
A Practical Experience Applying Security Audit Techniques in an
Industrial e-Health System Which Uses an Open Source ERP

Julián Gómez a, Miguel Á. Olivero b, J. A. Garcı́a-Garcı́a c and Marı́a J. Escalona d

Web Engineering and Early Testing (IWT2, Ingenierı́a Web y Testing Temprano), University of Seville, Spain

Keywords: Audit, Cybersecurity, Odoo, Healthcare, Pentest, Pentesting, Security.

Abstract: Healthcare institutions is an ever-innovative field, in which modernization is moving forward taking giant
steps. This modernization, so called “digitization”, brings up some concerns that should be carefully consid-
ered. Currently, the most sensible concerning in this field is the management of Electronic Health Record and
patients’ data privacy. Health-related data in healthcare systems are under strict regulations, such as the EU’s
General Data Protection Regulation (GDPR), whose non-compliance imposes huge penalties and fines. Cy-
bersecurity in healthcare plays an important role at protecting these sensitive data, which are highly valuable
for criminals. Security experts follow already existing security frameworks to orchestrate the security assess-
ment process, so that the auditing process is as complete and as organized as possible. This study extends the
lifecycle of a security assessment framework and conducts an exploitation and vulnerabilities’ analysis on an
actual industrial scenario. The results of this security audit shows that even if the system is heavily fortified,
there can be still some vulnerabilities.

1 INTRODUCTION

Cybersecurity is a field that is located within com-
puter science, but is related to other disciplines such
as law, legislation, and security and control forces.
According to ISO/IEC 27032:2012 (ISO, 2012), cy-
bersecurity is “the preservation of confidentiality, in-
tegrity and availability of information in cyberspace.
In addition, other properties such as authenticity, ac-
countability, non-repudiation, and reliability may also
be involved.”. In the end, cybersecurity is in charge of
defending the information of computer systems and
electronic communication.

Personal data is always sensitive information, but
even more so in the case of healthcare systems. In or-
der to manage and successfully conduct audits, a set
of steps or phases should be followed. It is with a
structured set of step that the security audit is com-
plete and thorough. Such steps or phases are estab-
lished through the security frameworks.

However, a gap has been identified. The current
frameworks have a set of structured phases that aim at
ensuring that the security audit is as complete as pos-

a https://orcid.org/0000-0002-3157-1469
b https://orcid.org/0000-0002-6627-3699
c https://orcid.org/0000-0003-2680-1327
d https://orcid.org/0000-0002-6435-1497

sible. But they lack on analysis on source code. This
study extends the auditing process by including an ad-
ditional stage consisting on performing analysis to the
source code of a system. The inclusion of this phase
leads to the strengthen of the auditing process. Be-
sides the additional phase, this study also shows how
a security audit of an actual Electronic Health Record
(EHR)-related system has been performed through an
industrial case scenario.

After following a set of phases established by the
frameworks, a new phase consisting in applying tech-
niques of static analysis is proposed. This new phase
adds a security layer in the process of auditing a sys-
tem, needed in critical systems such as the ones in
healthcare.

Since the audited system is a live system of a in-
dustrial healthcare institution, its name shall not be
disclosed due to privacy reasons. The remaining of
this paper is organized as follows: Section 2 and 3
introduces the background and summarizes some re-
lated work. Section 4, presents the execution of the
security audit and its results. This section has been
organized in 5 subsections, each one corresponding
to one of the phases given by the audit frameworks.
Finally, the last section states a set of conclusions and
suggests some research lines that as future work.

482
Gómez, J., Olivero, M., García-García, J. and Escalona, M.
A Practical Experience Applying Security Audit Techniques in an Industrial e-Health System Which Uses an Open Source ERP.
DOI: 10.5220/0010714500003058
In Proceedings of the 17th International Conference on Web Information Systems and Technologies (WEBIST 2021), pages 482-489
ISBN: 978-989-758-536-4; ISSN: 2184-3252
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 BACKGROUND

Every year, ISACA publishes a summary of the state
of the art, i.e. the state of the field and the latest inno-
vations in cybersecurity. The report can be found on
the official ISACA website (ISACA, 2021).

