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Abstract. A variety of approaches for protein inter-residue contact pre-
diction have been developed in recent years. However, this problem is far
from being solved yet. In this article, we present an efficient nearest neigh-
bor (NN) approach, called PKK-PCP, and an application for the protein
inter-residue contact prediction. The great strength of using this approach
is its adaptability to that problem. Furthermore, our method improves
considerably the efficiency with regard to other NN approaches. Our
NN-based method combines parallel execution with k-d tree as search
algorithm. The input data used by our algorithm is based on structural
features and physico-chemical properties of amino acids besides of evo-
lutionary information. Results obtained show better efficiency rates, in
terms of time and memory consumption, than other similar approaches.

Keywords: k-nearest neighbor · k-d tree · Protein inter-residue contact
prediction

1 Introduction

Protein inter-residue contact prediction has been an important and relevant topic 
in bioinformatics and computational biology in last decades. The prediction of 
inter-residue contacts represents an important previous step to solve the protein 
structure prediction problem (PSP). Predicting the structure of a protein from 
its amino acid sequence is the main key to cure those diseases which are related 
with the anomalous formation of proteins, e.g. Alzheimer. Computational meth-
ods represent a faster and more economic way to solve the PSP problem, than 
experimental methods, e.g. X-ray crystallography.

The nearest neighbor (NN) algorithm is an adequate computational approach 
to address the problem of protein structure prediction, due to the knowledge 
that proteins which share a high degree of similarity in their sequences, should 
have similar 3D structures. In protein contact prediction problem, NN methods 
find the K-closest protein sequence profiles from a database of known protein 
structures, according to a distance measure, and predict the corresponding class 
(contact or non-contact).

Previously, nearest neighbor algorithms have been presented in the PSP lit-
erature. Abu-doleh et al. [1] predicts contact maps using an inference system



based on a fuzzy-neural network and nearest neighbor approach. The algorithm
employs 5 windows of amino acids and performs an attribute selection according
to negative matrix factorization. Colubri et al. [7] performs a homology-based
method using torsion angles. The algorithm analyses propensities of the differ-
ent types of amino acids and secondary structures. Similar structures search
is carried out using a simulated annealing approach. Davies et al. [8] imple-
ments a case based reasoning method which predicts protein contact maps. The
method obtains secondary structure from the contact maps and from the geomet-
ric knowledge about alpha-helix contacts. Finally, Glasgow and Davies [10] pro-
poses a contact map predictor using sequence data. Case representation includes
protein name, protein sequence, assignment of secondary structure to residues,
structure class and protein contact map. The solution consists of a 3D backbone
model of the protein structure computed from the contact map.

All these algorithms constitute a part of ensemble methods. In this arti-
cle we have developed a method exclusively based on a NN approach for the
contact prediction. A protein contact is established according to the geometri-
cal distance of each pair of amino acids of a sequence. If this distance is lower
than a determined threshold in angstroms, a contact is defined. We highlight
that the performance efficiency of our method, in terms of execution time and
computer memory used, is better than other NN implementations. A parallel
implementation of the algorithm and the incorporation of k-d trees [5] as search
algorithm contributes to the improvement of these measures. On the other hand,
we have employed as encoding features, physico-chemical properties of residues
(hydrophobicity, polarity and net charge), structural features, such as secondary
structure and solvent accessibility, and evolutionary information, in the form of
position specific scoring matrices (PSSM). This encoding shares the assumption
that the prediction of the 3D structure of a protein can be based on character-
istics of the amino acids [14].

The remainder of this paper is organized as follows. Section 2 introduces
our methodology. Section 3 presents the experimentation and obtained results.
Finally, Sect. 4, includes some conclusions and possible future works.

2 Methods

2.1 Overview

Our prediction system, named PKK-PCP, is able to predict contacts between
amino acids in protein structures from protein sequences. Our system takes, as
input data, the hydrophobicity, polarity and charge of residues. It also uses as
input, external predictions for secondary structure and solvent accessibility. Fur-
thermore, evolutionary profiles (PSSM) of residues are also employed as input.

