
Explaining the Incorrect Temporal Events During Business Process Monitoring
by means of Compliance Rules and Model-based Diagnosis

Marı́a Teresa Gómez-López and Rafael M. Gasca
Department of Computer Languages and Systems

University of Seville
Seville, Spain

{maytegomez, gasca}@us.es

Stefanie Rinderle-Ma
University of Vienna

Faculty of Computer Science
stefanie.rinderle-ma@univie.ac.at

Abstract—Sometimes the business process model is not
known completely, but a set of compliance rules can be used to
describe the ordering and temporal relations between activities,
incompatibilities, and existence dependencies in the process.
The analysis of these compliance rules and the temporal events
thrown during the execution of an instance, can be used to
detect and diagnose a process behaviour that does not satisfy
the expected behaviour. We propose to combine model-based
diagnosis and constraint programming for the compliance
violation analysis. This combination facilitates the diagnosis
of discrepancies between the compliance rules and the events
that the process generates as well as enables us to propose
correct event time intervals to satisfy the compliance rules.

Keywords-Business Process Compliance, Compliance Rules,
Event Analysis, Constraint Programming, Model-based Diag-
nosis

I. INTRODUCTION

A business process consists of a set of activities that
are performed in coordination within an organizational and
technical environment [1]. The base of Business Process
Management Systems (BPMS) is the explicit representation
of business processes with their activities and the execution
constraints between them. Sometimes, the description of
the model is not known completely, but some parts of the
behaviour of the process can be known and represented by
means of compliance rules in a declarative way. These com-
pliance rules describe the ordering and temporal relations
between activities as well as incompatibilities and existence
dependencies in a business process [2], [3], [4], [5]. In case
the process model is not available at all or only partly known,
compliance of running process instances has to be monitored
during runtime [6]. The monitoring of the process can be
carried out by means of the temporal events (henceforth
events) that describe the execution of the activities of the
process. In particular, if the activities are performed by
persons or software not integrated in a BPMS that assures a
correct order execution, it is possible that the activities are
not executed according to the compliance rules. Previous
works focused on the detection of compliance violations by
monitoring [6]. Our proposal is centered not only in the

detection and diagnosis, but also in the proposal of the cor-
rect intervals where the events should have been executed.
Thereby, our proposal assumes that all the compliance rules
are correct and the set of events analyzed represents all the
activities executed in a period of time. A compliance rule
violation, i.e., a fault in the process execution, is caused
by so called incorrect events. By using the term incorrect
event we do not imply that the event itself is incorrect, i.e.,
the associated activity execution, but the time instant when
the event occurred was not in accordance with the imposed
compliance rules.

Our proposal uses model-based diagnosis theory, that
permits to discover the event responsible of a malfunction
comparing the model that describes the system (expected be-
haviour) with the observational model (observed behaviour).
Classic model-based diagnosis needs to be adapted to diag-
nose compliance rules for multiple process instances, since
the same data can be involved in different instances at the
same time. Also, it is necessary to establish the part of
the model that can explain the incorrect behaviour, and the
associated events in the compliance rule scenario. Examples
of compliance rules that can be used in a diagnosis process
are:

∙ c1: If activity A is executed followed by an execution
of activity B, activity C must be executed eventually.

∙ c2: If activity B is not executed, activity C must be
executed.

∙ c3: If activity C is executed, activity D must be executed
eventually.

∙ c4: Every activity can only be executed once in each
process instance.

Consider the following sequence of events monitored as
observational model:
{Start_Process, Event𝑎, Event𝑑, Event𝑏,
Event𝑐}.
Compliance rule c3 (in connection with 𝑐4) is violated,
since Event𝑑 was not executed after Event𝑐 but before.
Although this compliance violation can only be detected
after Event𝑐 has occurred, this instant is not the root

cause for the violation, but the instant of Event𝑑 that
has occurred before. Our proposal enables the evaluation
of the actual culprit of the malfunction, finding out the
minimum modification that the instance must suffer to be
in accordance with the compliance rules again.

Moreover, by using model-based diagnosis, it is also
possible to determine non-compliances even before the rules
are violated or activated. Take the following trace of events:
{Start−Process, Event𝑎, Event𝑑}
Although neither compliance rule has been violated yet1, we
can assure that not any occurrence of Event𝑐 or Event𝑑

exists that does not lead to a violation of compliance rules
𝑐1 to 𝑐4. If Event𝑏 is executed or not, Event𝑐 has to be
executed before. This is never possible since Event𝑑 has
been already executed and cannot be executed again (c4).
The model-based diagnosis process proposed in this paper
informs about the responsible of the malfunction, and how
to solve this malfunction, for the example: execute C before
D. This constitutes a novel pro-active detection and follow-
up treatment of compliance violations before they actually
occur.

Altogether, we have centered our proposal on three con-
tributions:
∙ Detecting violations of compliance rules during run-

time using events for multiple instances, enabling
proactive treatment of future violations.

∙ Determining compliance-violating events. It enables
fine-grained feedback and recovery to know not only
the violated rules, but also the event or events that have
provoked the fault.

∙ Determining the correct time interval where the re-
sponsible events for compliance violations should have
occurred.

As it is possible that multiple instances of the same
business process model can be involved in the same diagno-
sis process, we will also provide the necessary guidelines
to enable the diagnosis of events for multiple instances
collected in the same monitoring process.