The 2021 report gets the data after doing a macro
survey in the last quarter of 2020 to professionals in
the field, of different nationalities, ages and with dif-
ferent years of experience. Demand is on the rise
and more and more professionals are needed. More
than 60% of respondents describe the situation in their
company’s cybersecurity department as “significantly
understaffed”. The report points out that business un-
derstood from the traditional point of view does not
work well. The cybersecurity workforce is scarce and,
in the future, will probably continue to be scarce, be-
cause it takes a long time to train a professional from
a theoretical point of view.

To conclude, ISACA expects that 2021 will be the
year in which companies will start hiring as many
professionals as there are vacancies to fill. In addi-
tion, it is suggested not to overestimate the effect of
“digitized classes” in education, since the skills that
are most lacking are the interpersonal ones: the soft-
skills.

3 SECURITY AUDIT
FRAMEWORK

This section will look at how the security audit it-
self has been managed. The first step to take when
choosing a methodology is to know which ones there
are and what each of them consists of in brief. The
five most popular ones are the following (Gkoutzama-
nis, 2020): OSSTMM, OWASP Web Security Testing
Guide, NIST SP 800-115, PTES and ISSAF.

3.1 Standardized Frameworks

Regarding the security audit framework itself, OS-
STMM and OWASP Web Security Testing Guide
have been chosen. These two frameworks are de facto
standards in the field of cybersecurity. Unlike PTES
or ISSAF, the first ones on the list are very popular
and are still being updated today. In the case of OS-
STMM, it is particularly effective, because within the
existing general and broad methodologies, it is the
most comprehensive of all, considering aspects that
other guides do not consider, such as the human as-
pect. Regarding the OWASP Web Security Testing
Guide, it is a very popular guide to perform security
audits on web applications. Since the system that will

be audited is a web system, this guide is ideal. For all
these reasons, these are the two frameworks that the
study will be working with.

In addition to the phases, there are different types
of audits. Each of the phases will fall into one of the
three kinds here explained:

• Black Box. This audit is the process that would be
followed by someone totally external to the sys-
tem, who has no prior ideas about how the system
is developed from the inside. This type of audit
simulates the state that a cybercriminal who is go-
ing to attack a system would start from and has to
gradually gather information.

• White Box. This type of audit is the complete op-
posite of the black box audit, as the auditor now
has all the information on how the system is de-
veloped inside and can see the source code. How-
ever, he has no prior knowledge of what attack
vectors he is going to test yet, nor what vulnera-
bilities there may be.

• Grey Box. This type of audit relies on the audi-
tor having partial knowledge of the details of the
system. In fact, it is the type of audit that most
auditors start from: they know what type of sys-
tem they are going to audit in broad strokes. For
example, in the case of the system of this project,
the only previous information before the security
audit was that the system uses an Odoo 11 web
system.

These three types of auditing are not mutually ex-
clusive and are actually performed all at once. Gener-
ally, a passive scan of the application without know-
ing anything (black box) is what goes first and then
goes the specific details (the source code, config-
uration files, platform where the application is de-
ployed...).

After looking at the types of audit, it will be ex-
plained which are the phases that will be developed
during the security audit. These phases have been es-
tablished after combining the OSSTMM framework
and the OWASP framework. In addition to that com-
bination, a new phase is proposed. Such phase re-
ceives the name of “Static analysis” and it aims at
analyzing the source code of the system in order to
discover new vulnerabilities.

