑐𝑐

𝑚−1‖2𝐿∞‖𝜃𝑚−1
𝑛 ‖2𝐿2 +

𝐶𝛾2

𝐷𝑐
‖𝜃𝑚−1

𝑛 ‖2𝐿∞‖𝜉𝑚−1
𝑐 ‖2𝐿2

≤ 𝐷𝑐

6
‖∇ · 𝜉𝑚

𝜎 ‖2𝐿2 +
𝐷u

4𝜌
‖∇𝜉𝑚−1

u ‖2𝐿2 +
𝐷𝑛

8
‖𝜉𝑚−1

𝑛 ‖2𝐻1 +
𝐶𝜌

𝐷u𝐷2
𝑐

‖𝜉𝑚−1
u ‖2𝐿2‖[𝜎𝑚−1

ℎ ,𝜎𝑚−1]‖2𝐻1

+
𝐶

𝐷𝑐
(ℎ2(𝑟3+1)‖𝜎𝑚−1‖2𝐻𝑟3+1 + ‖𝜉𝑚−1

𝜎 ‖2𝐿2)‖u𝑚−1‖2𝐻2 +
𝐶𝛾4

𝐷𝑛𝐷2
𝑐

‖𝜉𝑚−1
𝑛 ‖2𝐿2‖𝑐𝑚−1

ℎ ‖2𝐻1

+
𝐶𝛾2

𝐷𝑐
ℎ2(𝑟1+1)‖𝑐𝑚−1‖2𝐻2‖𝑛𝑚−1‖2𝐻𝑟1+1 +

𝐶𝛾2

𝐷𝑐
‖𝑛𝑚−1‖2𝐻2‖𝜉𝑚−1

𝑐 ‖2𝐿2 .

Finally, the inductive hypothesis (6.1) can be verified in the same spirit of the two-dimensional case (see
Sect. 5.2.2). �

From decompositions (5.14)–(5.18), Theorem 6.1 and interpolation errors (3.3) and (3.6), one can deduce the
following result:

Corollary 6.2. Under the assumptions of Theorem 6.1, the following estimates for the total errors hold

‖[𝑒𝑚
𝑛 , 𝑒𝑚

𝑐 , 𝑒𝑚
u , 𝑒𝑚

𝜎 ]‖𝑙∞(𝐿2) ≤ 𝐶(𝑇 )
(︁

∆𝑡 + max{ℎ𝑟1+1, ℎ𝑟2+1, ℎ𝑟3+1, ℎ𝑟+1}
)︁
,

‖[𝑒𝑚
𝑛 , 𝑒𝑚

𝑐 , 𝑒𝑚
u , 𝑒𝑚

𝜎 ]‖𝑙2(𝐻1) ≤ 𝐶(𝑇 )
(︁

∆𝑡 + max{ℎ𝑟1 , ℎ𝑟2 , ℎ𝑟3 , ℎ𝑟}
)︁
,

‖𝑒𝑚
u ‖𝑙∞(𝐻1) ≤ 𝐶(𝑇 )

(︁
∆𝑡 + max{ℎ𝑟1+1, ℎ𝑟2+1, ℎ𝑟3+1, ℎ𝑟}

)︁
,

where the constant 𝐶(𝑇 ) > 0 is independent of 𝑚, ∆𝑡 and ℎ.
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Figure 1. Evolution of the velocity field of the fluid. (a) 𝑡 = 10−5; (b) 𝑡 = 2 × 10−4; (c)
𝑡 = 5× 10−4; (d) 𝑡 = 10−3; (e) 𝑡 = 2× 10−3; and (f) 𝑡 = 5× 10−3.

7. Numerical simulations

In this section, we present two numerical experiments: the first one is used to verify that our scheme gives a
good approximation to chemotaxis phenomena in a liquid environment; and the second has been considered in
order to check numerically the error estimates proved in our theoretical analysis. All the numerical results are
computed by using the software Freefem++. We have considered the spaces for 𝜂, 𝑐, 𝜎, u and 𝜋, generated by
P1, P1, P1, P1 − 𝑏𝑢𝑏𝑏𝑙𝑒, P1-continuous FE, respectively.
Test 1. In this experiment we consider the rectangular domain Ω = [0, 2]× [0, 1], and the initial conditions

𝜂0 =
3∑︁

𝑖=1

(︀
70 exp

(︀
− 8(𝑥− 𝑠𝑖)2 − 10(𝑦 − 1)2

)︀)︀
,

𝑐0 = 30 exp(−5(𝑥− 1)2 − 5(𝑦 − 0.5)2),
u0 = 0,

where 𝑠1 = 0.2, 𝑠2 = 0.5 and 𝑠3 = 1.2. The numerical solution is computed with mesh parameter
ℎ = 1/40 and time step ∆𝑡 = 10−5. Additionally, we consider the parameters values 𝜒 = 8, 𝐷𝑛 = 4,
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Figure 2. Cell density vs. chemical concentration.
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Table 1. Convergence rates in space for 𝜂.