Our system returns a contact probability value for each pair of amino acids.
PKK-PCP is based on the classic nearest neighbour algorithm. The system uses
k-d trees to optimize the neighbour search. Moreover, our system is implemented
in C++, parallelized and optimised for 64 bits architecture.

The methodology carried out to build profiles for each residue pair is detailed
in Sect. 2.2. Then we explain the prediction process based on nearest neighbour



approach in Sect. 2.3. In Sect. 2.4 we detail several important implementation
notes of our predictor. Finally, we define the evaluation measures used for effec-
tiveness and efficiency in Sect. 2.5.

2.2 Profile Construction

From input protein sequences, our system takes each pair of amino acids as usual
in PSP methods [1,4]. Formally, we represent an amino acid sequence of length L
as s1 . . . sL. Then we consider amino acid pairs (si, sj) such that 1 ≤ i < j ≤ L.

For each amino acid pair, PKK-PCP builds a profile that contains 50
attributes. We define the profile for each pair (si, sj) as shown in Eq. 1.

[H∗
i,j , P

∗
i,j , SSi, SSj , SAi, SAj , PSSMi, PSSMj ] ∈ R50 (1)

The components H∗
i,j and P ∗

i,j measure the average of hydrophobicity and
polarity between residues (i, j) and they are defined in Eq. 2, where Hi and Hj

are the hydrophobicities of amino acids i and j respectively. Pi and Pj are the
polarities of amino acids i and j respectively.

H∗
i,j =

Hi + Hj

2
∈ [0, 1]

P ∗
i,j =

Pi + Pj

2
∈ [0, 1] (2)

We used the scale proposed by Black and Mould [6] for hydrophobicity
and the scale proposed by Radzicka and Wolfenden [16] for polarity. We found
that the hydrophobicity average of amino acids i and j (H∗

i,j) produces better
predictions than separated hydrophobicities Hi and Hj into the profile, and it
reduces the profile size. Same conclusions are applied to polarity.

We included into the profile the predicted secondary structure of amino acids
i and j (SSi and SSj respectively). These predictions are returned by PSI-
PRED [11] as commonly used by PSP methods in literature.

The SS values are encoded using three values for three secondary states:
{0.5, 0, 0} for alpha helix, {0, 0.5, 0} for beta sheet and {0, 0, 0.5} for random
coil. Thus, the Euclidean distance between SS attributes is 0 or 1 depending
whether amino acids have the same secondary structure or not, respectively.
Therefore, SSi and SSj have 3 attributes each.

The components SAi and SAj of the profile are the predicted solvent accessi-
bility of amino acids i and j respectively. For this purpose we used the predictor
proposed by Rost and Sander [17] as in the work of Bacardit et al. [4]. We used
a 5-state representation for SA, ranging from 0 to 4, where lower values mean a
buried state and higher values represent exposed states.

Finally we included into the profile the evolutionary information (PSSMi

and PSSMj for amino acids i and j) from PSI-BLAST [2] as widely used in PSP
and bioinformatics literature. PSSMi and PSSMj have 20 attributes each.

All values in the profile are normalized between 0 and 1 in order to provide
an equal contribution to distance calculation among profiles in further nearest
neighbour search scheme, as we show in the next subsection.



2.3 Residue Contact Prediction

PKK-PCP begins with an initial set of proteins, it builds the profiles as we have
explained in the previous subsection and divides the protein set into training
and test folds according to a cross-validation scheme.

For each profile within the test fold, PKK-PCP assess the Euclidean distance
between that profile and each profile in the training fold, in order to find the K
training profiles with the lowest distances (most similar training profiles).

Then, the contact probability returned by our system for amino acids i and j
of the test profile is calculated as the number of contacts in most similar training
profiles divided by K.