The visual representation of the flow of a security
audit can be seen on Figure 1, being “Static analysis”
the highlighted in blue. The phases are:

1. Scope. Definition of the scope and objectives of
the audit. See section 4.1.

2. Social Engineering. Social engineering tech-
niques will be used to try to breach the system

A Practical Experience Applying Security Audit Techniques in an Industrial e-Health System Which Uses an Open Source ERP

483

starting from the weakest link in the chain: the
users. In this paper, this phase will not be dis-
cussed due to length restrictions. See section 5.

3. Vulnerability Analysis. The vulnerabilities will
be analyzed if they are corrected. In addition, it
will be checked if the system is vulnerable to the
vulnerabilities published in the OWASP Top 10.
See section 4.2.

4. Vulnerability Exploitation. Some of the vulner-
abilities found will be exploited. See section 4.3

5. Static Analysis. The source code will be passed
through code analyzers to find memory bugs and
bad input sanitization. This is the phase proposed
by this study. See section 4.4.

6. Writing the Report. An executive report that
contains all of the knowledge that has been gener-
ated. See section 4.5.

Figure 1: Phases of the security audit.

3.2 Phase Addition Proposal

Static code analysis is done on the code without ex-
ecuting it. The main difference from the programs
used in the other sections (4.2), is that with those pro-
grams the analysis was performed on the live applica-
tion (so-called dynamic analysis), while for this static
analysis only the source code is needed.

Static analysis makes it possible to detect vulnera-
bilities that otherwise would not be easily detected be-
cause the functionality will not be executed and will
need a trigger or because a piece of code is not ex-
posed to users.

This static analysis of code is not usually done in
audits that follow step by step the frameworks, per-
haps because they are more associated with being
run on the Continuous Integration tool pipeline when

code is uploaded to a repository. However, the power
and utility that these analyses provide should not be
underestimated, because on many occasions security
analysis programs miss vulnerabilities that without
analyzing the code would be impossible to detect.

It is assumed that a cybercriminal would not have
access to the source code of an application in any
case, but that would be relying too much on the fact
that such access is impossible to obtain. In fact, cy-
bercriminals can make use of social engineering tech-
niques in order to gain access to source code. It is this
distrust that leads us to improve the source code of
our system, even when it is difficult - not impossible -
for a cybercriminal to gain access.

4 EXECUTION OF THE
SECURITY AUDIT

Each of the proposed phases of the security audit will
be covered in this section, except the social engineer-
ing phase, due to limitations in length.

4.1 Scope

This phase is of the kind “Grey box”.
The first phase of a security audit is to define

the scope. Scope refers to exactly what parts of the
system are to be audited and under what conditions,
not to be confused with the scope of the paper itself,
which is the performance of a security audit and the
proposal of a new phase in the auditing process.

To know what alternatives there are to audit, the
best option is to consult checklists to provide a scope
as complete as possible. One such checklist is the
OWASP ASVS checklist (OWASP, 2019). It provides
steps to follow to investigate a system in depth. Al-
though this list is already quite comprehensive, it is
good practice to consult other lists to make the scope
even more complete. Briefly summarizing,it is as fol-
lows:

• Process abuse and social engineering.

• Application architecture identification.

• Evaluate which parts of the system are critical.

• Authentication.

• Authorization.

• Validation of inputs.

• Bugs in application logic.

• Web Server and Framework.

• Context-Dependent Encounters.

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

484

Once the alternatives that exist to audit are known,
a meeting with the client to define the scope needs to
take place. Everything that was going to be audited
was also discussed. The following list reflects what is
included in the scope:

• This project’s entire system: Login page, Internal
page, Custom modules, Known vulnerabilities of
Odoo 11.

• Basis security protocols analysis such as SSL and
HTTPS.

• If the following can be obtained or modified: Con-
figuration of any kind, Directory browsing, .htac-
cess

4.2 Vulnerability Analysis

This phase is of the kind “Black box”.
Vulnerability analysis is one of the most impor-

tant phases to be performed in a security audit. These
vulnerabilities are present in information systems of
all kinds: bugs in application logic, user inputs that
are not properly escaped or sanitized, redirects.... The
list is long. This section explores how vulnerability
scanning can be done, what tools and techniques are
available, and what it is for.

