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ABSTRACT
Security has become a crucial factor in the development of soft-
ware systems. The number of dependencies in software systems
is becoming a source of countless bugs and vulnerabilities. In the
past, the product line community has proposed several techniques
and mechanisms to cope with the problems that arise when dealing
with variability and dependency management in such systems. In
this paper, we present Advisory, a solution that allows automated
dependency analysis for vulnerabilities within software projects
based on techniques from the product line community. Advisory
first inspects software dependencies, then generates a dependency
graph, to which security information about vulnerabilities is attrib-
uted and translated into a formal model, in this case, based on SMT.
Finally,Advisory provides a set of analysis and reasoning operations
on these models that allow extracting helpful information about
the location of vulnerabilities of the project configuration space,
as well as details for advising on the security risk of these projects
and their possible configurations.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Requirements analysis; Software design engineering; Software imple-
mentation planning.
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1 INTRODUCTION
Software projects usually delegate a large part of the functional-
ity to external libraries, which means that vulnerabilities in these
libraries can affect the project under development. Nowadays, mul-
tiple vulnerabilities are identified every day [8] that must be known
and managed quickly by developers. We are aware that the cyber-
attack chains used by attackers to penetrate systems are becoming
increasingly sophisticated [12]. Thus, attackers can make versions
of dependencies with known vulnerabilities, such as the recent
vulnerability CVE-2021-442281 detected in Log4j2, which has af-
fected at least 186,352 projects in the Java ecosystem [7] due to
the complexity of the analysis of its dependencies. Therefore, a
misconfiguration (according to OWASP Top-10 vulnerabilities) in a
software component (dependency) can be used as an entry point
(attack vector) for an attacker. Due to the wide variety of depen-
dency configuration options, it is a challenge to analyse the possible
vulnerabilities of a software project [3][9][10].

Variability-intensive systems (VIS) are those software systems
that, to function correctly, must manage and deal with a large
number of dependencies [4][5]. In the literature, we find projects
with hundreds of dependencies and configuration options, such as
the Linux Kernel with more than 1060 different configurations. A
configuration is defined in this context as a valid combination of
versions of the libraries and software artefacts on which a project
is dependent. This number of dependencies and libraries makes it
difficult for developers to be aware of which vulnerabilities affect
the software they are developing and how to take measures to
mitigate security risks.

For example, the Requests3 HTTP call package is used in approx-
imately 1,390,000 repositories and 66,000 packages4, which gives
an idea of its impact on other projects. We can see that Requests
in turn depend on urllib3 and flask. From now on, we will use Re-
quest, urllib3 and flask, and assume a dependency file that defines
the following dependencies: 𝑢𝑟𝑙𝑙𝑖𝑏3𝑞1.21.1 and 𝑢𝑟𝑙𝑙𝑖𝑏3 < 1.27, and
𝑓 𝑙𝑎𝑠𝑘 > 1.0 and 𝑓 𝑙𝑎𝑠𝑘 < 2.0. If we analyse the configuration space,
we can see that there are a total of 29 possible versions for urllib3
and 9 for flask, which means a total of 261 possible version configu-
rations. Furthermore, among the 261 configurations, we detect that
at least one vulnerability is associated with one of the dependencies.

1https://nvd.nist.gov/vuln/detail/CVE-2021-44228
2https://logging.apache.org/log4j/2.x/
3https://docs.python-requests.org/
4https://github.com/psf/requests/network/dependents
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In other words, if the developer were to randomly choose a con-
figuration from among the 261, approximately 83% of the time he
would be assuming a security impact in his configuration. In other
words, the configuration he chooses could have a vulnerability, and
therefore an impact on his security. We take this as the motivating
example for the rest of the paper.

Given the difficulty of analysing dependencies manually, the
product line community proposed the automatic analysis of variabil-
ity in VISs, for example with techniques such as AAFM (Automated
Analysis of Feature Models) [6]. AAFMs enable reasoning about
VISs by using artificial intelligence systems or ad-hoc algorithms
to extract relevant information from the set of dependencies de-
scribed in a VIS. Coupled with variability analysis, approaches have
emerged that attempt to analyse the vulnerabilities of a software
product line to optimise the test suite to be performed [11].