In order to improve the performance, a pruning in the neighbour search is
applied for all the methods in comparison. This pruning is based on the charge
of amino acids i and j of the test sequence. Specifically, this means that given
a test profile, if the net charge [12] of amino acid i or j is distinct to 0 (at least
one amino acid is positive or negative charged), then the contact probability is
0 and the neighbour search is omitted.

This pruning is in line with the results obtained by Márquez-Chamorro
et al. [13] in the Fig. 10. In that work the percentage of contacts between charged
amino acids is close to 0 and they could be rejected. This pruning is introduced
with the aim of providing a comparison using a high number of proteins in a rea-
sonable time. Moreover, this pruning has a low impact to the effectiveness of meth-
ods in comparison, as we show in the experimentation section.

2.4 Predictor Implementation

The system PKK-PCP is implemented in Microsoft C++ 2012 using the release
configuration for 64 bits and was built for multithreading architecture. PKK-
PCP is based on the ANN library of David Mount [3] for nearest neighbor
searching using k-d trees. We have adapted that library for parallel execution,
cross validation and protein contact evaluation. That evaluation was designed
to measure the protein inter-residue contact prediction, which is a classification
problem with a binary class.

2.5 Effectiveness and Efficiency Evaluation

The effectiveness and efficiency of PKK-PCP are assessed using several measures.
Regarding the effectiveness, we computed accuracy (Acc) and coverage (Cov),
defined as shown in Eqs. 3 and 4 respectively. These measures are widely used by
PSP methods in literature [1,4]. The reason is that these measures are focused
in prediction of positive cases of contacts between amino acids, and these cases
are quite less frequent than negative ones, as it is shown in Table 1.

Acc =
TP

TP + FP
(3)



Cov =
TP

NumContacts
(4)

TP are true positives and FP are false positives. NumContacts are the number
of real contacts. The accuracy is the ratio of predicted contacts that are presented
in the native structure. The coverage is the ratio of native contacts that are
predicted to be contacts.

In this work, we used a cut-off value of 8 angstroms in order to define a
contact between two amino acids, which is commonly used in literature [9,19].

Regarding the efficiency, we computed the elapsed time during the prediction
process and the space consumed in computer memory.

3 Experimentation

This section presents the experimentation followed and the results obtained by
our method. The aim of this experimentation consists on providing an analysis
of the effectiveness and efficiency of our system for different sizes of protein sets.
The results have been compared with Weka IBk algorithm [18] with K = 1 using
both linear and k-d tree search algorithms.

3.1 Datasets

Protein datasets used in our experimentation were selected from the dataset of
Bacardit et al. [4]. This dataset is derived from PDB-REPRDB [15] and consists
of 3, 262 protein chains with sequence identity lower than 30 %, a resolution
smaller than 2Å and a crystallographic R factor lower than 20 %.

We have randomly extracted from this dataset several subsets: DS25, DS50,
DS75, DS100, DS200, DS300. We used them for our experimentation, where
the number included in their names indicates the number of proteins in each
subset. The aim of using incremental size of subsets is to test the efficiency of
our approach in terms of time and memory consumption. Table 1 shows the main
characteristics of each dataset used in the experimentation.

Table 1. Number of proteins, minimum, maximum and average length of protein
sequences, number of contacts and non-contacts between residues and their ratio for
each dataset employed in the experimentation.

Dataset # min max avg contacts non-contacts ratio(c:nc)

DS25 25 54 405 123.08 4,871 282,692 1:58

DS50 50 54 405 119.20 11,114 646,518 1:58

DS75 75 53 405 120.77 17,852 1,167,011 1:65

DS100 100 53 405 124.02 23,750 1,497,252 1:63

DS200 200 53 602 169.78 48,809 3,075,366 1:63

DS300 300 50 822 195.53 84,203 7,122,243 1:84



Table 2. Comparative study of efficiency (time in hours and memory in megabytes)
of PKK-PCP and Weka IBk algorithm using the charge-based pruning. Weka IBk uses
linear search (Weka column) and k-d tree (Weka-KDT column) as search algorithms.
The effectiveness (accuracy and coverage) is also shown.