To make vulnerability scanning as complete as
possible, there are numerous guides with lists of vul-
nerabilities to check, both manually and with an au-
tomated tool. One such guide is the OWASP top 10
(OWASP, 2017). However, if a more exhaustive list
is needed, the OWASP ASVS (OWASP, 2019) can be
checked. The OWASP Top 10 has the following as a
summary:

1. Injection: Injection flaws, such as SQL, NoSQL,
OS, and LDAP injection.

2. Broken Authentication: Application functions re-
lated to authentication and session management
are often implemented incorrectly, allowing at-
tackers to compromise passwords, keys, or ses-
sion tokens.

3. Sensitive Data Exposure: Many web applications
and APIs do not properly protect sensitive data,
such as financial, healthcare, and PII.

4. XML External Entities (XXE): Many older or
poorly configured XML processors evaluate ex-
ternal entity references within XML documents.

5. Broken Access Control: Restrictions on what au-
thenticated users are allowed to do are often not
properly enforced.

6. Security Misconfiguration: Misconfiguration is
the most commonly seen issue. This is commonly

a result of insecure default configurations and ver-
bose error messages containing sensitive informa-
tion.

7. Cross-Site Scripting XSS: XSS flaws occur when-
ever an application includes untrusted data in a
new web page without proper validation or escap-
ing.

8. Insecure Deserialization: Insecure deserialization
often leads to remote code execution.

9. Using Components with Known Vulnerabilities:
Components, such as libraries, frameworks, and
other software modules, run with the same privi-
leges as the application.

10. Insufficient Logging & Monitoring: Insufficient
logging and monitoring, coupled with missing or
ineffective integration with incident response, al-
lows attackers to further attack systems and main-
tain persistence

As with other areas of software engineering, the
discovery of these vulnerabilities is not a complete
process. When an application is in the testing phase
and there is no warning in the tool used to test the ap-
plication, it does not mean that it is known with cer-
tainty that the application will not have flaws, but that
the tool does not find more and that what has been
tested does not give flaws. It does not mean that there
cannot be others. Usually, these tools use an oracle,
which evaluates based on parameters that are speci-
fied if there are bugs in a part of the code or not. This
is why it is said that the testing phase is not complete.
All the bugs in an application cannot be discovered
and it will never be certain that a piece of software is
free of bugs.

The same is true for security auditing. When us-
ing an auditing application or even auditing manually
without the help of tools, certainty that the system will
not have more vulnerabilities is not a given. The pro-
gram will test for known vulnerabilities and will try
to be as complete as possible, but there may be vul-
nerabilities that it cannot discover, for example, be-
cause they are of the type zero day, vulnerabilities
that have not been published and that the person who
knows about the vulnerability can exploit. This is why
it is so difficult to determine whether an audit is com-
plete or not. The only way to do so is to trust that the
security auditor, with the experience and knowledge
he has, will report as many vulnerabilities as he finds
and will always try to do as complete an audit job as
possible.

Knowing that a tool cannot discover all of the vul-
nerabilities of a system, the following sections are
presented.

A Practical Experience Applying Security Audit Techniques in an Industrial e-Health System Which Uses an Open Source ERP

485

Vulnerability scanning tools compete in a niche
market that is hotly contested. There are few free pro-
grams, and those that do offer free versions lack many
of the features that are really needed. These licenses
can cost as much as 3600 euros per year, as is the case
with Nessus, or as affordable as 360 euros per year, as
is the case of Burp suite. In fact, the best strategy is
to combine various tools as they often have different
ways of reporting vulnerabilities.