In this article, we present Advisory, a solution that allows to
analyse and reason about the complete configuration space of the
dependencies of a software project taking into account its vul-
nerabilities. To this end, Advisory is presented as a solution for,
modelling the dependencies, i.e. the configuration space of a soft-
ware project, and attributing that configuration space with security
information related to its vulnerabilities. Enable techniques and
operations that allow reasoning about the dependency space of a
software project taking into account security information related
to vulnerabilities (e.g. not using Log4j). And all this throughout the
development and evolution of a software project.

The rest of the article is organised as follows: Section 2 presents
Advisory, a solution for software project analysis that takes into
account dependencies and vulnerabilities that may affect the project.
Finally, the 3 section presents our conclusions, lessons learned and
future works.

2 ADVISORY: AN AUTOMATED
SCANNING-BASED TOOL FOR
VULNERABILITY DETECTION

Fig. 1 shows an overview of the process supported by Advisory.
The process is divided into four main components: a) Extracting
the dependency graph, e.g., from requirements.txt file of a Python
project, we extract its dependency graph using information from
GitHub5; b) Attribute the graph with vulnerability-related infor-
mation from the NIST NVD vulnerability database; c) Encode the
information into a formal model based on an SMT solver [1], which
allows us to reason about the dependencies and their vulnerabilities,
and finally; d) Apply a set of operations to facilitate the analysis of
the dependency information and its vulnerabilities.

2.1 Extract the dependency graph
In the first component (Extract) we build the dependency graph of
a software project hosted in a repository. This process consists of
the following steps: 1) we get the information from the repository;
2) we filter the valid versions for those dependencies; 3) we build
node by node the dependencies of the graph. As described in more
detail below:

5https://docs.github.com/es/graphql

- First, we get the information about the dependencies from the
code repository of the software project, extracting it automatically.
In case the dependencies have other (indirect) sub-dependencies,
a recursive process will be performed, to a given graph depth.
Currently, Advisory can obtain this information from reposito-
ries hosted on GitHub and of a Python nature. To do so, it relies on
GitHub’s GraphQL API. In the case of the motivating example in
the previous section, a single call has been made to the repository
containing the files with the dependencies, in this case, urllib3 and
flask.
- Wewill then use the restrictions to filter the valid versions. We fil-
ter them one by one and choose the ones that satisfy the constraints
in the dependency file. For example, we are working with projects
of a Python nature, so we use the Python Package Index (PyPI)6
to extract all versions of these dependencies, and then filter them
according to the constraints in the dependency file. For the ones in
the motivating example, we get the following versions: flask={1.0.1,
1.0.2, . . . , 1.1.3, 1.1.4} and urllib3={1.21.1, 1.22, . . . , 1.26.8, 1.26.9}.
- Finally, with this information and the filtered versions, we build a
new node of the graph for each dependency and each version, and
we add the directed arcs to relate each dependency node with those
of its version, as well as include other relationships with parent
and child nodes. We will do this for all extracted dependencies.
Note that given the more than likely combinatorial explosion of
dependencies, it will be necessary to specify a depth level of the
graph. Starting with the root which will be our project (Request
for example) which will have depth 0, we make a call that will
construct both the root node and all nodes of depth 1, which will
be our project’s dependencies (or direct dependencies). The graph
at level 1 of the motivating example would look like in Fig. 2. Note
that in the figure we have added information on the vulnerabilities
that will be detailed below.

2.2 Attribute the dependency graph
We will now describe how the nodes of the graph, i.e. the dependen-
cies, are attributed with information related to the vulnerabilities
(CVE). For this process, we currently use the NIST NVD database
API. First of all, we will use the name of the dependency as a key to
finding those vulnerabilities when performing the searches. From
these searches, we extract all the CVEs that include the name of
the dependency in one of their CPEs. In the case of flask and url-
lib3, NVD returns 2 and 8 CVEs respectively associated with those
dependencies7.

These CVEs may be associated with a version or not included in
our graph, so we will have to analyse if any of the versions of the
dependencies are included in any CPE of these CVEs, otherwise,
that CVE should not be assigned to any version of our graph. For
example, for flask, none of the 2 detected CVEs will be associated
because it does not match any version included in its CPEs. Also,
for urllib3, 7 out of 8 CVEs are associated with valid versions of
the motivating example. We do this because making individual
requests for each version would slow down the attribution process
because each query is a request to the NVD API and would be too
time-consuming.