Dataset Measure Weka Weka-KDT PKK-PCP

DS25 Acc 0.797 0.797 0.797

Cov 0.689 0.689 0.689

Time 38.12 9.31 1.07

Mem 6259 7140 505

DS50 Acc 0.788 0.788 0.788

Cov 0.682 0.682 0.682

Time 312.07 29.25 3.04

Mem 8522 10,832 935

DS75 Acc 0.798 0.798 0.798

Cov 0.691 0.691 0.691

Time 744.52 63.72 6.26

Mem 9,425 11,974 1,340

DS100 Acc 0.795 0.795 0.795

Cov 0.690 0.690 0.690

Time – 92.11 10.47

Mem 10,054 12,720 1,859

DS200 Acc 0.791 0.791 0.791

Cov 0.685 0.685 0.685

Time – 183.42 44.72

Mem 13,289 16,542 4,597

DS300 Acc 0.789 0.789 0.789

Cov 0.690 0.690 0.690

Time – 295.04 114.11

Mem 17,254 20,358 7,362

3.2 Configuration

All the experiments were run on a 64-bit workstation, a Dell Precision T7400,
with 2x Intel Xeon X5482 3.2 GHz (2x4 cores), 32 GB DDR2 RAM, SATA2
7200rpm HD and Windows 7 Ultimate.

As we mentioned before, our algorithm returns a contact probability for each
test instance. We determine a contact if this probability is higher than 0.5. We
also set the number of neighbors to K = 1. A 10-fold cross-validation with 5
runs per fold was applied.

To evaluate the predictions, we have obtained a coverage and accuracy value
for each test protein, instead for each data point. Since Weka does not obtain



Table 3. Comparative study of efficiency (time in hours and memory in megabytes)
of PKK-PCP and Weka IBk algorithm without using the charge-based pruning. Weka
IBk uses linear search (Weka column) and k-d tree (Weka-KDT column) as search
algorithms. The effectiveness (accuracy and coverage) is also shown.

Dataset Measure Weka Weka-KDT PKK-PCP

DS25 Acc 0.803 0.803 0.803

Cov 0.712 0.712 0.712

Time 54.35 13.27 1.45

Mem 6259 7140 505

DS50 Acc 0.811 0.811 0.811

Cov 0.709 0.709 0.709

Time 447.21 41.33 4.27

Mem 8522 10832 935

DS75 Acc 0.817 0.817 0.817

Cov 0.719 0.719 0.719

Time 1,055.64 90.68 8.81

Mem 9,425 11,974 1,340

DS100 Acc 0.812 0.812 0.812

Cov 0.716 0.716 0.716

Time – 130.85 14.45

Mem 10,054 12,720 1,859

Table 4. Number of pruning applied for each dataset in a 10-fold cross validation and
number of false negatives incurred when the pruning are applied.

Dataset Instances Pruning FN

DS25 287,563 123,105(42.8 %) 7,521(6.1 %)

DS50 657,632 286,201(43.5 %) 17,085(5.9 %)

DS75 1,184,863 508,424(42.9 %) 31,624(6.2 %)

DS100 1,521,002 647,946(42.6 %) 43,477(6.7 %)

DS200 3,124,175 1,377,761(44.1 %) 84,456(6.1 %)

DS300 7,206,446 3,124,066(43.3 %) 200,252(6.4 %)

these measures for each protein, we have implemented an external evaluator in
order to evaluate the Weka predictions for each test protein using exactly the
same training instances as in our approach.

Furthermore, the Weka IBk algorithm (with both linear and k-d tree search)
was modified to include the charge-based pruning mentioned in Sect. 2.3, in order
to perform a fair comparison between PKK-PCP and Weka IBk algorithm (linear
and k-d tree) in terms of efficiency.