After comparing Nesus, SolarWinds MSP,
OWASP ZAP, Burp Suite and Rapid7 InsightVM,
two of the most widespread tools in the cybersecurity
field have been used when scanning for vulnerabili-
ties in a system: OWASP ZAP and Burp Suite. These
two programs are dynamic scanners, i.e. they analyze
the running system and take it as if it were a black
box without seeing its source code, which automate
the vulnerability discovery process.

4.2.1 OWASP ZAP

The configuration of the tools is not a trivial process,
because to give an example, the application to be au-
dited has a login system whose access has to be de-
scribed in the tool.

The tool is configured by adding to the “scope”
the URL to be audited. With respect to this login,
the tool needs an anti CSRF token, which briefly, is a
token that prevents a user from executing in their web
browser malicious content from the web page where
they are authenticated.

The tool has two scanners. The passive scanner
makes no changes to the web application, i.e. it only
makes GET requests. The passive scanner is also
called spider and collects information from the appli-
cation bit by bit. There is another type of scan: the ac-
tive scan. This scan makes changes to the application,
i.e. it will be able to execute more HTTP commands
besides GET, such as POST, PUT, DELETE.... It is a
much more aggressive scan, since it will try to exploit
as many security flaws as it finds. It should not be run
on production systems as it will try to crash the sys-
tem. In fact, during the execution of this type of scan,
the URL that was provided to me with the copy of the
production system crashed due to the high number of
requests. If this were to happen on a production sys-
tem, it could be catastrophic.

The tool, after being run for a couple of hours,
finds as many vulnerabilities as it can and then gen-
erates a report with all vulnerabilities, their severity
and their solution. Perhaps this report is the most im-
portant part of running the tool because it is what the
development team uses to fix the vulnerabilities.

4.2.2 Burp Suite

The configuration of Burp suite is significantly sim-
pler than that of ZAP. For login, Burp suite opens a
browser window and copies the clicks and keyboard
inputs and then plays them back. There is only one
type of scan that takes out all the vulnerabilities it
finds. However, it does not have the HUD, so the se-
curity audit is not as interactive.

As with ZAP, Burp Suite generates a report with
all the vulnerabilities it finds. Example of this report
can be found in (Burp Suite, 2019).

4.3 Vulnerability Exploitation

This phase is of the kind “Black box”.
This section aims to further investigate vulnera-

bilities that have been discovered in the previous sec-
tions, as well as to consider as false positives some
vulnerabilities that in fact are not. No new tools have
been used to investigate vulnerabilities, except those
already used (OWASP ZAP and Burp suite), because
all tests have been done manually to eliminate false
positives.

The analysis tools give the severity and confidence
of the vulnerability. Their severity indicates how
high a priority they should be given to fix, and the
confidence indicates how certain the vulnerability is
present or if it is a false positive. Both tools produce
tables that indicate the severity of the vulnerability,
and in the case of Burp suite, it also indicates how
confident Burp suite is regarding a false positive.

Figure 2: Table generated by Burp Suite.

The OWASP ZAP report has reported 16 alerts,
with a total of 395 instances. Burp suite has reported
74 vulnerabilities and they are represented in the fig-
ure 2. As it can be seen, this table is insightful for the
auditor since it gives the auditor what to audit first:
those vulnerabilities with higher risk and confidence.

In total there are more than 450 vulnerabilities to
be investigated. Normally in an enterprise environ-
ment an estimate of how long it would take to inves-
tigate all vulnerabilities is usually given based on the
number found. Due to limitations in length of the pre-
sented work, two of the most critical vulnerabilities

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

486

reported by OWASP ZAP will be further inves-
tigated and other two by Burp suite.

4.3.1 Vulnerability 1: Redirects

This first vulnerability is present in two forms: as Ex-
ternal redirect and as XSS Reflected. They have high
severity and medium confidence. If we look at the url,
the common path of the two vulnerabilities is.
https://o****n.com/web/session/logout?redirect=

This path itself is very dangerous because it is vul-
nerable to an XSS and redirect attack. An XSS attack
is an attack that relies on an attacker being able to in-
ject Javascript code into a web page. In this case, an
attacker could inject code to steal users’ cookie infor-
mation, for example.