𝑘 × 𝑘 ‖𝜂(𝑡𝑚)− 𝜂𝑚
ℎ ‖𝑙∞(𝐿2) Order ‖𝜂(𝑡𝑚)− 𝜂𝑚

ℎ ‖𝑙2(𝐻1) Order

10× 10 5.7265× 10−2 – 1.1682× 10−1 –
20× 20 1.4350× 10−2 1.9966 5.7520× 10−2 1.0223
30× 30 6.3060× 10−3 2.0279 3.8242× 10−2 1.0067
40× 40 3.4829× 10−3 2.0635 2.8656× 10−2 1.0031
50× 50 2.1757× 10−3 2.1085 2.2915× 10−2 1.0017

Table 2. Convergence rates in space for 𝑐.

𝑘 × 𝑘 ‖𝑐(𝑡𝑚)− 𝑐𝑚
ℎ ‖𝑙∞(𝐿2) Order ‖𝑐(𝑡𝑚)− 𝑐𝑚

ℎ ‖𝑙2(𝐻1) Order

10× 10 3.5731× 10−2 – 1.1338× 10−1 –
20× 20 8.9904× 10−3 1.9907 5.7106× 10−2 0.9895
30× 30 4.0004× 10−3 1.9971 3.8126× 10−2 0.9964
40× 40 2.2512× 10−3 1.9986 2.8610× 10−2 0.9981
50× 50 1.4410× 10−3 1.9991 2.2894× 10−2 0.9989

𝛾 = 6, 𝐷u = 10, 𝐷𝑐 = 𝜌 = 1 and 𝜑(𝑥, 𝑦) = −1000𝑦. We show the simulations results for the times
𝑡 = 0, 2× 10−4, 5× 10−4, 10−3, 2× 10−3, 5× 10−3. The evolution of the velocity field is shown in Figure 1,
while the evolution results for the cell density and chemical signal are presented in Figure 2.

Initially, the cells are in two clusters in the upper part of our domain, and we observe that they begin to
orient their movement in the direction of greater concentration of the chemical signal (in this case, the center of
the domain). We can see how the clusters of organisms generate a kind of bridge between them and after, we see
how organisms tend to agglomerate in the center of the rectangle. This interesting behavior occurs because the
cross-diffusion term (or chemotaxis term) is the dominant one in the initial times. However, as time progresses,
the chemical signal is consumed, which causes that the cross-diffusion loses strength, and the self-diffusion of
the cells begins to dominate, and therefore they begin to distribute themselves homogeneously over the domain.
It is also observed that, at the end, the cells move towards the bottom of the domain, which is due to the
external force (since ∇𝜑 = (0,−1000)). Finally, some changes in the velocity field are evidenced, influenced by
the movement of the cells.

Test 2 (Convergence rates). In this experiment we take Ω = [0, 1]×[0, 1] and we consider the exact solutions 𝜂 =
𝑒−𝑡(cos(2𝜋𝑥)+cos(2𝜋𝑦)+3), 𝑐 = 𝑒−𝑡(sin(2𝜋𝑦)+cos(2𝜋𝑥)−2𝜋𝑦+9), 𝜎 = ∇𝑐 = 2𝜋𝑒−𝑡(− sin(2𝜋𝑥), cos(2𝜋𝑦)−1),
u = 𝑒−𝑡(sin(2𝜋𝑦)(− cos(2𝜋𝑥 + 𝜋) − 1), sin(2𝜋𝑥)(cos(2𝜋𝑦 + 𝜋) + 1)) and 𝜋 = 𝑒−𝑡(cos(2𝜋𝑥) + sin(2𝜋𝑦)); and all
parameters in (3.15) equal to 1. Note that u = 0 and 𝜕𝑐

𝜕𝜈 = 𝜕𝜂
𝜕𝜈 = 0 on 𝜕Ω, ∇ · u = 0 in Ω and

∫︀
Ω

𝜋 = 0.
Moreover, we use a uniform partition with 𝑘 + 1 nodes in each direction.

On the one hand, numerical results of spatial convergence rates are presented in Tables 1–5 for ∆𝑡 = 2×10−4

with respect to time 𝑇 = 0.01. We observe the second-order convergence in space for the total errors in 𝑒𝑚
𝜂 , 𝑒𝑚

𝑐 , 𝑒𝑚
u

in 𝑙∞(𝐿2)-norm, and the first-order convergence for 𝑒𝑚
𝜂 , 𝑒𝑚

𝑐 , 𝑒𝑚
u in 𝑙2(𝐻1)-norm and 𝑒𝑚

u in 𝑙∞(𝐻1)-norm, which
is in agreement with our theoretical analysis.