3.3 Results

The time and memory consumed were analysed comparing PKK-PCP to Weka
IBk method, using both linear and k-d tree search algorithms implemented in
Weka. The effectiveness (accuracy and coverage) is also shown, but these values
are the same for all the methods because they share the same training nearest
neighbours and the comparison is focused in their efficiency.

As we can see in Table 2, the execution time of our method widely improves
the Weka IBk k-d tree results. In the worst case (for dataset DS25), PKK-
PCP used only the 11.5 % of the time employed by Weka with k-d tree (with
a difference of 8.24 h). The optimized implementation of nearest neighbors app-
roach inside PKK-PCP and its parallel execution contributes to this efficiency
improvement.

Table 3 is included in order to appreciate the impact of removing the charge-
based pruning to the effectiveness and efficiency of methods in comparison.
Table 3 shows the accuracy, coverage, time in minutes and memory in megabytes
of the three methods in comparison with no pruning in the neighbour search.
Only datasets DS25, DS50, DS75 and DS100 are presented in Table 3. Note
that the differences with and without pruning, in terms of times and memory
consumption, are high (around 43 % faster with the charge-based pruning). How-
ever, the differences of accuracy and coverage are slight (around 0.15 of accuracy
and 0.21 of coverage better without pruning). This low difference in effectiveness
due to pruning is explained by the values shown in Table 4. According to values
shown in Table 4, it is remarkable the low number of false negatives incurred
despite the high number of pruning performed (up to 6.7 % false negatives with
respect to the total of pruning, in the worst case DS100). The high number of
instances to tackle, when the number of proteins on datasets increases, leads to
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Fig. 1. Evolution of execution time (in hours) of Weka IBk with linear search, Weka
IBk with k-d tree and PKK-PCP for each dataset of proteins.
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Fig. 2. Evolution of computer memory (in megabytes) used by Weka IBk with linear
search, Weka IBk with k-d tree and PKK-PCP for each dataset of proteins.

using some type of pruning like we have used. In our case, the selected pruning
gains an important benefit in terms of performance with a low decrement of
effectiveness.

Figure 1 shows a chart which represents the execution times of PKK-PCP and
Weka IBk (with linear and k-d trees search algorithms) for the different datasets.
While k-d trees provides a complexity order of NlogN to nearest neighbor app-
roach, Weka IBk with linear search belongs to a quadratic order N2. However,
as we can see in Fig. 1, the execution time of our method remains in lower values
than Weka k-d tree method for all studied datasets.

Figure 2 presents the memory used by PKK-PCP and Weka-IBk for different
datasets. Our method obtains lower rates of memory consuming due to the
optimization of the data structures we have introduced in our implementation.
PKK-PCP achieved a memory consumption improvement of 10, 494 ± 1, 990
megabytes (mean and standard deviation values) with respect to Weka IBk (k-d
tree) for all datasets.

4 Conclusions and Future Work

The presented work provides an efficient implementation of K-NN approach and
a labelling rule for pruning nearest neighbour search specific for the protein con-
tact prediction problem. A faster and a low memory consumption method is
presented to handle a high number of proteins in a reasonable time. The use
of our charge-based pruning has allowed, on the one hand, to improve consid-
erably the efficiency, and, on the other hand, to loose the minimum degree of
effectiveness.

The efficiency of our approach, in terms of execution time and memory used,
was shown in comparative terms, and we have found that our system achieved



times and memory consumption much better than Weka IBk with k-d tree.
This seems to be a wide improvement of efficiency in nearest neighbor approach
applied to protein inter-residue contact prediction.

The low memory consumption achieved by PKK-PCP allows to include more
number of attributes than classical nearest neighbors approaches for a predeter-
mined time horizon. For that reason, as future work, we will consider the addition
of two amino acid windows to represent the environments of the target residues
in the profiles, and also include more physico-chemical properties of amino acids
like residue volume, accessible surface area or molecular weights.
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