If the URL is further investigated, the logout page
shows a new aspect. There are, in fact, two hidden
fields: one with an anti CSRF token and another with
the name redirect, which corresponds to the redirect
of the URL marked as vulnerable. It is therefore con-
cluded that the login page also has this vulnerability.
If an attacker wanted to exploit it, he would only have
to put in a URL a redirect parameter as follows:
https://o***n.com/web/login?redirect=https://
github.com/

and a URL to which you would like to redirect.
This way, after the users enter their data, they will be
redirected to github.com (in this example).

To fix this vulnerability, it is recommended that
the development team try to do the login and logout
redirects without relying on hidden fields in forms,
but instead do it with session cookies or in an internal
way.

4.3.2 Vulnerability 2: DOM XSS

This vulnerability actually has nine instances. They
have high severity and tentative confidence. The ex-
ploitability of these vulnerabilities, if the notes of the
report is looked at, depends on jQuery libraries. These
two vulnerabilities are, in effect, the same and occur
because of the multiple vulnerabilities that are present
in jQuery version 1.11.1. It is recommended that the
company upgrades to the latest version of jQuery and
always keeps its dependencies up to date.

4.3.3 Vulnerability 3: SQL Injection

Path traversals (also called Directory traversals) are
vulnerabilities that allow attackers to break out of the
var/www folder where the web is hosted on the server
and be able to query and modify files on the server.
This vulnerability has been reported by OWASP ZAP

with eight instances that have high severity and low
confidence.

There is a total of eight declared instances, which
have different URLs. However, in all URLs the pa-
rameter that could be changed to an escape path is the
last one. For example, in the first instance, it is:
https://o***n.com/web/dataset/call_kw
/mail.message/load_views

This should change load views to an escape path.
To exploit this vulnerability, escape paths of the
kind ../../../etc/passwd and with encoding such as
..%252f..%252f..%252fetc/passwd were used.

If the server is vulnerable it should return the file
etc/passwd. However, after testing the escape paths
listed in the snippet above, no way to escape to parent
folders containing other files has been found, so it is
declared as a false positive.

4.4 Static Analysis

This phase is of the kind “White box”. With this
phase, it is expected to discover new vulnerabilities
not previously discovered. This phase is proposed by
this study. This phase adds completeness to the se-
curity audit, since some vulnerabilities that cannot be
discovered without exploring the source code of a sys-
tem, can be discovered with the use of static analyz-
ers.

This phase consists in performing a static analy-
sis, which consists in analyzing the source code of an
application to discover new vulnerabilities that classi-
cal dynamic analysis tools do not find. This extension
enhances the completeness of the audit since new vul-
nerabilities that could not have been found are now
discovered, thus resulting in a more complete audit.

The static code analysis is done on the code with-
out executing it. The main difference from the pro-
grams used in the other sections, is that with those
programs the analysis was done on the live applica-
tion, while for this static analysis only the source code
is needed. Static analysis makes it possible to detect
vulnerabilities that otherwise would not be easily de-
tected because the functionality will not be executed
and will need encouragement or because a piece of
code is not exposed to users.

We believe that this phase is key in the process of
auditing because it discovers new vulnerabilities. A
security audit aims to be as complete and sound as
possible. Static analysis is yet another field to make
progress at, because there are few static tools that fo-
cus on security and not performance o type-checking,
for instance.

Code parsers usually have underneath them an
Abstract Syntax Tree (AST). These ASTs represent

A Practical Experience Applying Security Audit Techniques in an Industrial e-Health System Which Uses an Open Source ERP

487

a program hierarchically, whose representation is the
same as the compilers do. They are said to be of ab-
stract syntax because the representation does not de-
pend on the language itself that is being used. Thus,
a function would have the same representation in C,
Java or Python. In ASTs, the inner nodes represent
operators and the last nodes, called leaves, represent
variables. To identify vulnerabilities, static analyz-
ers using this technique traverse the tree looking for
flaws in a function’s logic. One visual representation
of such AST of a simple PHP function can be seen on
Figure 3.