6https://pypi.org/
7These data are those obtained at the time of writing this article.
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Figure 1: Process supported by Advisory.
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Figure 2: Attributed dependency graph

In this way, we relate the versions of the dependencies with
the CVEs that we have extracted and that directly affect them. In
addition, we store for each CVE the CVSS (impact) value, as well as
the set of metrics of its attack vector. For example, we can see the
associated CVEs for urllib3 dependency 1.21.1 and the CVSS impact
of one of them in Fig. 2. This impact also comes with the CVE and
will be fundamental to determining the impact of the configuration
space.

2.3 Transform into SMT model
Finally, the attributed graph will be transformed into a Satisfia-
bility Modulo Theories (SMT) model. An SMT model is a formal
generalised constraint satisfaction (SAT) model that allows the
use of more complex formulas involving real numbers, integers
and/or various data structures such as lists, arrays, bit vectors and
strings. For our approach, an SMT will be defined by the tuple:
⟨𝐷, 𝑉 , 𝐷𝐶, 𝑉𝑢𝑙, 𝑓𝑑 (𝐷, 𝑉 ), 𝑓𝑡 (𝐼 )⟩. Where:
- D is the set of nodes in the graph and will represent the set of
variables in the model. For a dependency 𝑑𝑖 ∈ 𝐷 if 𝑑𝑖 = 0 it means
that it is not selected for analysis, and if 𝑑𝑖 = 1, it is selected. If
we choose flask and urllib3, both dependencies must appear in the
SMT model as variables.
- V is the set of version values of each dependency chosen from
the graph. The dependency can only take the values of the versions
it has available in the graph. As mentioned, if flask and urllib3 are
chosen, they must take as value one of the valid dependencies we
saw in the previous section.
- DC represents the restrictions that we apply to the versions of
each dependency of the graph. In this case, since these are numeric
variables, we can make use of logical range operations. For example,
for the case of urllib3 in the motivating example, 𝑢𝑟𝑙𝑙𝑖𝑏3 ≥ 1.21.1
and 𝑢𝑟𝑙𝑙𝑖𝑏3 < 1.27.

- Vul is the set of impact values, i.e. the impact defined in each
CVSS associated with a CVE.
- 𝑓𝑑 (𝐷,𝑉 ) is a function that allows us to calculate the impact for
each dependency chosen from the graph depending on the version
configuration taken by the solver. In our case, we are going to
consider all the CVEs with their impacts (CVSS), for which we
must add this information for each node. To do this, we can use
different functions that calculate the impact of the dependency by
aggregating the hits, for example, we can use the mean, the median
or the mode. If we were to use the mean to determine the impact
of the dependency 𝑑𝑥 on the version 𝑣𝑠 that has n vulnerabilities
(CVE), it implies that if the dependency takes that version, it would
be such that for each dependency the calculation of the impact
would be: 𝐼𝑚𝑝𝑎𝑐𝑡 (𝑑𝑥 ,𝑣𝑠 ) =

∑𝑛
𝑖=1𝐶𝑉𝑆𝑆𝐶𝑉𝐸𝑖

𝑛
For example, if the urrlib3 dependency were to take version 1.21.1,
the impact would be calculated as follows:

𝐶𝑉𝑆𝑆𝐶𝑉𝐸−2021−33503+...+𝐶𝑉𝑆𝑆𝐶𝑉𝐸−2018−20060
5

- 𝑓𝑡 (𝐼 ) is a function that calculates the total impact of a project
by adding the impact of all dependencies, i.e. if our project had
for𝑚 dependencies each with its versions it would look like this:

𝐼𝑚𝑝𝑎𝑐𝑡𝑜𝑡𝑜𝑡𝑎𝑙 =

∑𝑚,𝑠
𝑖=1, 𝑗=1 𝐼𝑚𝑝𝑎𝑐𝑡𝑜 (𝑑𝑖 ,𝑣𝑗 )

𝑚
Like the previous function, we can use different functions to calcu-
late the impact of the dependency such as mean, median or mode.
For the motivating example, using a mean, the total impact would
look as follows: 𝐼𝑚𝑝𝑎𝑐𝑡𝑜𝑢𝑟𝑙𝑙𝑖𝑏3+𝐼𝑚𝑝𝑎𝑐𝑡𝑜 𝑓 𝑙𝑎𝑠𝑘

2

To apply this transformation in the current version of Advi-
sory we have used models for the Z3 solver8.