On the other hand, some numerical results of convergence rates in time are listed in Tables 6–8 for ℎ = 1/160
(that is, 𝑘 = 160 nodes in space in each direction), with respect to time 𝑇 = 5. We observe the first-order
convergence in time in weak and strong norms for all variables, which is in agreement with our theoretical
analysis.
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Table 3. Convergence rates in space for u1 in weak norms.

𝑘 × 𝑘 ‖u1(𝑡𝑚)− (u1)
𝑚
ℎ ‖𝑙∞(𝐿2) Order ‖u1(𝑡𝑚)− (u1)

𝑚
ℎ ‖𝑙2(𝐻1) Order

10× 10 4.1118× 10−2 – 1.5654× 10−1 –
20× 20 1.0106× 10−2 2.0245 7.7874× 10−2 1.0074
30× 30 4.4569× 10−3 2.0192 5.1820× 10−2 1.0045
40× 40 2.4902× 10−3 2.0234 3.8827× 10−2 1.0034
50× 50 1.5822× 10−3 2.0324 3.1043× 10−2 1.0027

Table 4. Convergence rates in space for u2 in weak norms.

𝑘 × 𝑘 ‖u2(𝑡𝑚)− (u2)
𝑚
ℎ ‖𝑙∞(𝐿2) Order ‖u2(𝑡𝑚)− (u2)

𝑚
ℎ ‖𝑙2(𝐻1) Order

10× 10 4.1175× 10−2 – 1.5655× 10−1 –
20× 20 1.0125× 10−2 2.0238 7.7875× 10−2 1.0075
30× 30 4.4658× 10−3 2.0190 5.1821× 10−2 1.0046
40× 40 2.4952× 10−3 2.0232 3.8827× 10−2 1.0034
50× 50 1.5855× 10−3 2.0322 3.1043× 10−2 1.0027

Table 5. Convergence rates in space for u1 and u2 in strong norms.

𝑘 × 𝑘 ‖u1(𝑡𝑚)− (u1)
𝑚
ℎ ‖𝑙∞(𝐻1) Order ‖u2(𝑡𝑚)− (u2)

𝑚
ℎ ‖𝑙∞(𝐻1) Order

10× 10 2.3353 – 2.3353 –
20× 20 1.1882 0.9747 1.1882 0.9747
30× 30 7.9477× 10−1 0.9920 7.9477× 10−1 0.9920
40× 40 5.9675× 10−1 0.9960 5.9675× 10−1 0.9960
50× 50 4.7765× 10−1 0.9976 4.7765× 10−1 0.9976

Table 6. Convergence rates in time for 𝜂 and 𝑐.

Δ𝑡 ‖𝜂(𝑡𝑚)− 𝜂𝑚
ℎ ‖𝑙∞(𝐿2) Order ‖𝑐(𝑡𝑚)− 𝑐𝑚

ℎ ‖𝑙2(𝐻1) Order

1.56× 10−1 7.6767× 10−1 – 1.1401 –
1.25× 10−1 6.1364× 10−1 1.0036 8.9916× 10−1 1.0642
1.04× 10−1 5.0302× 10−1 1.0902 7.4178× 10−1 1.0553
8.93× 10−2 4.2089× 10−1 1.1564 6.3126× 10−1 1.0466

Table 7. Convergence rates in time for u1 and u2 in weak norms.

Δ𝑡 ‖u1(𝑡𝑚)− (u1)
𝑚
ℎ ‖𝑙∞(𝐿2) Order ‖u2(𝑡𝑚)− (u2)

𝑚
ℎ ‖𝑙2(𝐻1) Order

1.56× 10−1 7.5647× 10−2 – 4.0781× 10−1 –
1.25× 10−1 6.0890× 10−2 0.9724 3.2581× 10−1 1.0060
1.04× 10−1 5.0548× 10−2 1.0210 2.7240× 10−1 0.9820
8.93× 10−2 4.2940× 10−2 1.0582 2.3520× 10−1 0.9526
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Table 8. Convergence rates in time for u1 and u2 in strong norms.

Δ𝑡 ‖u1(𝑡𝑚)− (u1)
𝑚
ℎ ‖𝑙∞(𝐻1) Order ‖u2(𝑡𝑚)− (u2)

𝑚
ℎ ‖𝑙∞(𝐻1) Order

1.56× 10−1 5.6495× 10−1 – 5.8574× 10−1 –
1.25× 10−1 4.5726× 10−1 0.9477 4.7259× 10−1 0.9619
1.04× 10−1 3.8249× 10−1 0.9793 3.9429× 10−1 0.9936
8.93× 10−2 3.2809× 10−1 0.9952 3.3744× 10−1 1.0100

Acknowledgements. The third and fourth authors have been supported by Vicerrectoŕıa de Investigación y Extensión of
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