Figure 3: Sample AST of a PHP function.

There are multiple lists that compile the static
tools that are open source. An example of one of the
most complete list is (Analysis-Tools-Dev, 2021). Af-
ter obtaining security tools from the previously com-
mented list, a comparison between the following tools
took place: py find injection, Sonarqube, Dlint, At-
tackFlow, pyre and Bandit. The tools selected for the
project were: Banding, Dlint and Sonarqube.

4.4.1 Bandit

Bandit is a tool from PyCQA. According to its own
GitHub description it is “a tool designed to find com-
mon security problems in Python code. To do this
Bandit processes each file, builds an AST from it, and
runs the appropriate plugins against the AST nodes.
Once Bandit has finished scanning all files, it gener-
ates a report.” The installation of the tool is very sim-
ple and execution is automatic. As an example, the
following fragment shows a vulnerability discovered
by Bandit.
>> Issue: [B110:try_except_pass] Try, Except,
Pass detected.

Severity: Low Confidence: High
Location: ./src/addons/imedea_andrology
/models/andrology_episode.py:317
More Info: https://bandit.readthedocs.io/en
/latest/plugins/b110_try_except_pass.html

4.4.2 Dlint

Dlint is a static analysis tool of Dlint-py. As with Ban-
dit, its goal is to detect security flaws in Python code.
Its installation and configuration are straightforward.
As an example, the following fragment shows a vul-
nerability discovered by Dlint.

./src/addons/imedea_project/models/cycle_items
/defrosting.py:3:1: DUO107 insecure use of XML
modules, prefer "defusedxml"
./src/addons/imedea_project/models/cycle_items
/embryonic_study.py:3:1: DUO107 insecure use of
XML modules, prefer "defusedxml"

4.4.3 Sonarqube

Sonarqube is a platform that performs static code
analysis. Sonarqube has several versions: the com-
munity version (open source) and the developer, en-
terprise and data center versions (paid). One of the
most useful features of Sonarqube is the generation of
reports. Unfortunately reports can only be generated
natively in the paid versions and in the community
version you have to rely on a plugin developed by the
community (Cnescatlab, 2021). This plugin only sup-
ports up to version 8.2 of Sonarqube, from February
2020, when the latest is 8.9, from June 2021. That is
why Sonarqube has been run twice in total, once with
8.2 to generate the report that will go later in the Ex-
ecutive Report, and another in which it is run without
report. In fact, the two versions report totally differ-
ent vulnerabilities and bugs, so it is useful to run both
versions.

4.5 Executive Report

The Executive Report is a document that is given to
the different departments of a company so that all staff
can understand the work that has been done and the
vulnerabilities in it. For confidentiality reasons, the
report that has been generated for the present project
cannot be publicly released.

This report is the part that a security auditor usu-
ally likes the least because it is based on creating doc-
umentation and not on investigating vulnerabilities.
However, this is perhaps the most crucial part of the
audit. During the previous sections there has not re-
ally been any material produced that would be of any
benefit. The importance of this report is highly em-
phasized.

There are two main readers of this report: senior
management, who are interested in the general high-
level details, and the developers who have to fix the
vulnerabilities through a series of technical steps, as
well as some ideas to fix the vulnerabilities.

5 CONCLUSIONS AND FUTURE
WORK

Companies around the world are undergoing digiti-
zation, which is driving them to use more and more

WEBIST 2021 - 17th International Conference on Web Information Systems and Technologies

488

healthcare systems. These healthcare systems are not
without security holes, which cybercriminals can ex-
ploit. Hence the need to perform security audits, espe-
cially in the audited system, because being a system in
production in a health institution, the data it contains
are very sensitive. In this project an audit has been
done on a system in production implemented in an in-
dustrial scenario, more precisely in a healthcare sys-
tem currently in production. The system uses Odoo
11 ERP to store their patients data.