2.4 Operations
Oncewe have built the SMTmodel from the graph, we can apply rea-
soning operations. Among them, the ones currently implemented
by Advisory are:

- Valid model: to know if the model can find a solution that satis-
fies all the constraints and operations created. This operation would
return a boolean 𝑇𝑟𝑢𝑒 or 𝐹𝑎𝑙𝑠𝑒 indicating that the project is valid
or not. The motivating example is valid since there is at least one
configuration, for example, the one composed by {urllib3 = 1.21.1,
flask = 1.0.1}.

8https://github.com/Z3Prover/z3
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- Number of configurations: if the model is valid, extract the
number of possible successful configurations. Note that this opera-
tion is not feasible to execute in projects with many dependencies
as long as we use SMT solvers. The maximum number of configu-
rations that Advisory can return is the number of configurations
representable in an integer of Z3 in Python. Defined by the function
sys.maxsize(), a total of 922.333.372.036.854.775.807 configurations.
- Analysis of configurations: if the previous operations do not
provide us with sufficient information on the security impact of our
dependencies. We have developed the following operations that
allow us to refine the analysis of a configuration. These operations
are the following: a) Filter configurations by a minimum and a
maximum threshold, which allows us to create a range of total
impact on the configurations. For example, get all configurations
whose impact is between 0 and 1.5. If not specified, by default the
minimum is set to 0 and the maximum is set to 10, which are the
maximum and minimum impact values for a vulnerability accord-
ing to CVSS. For example, in the case of the motivating example,
setting the maximum threshold to 0 would give a total of 45 configu-
rations. This operation returns a set of configurations; b)Minimise
or Maximise if we want to get the configurations with the low-
est impact or the configurations with the highest impact, we can
apply one of the two optimisation operations for the impact. For
example, in the case of the motivating example, we could maximise
the impact to get the configuration {𝑢𝑟𝑙𝑙𝑖𝑏3 = 1.22, 𝑓 𝑙𝑎𝑠𝑘 = 1.1.3}
with a maximum impact of 1.83. These operations return a set of
configurations; c) Limit scan. These three operations have a pa-
rameter to limit the number of configurations that can be returned
by Advisory. Currently, analysing the number of valid configura-
tions for satisfiability problems becomes, in cases where there is
a lot of combinatorics, a non-deterministic problem in time (NP-
complete). So we need to limit the number of configurations we
want to receive. For example, we could get 3 configurations that
meet the maximum threshold of 2.5 or minimise the impact and
return the 3 configurations with the lowest impact.

Once the solver solves the model together with the required op-
eration, the solver will return the results in terms of propositional
logic, that is, at the level of assigning values to each of the vari-
ables, and Advisory then interprets the results and presents them
as dependencies and versions to be used to meet the objectives
set by the user. Note that the different optimisation functions are
implemented in propositional logic within the solver itself (Z3).

3 CONCLUSIONS AND FUTUREWORK
In summary, we have learned the following important lessons: 1)
Bridging variability and security. We can analyse the variability
found in the dependencies of software projects and extract infor-
mation regarding their security; 2) Evolution of dependency
management. The need to manage our software’s dependencies
is becoming more critical due to the increasing use of software
dependencies and the possibility that their versions may not be
secure. and 3) Inability to analyse the entire configuration
space. The analysis of a very large configuration space makes it
impossible for a solver to analyse all possible configurations. This
is an open problem for the complete security analysis of a tool with
a large number of dependencies and versions.

The development of Advisory leads us to the solution described
in section 2. Still, this solution has a series of future works that pro-
poses to extend the tool to give more support to the general purpose
of vulnerability analysis in the evolution of software development
projects. These works are:
- Develop new operations: We will implement new operations
that give the person using the tool information relevant to the
security of their project. One of these future operations is to analyze
the technical debt of our project’s dependency configurations. This
includes the use of new AI systems to extract relevant information.
- Variability reduction: In the product line community, it is well
known that increased variability in a domain is problematic [2].
Because it makes it impossible to analyze the entire configuration
space, we design a configuration return limit for existing operations.
This method might not be the most suitable. We will implement
other strategies that prune the configuration space with the re-
strictions the user wants, e.g., the three most recent versions per
dependency.
- Incompatibility between files: Each dependency file may rep-
resent a different environment (production, development, test, etc.).
We will implement the ability to analyze whether these files are
compatible with each other to determine if the different environ-
ments in which developers work have incompatibilities or problems
due to restriccions for example.
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