This study reviews security audit orchestration
frameworks. After having identified a gap where
frameworks could be more complete, an extension is
proposed by adding a phase to the auditing process.

This phase consists in performing a static analy-
sis, which consists in analyzing the source code of an
application to discover new vulnerabilities that classi-
cal dynamic analysis tools do not find. This extension
enhances the completeness of the audit since new vul-
nerabilities that could not have been found are now
discovered, thus resulting in a more complete audit.

Besides the addition of the new phase, the study
shows how a real security audit on a live, industrial
healthcare system is performed. More precisely, first,
in the section of the scope, it is stated what can be au-
dited. In the section of the analysis (4.2) tools are exe-
cuted that identify computer vulnerabilities and in the
section of the exploitation (4.3) it is tried to deepen
in the most critical vulnerabilities. Another analysis
is done in the static analysis section (4.4). This time,
the tools are run only on the custom code of the mod-
ules. Finally, all the knowledge generated is collected
in the Executive Report (4.5).

In light of the results, it can be concluded that
critical and highly confidential systems, it should be
subject of periodic security audits, in order to protect
such confidentiality. In addition to that fact, the new
proposed phase succeeds in discovering vulnerabil-
ities that classic dynamic analysis tools cannot dis-
cover.

Future work might be oriented in various direc-
tions according to the examined perspectives and
identified gaps, such as the social engineering one. A
social engineering audit, which explores the human
factor of a system, may be as important as a technical
audit of the system, since there is no point in having a
technically fortified system if employees later reveal
sensitive information. The work could be expanded
in regard to the phase of testing the source code by,
for instance, giving specific step to achieve the de-
sired completeness of testing the source code. The
methods and comparison of different tools can also be
expanded. Due to time and length constraints, more
experimental results are needed.

Finally, it could be also investigated the option of
including artificial intelligence to improve the analy-
sis and perhaps the tools that use artificial intelligence
can find vulnerabilities that others cannot.

ACKNOWLEDGMENTS

This work has been partially supported by the NICO
project (PID2019-105455GB-C31) of the Spanish the
Ministry of Science, Economy and University and
NDT4.0 (US-1251532) of the Andalusian Regional
Ministry of Economy and Knowledge.

REFERENCES

Analysis-Tools-Dev (2021). github.com/analysis-tools-
dev/static-analysis. github. Online; Accessed on June
2021.

Burp Suite (2019). Burp suite scanner sample report.
https://portswigger.net/burp
/samplereport/burpscannersamplereport. Online; Ac-
cessed on July 2021.

Cnescatlab (2021). cnescatlab/sonar-cnes-report. github.
https://github.com/cnescatlab/sonar-cnes-report. On-
line; Accessed on June 2021.

Gkoutzamanis, D. (2020). Five penetration test-
ing frameworks and methodologies. cisotimes.
https://cisotimes.com/five-top-penetration-testing-
frameworks-and-methodologies/. Online; Accessed
on March 2021.

ISACA (2021). State of cybersecurity 2021.
https://www.isaca.org/go/state-of-cybersecurity-
2021. Online; Accessed on June 2021.

ISO (2012). Information technology — security
techniques — guidelines for cybersecurity.
https://www.iso.org/standard/44375.html. Online;
Accessed on June 2021.

OWASP (2017). Owasp top ten. https://owasp.org/www-
project-top-ten/. Online; Accessed on June 2021.

OWASP (2019). Owasp application security verifica-
tion standard. owasp. https://owasp.org/www-project-
application-security-verification-standard/. Online;
Accessed on June 2021.

A Practical Experience Applying Security Audit Techniques in an Industrial e-Health System Which Uses an Open Source ERP

489