The paper is organized as follows: Section II presents
the compliance rule language based on graphs that we
use to represent the activities temporal order relation. Also
an example has been included in that section to facilitate
the understanding. Section II-B analyses the necessity to
determine the trace of events when multiple instances par-
ticipate in the diagnosis. Section III describes how to model
the compliance rules by means of numerical constraints.
Section IV explains how model and compute the problem
using model-based diagnosis theory to obtain the possible
correct time intervals to satisfy the rules. In that section,
the Constraint Programming paradigm is introduced, since it
allows us to compute the diagnosis automatically depending
on the observations. Section V analyses the main papers

1and there is no conflict between compliance rules 𝑐1 to 𝑐4

related to this work. Finally, conclusions and future work
are also included in the document.

II. PRELIMINARIES

In this section we provide necessary background infor-
mation. In particular, we introduce event and data context
as necessary means for compliance analysis in a multiple
instance setting.

A. Compliance Rule Description

Many languages have been proposed to describe compli-
ance rules. Some of them will be analyzed in Section V. In
order to facilitate the correct description of the compliance
rules, it is necessary to take into account the complexity
of the specification language. It must neither become an
obstacle for constraint specification nor for the validation
of processes against constraints. Thus, it is important to
find an appropriate balance between expressiveness, formal
foundation, and efficient analysis. The constraint specifica-
tion language used in this paper is based on Compliance
Rule Graphs (CRGs) [4]. We opted for CRGs since they
provide a visual representation, enable the representation of
common compliance rule patterns, and are particularly suited
for compliance monitoring [6].

Basically, a CRG enables the graphical specification of
a compliance rule 𝑐 over a set of process activity types 𝐴.
Specifically, a node of the CRG maps to an activity type at
∈ 𝐴 which could be presented in the processes which 𝑐 is
imposed on. In Figure 1, for example, the CRG reflecting
compliance rule 𝑐1 consists of nodes that map to activity
types Payment run, Transfer to bank, and Check
bank statement. A CRG always follows the structuring
into to node sets reflecting the antecedent and consequence
parts of the rule. The antecedent nodes of the CRG represent
all activity types that trigger the associated compliance rule.
The consequence nodes reflect the necessary consequences
a compliance rule is imposing in case the compliance rule is
met. For both, antecedent and consequence nodes, a further
distinction is made into occurrence and absence nodes.
Occurrence nodes reflect the presence of an activity type
in the underlying process. Absence of certain activity types
is expressed by absence nodes respectively. In Figure 1,
Payment run is an antecedent occurrence node mean-
ing that 𝑐1 is triggered if an activity of type Payment
run is present in a process. Transfer to bank and
Check bank statement are consequence occurrence
nodes reflecting that in case a Payment run has taken
place, both of them have to happen afterwards. As it can be
seen from this example, some order can be imposed on the
nodes of the same type, i.e., antecedent and consequence.
For example, Transfer to bank and Check bank
statement have not only to be executed after Payment
run has occurred regarding 𝑐1, but also in this given order.
Edges between antecedent and consequence nodes describe

implication relations. On top of this control flow related
structures, data extensions for CRGs exist [7].

In order to introduce how the rules can be described
by means of CRGs, and explain how the model can be
diagnosed, an example about bank transfers presented in [8]
is used. Figure 1 depicts the example by means of the CRGs,
whose description is:
∙ c1: Conducting a payment run creates a payment list

containing multiple items that must be transferred to
the bank. Then, the bank statement must be checked
for payment of the corresponding items.

∙ c2: For payment runs with amount beyond 10,000
e, the payment list has to be signed before being
transferred to the bank and has to be filed afterwards
for later audits.

∙ c3: When payment of an open item is confirmed in the
bank statement, the item has to be marked as cleared
eventually.

∙ c4: Once marked as cleared, the item must not be put
on any payment list.

B. Diagnosis of Events for Multiple Instances: Data and
Event Contexts

In this paper, we exploit the graphical notation of CRGs
and translate them into a Constraint Satisfaction Problem
later on.2 Anyway, the abstraction to the process will be the
event trace. By an event we refer to the observable execution
of an activity in a business process during monitoring.
The event is defined for the tuple ⟨Time, Event Context⟩,
being Time ∈ ℝ

≥0. The Event Context becomes relevant
for analyzing compliance in case of multiple instances and
will be defined in the following.

Supposing that an event represents the execution of an
activity in an instant, it is possible that the same activity
would be executed several times in the same instance, or
for several instances. For carrying out the diagnosis it is
crucial to distinguish between both cases. For example, if
two events 𝑒1 and 𝑒2 represent two executions of activity
Payment run for different instances, and another event 𝑒3
occurs due to execution of activity Transfer to bank, it
would be necessary to know if the event 𝑒3 is related to
the event 𝑒1 or 𝑒2. This problem is related to the question
which event model is uses. If all events are equipped with
unique references to the instances they represent, the relation
between events is more easy to determine. However, the
existence of such unique references cannot be assumed for
all application domains, particularly, if the events stem from
heterogeneous sources [8]. Existing event models such as
XES [9] typically equip events with time information and
attributes. However, the definition of the event context to be
used in associating events for later diagnosis has not explic-
itly been addressed. In these cases, the association between

2The formal semantics of CRGs is based on First Order Logic. The
abstraction of the processes is provided by using event traces.

events has to be determined based on different information
that enables establishing an association. A similar concept
has been provided by correlation in BPEL [10]. Adopting
the idea of correlating events to instances via data, we will
exploit context, i.e., Data Context or Event Context that is
shared between the events reflecting the underlying activity
executions. In the following, we present the context model
depicted in Figure 2: a compliance rule refers to a set of
activities. As these activities are connected to process data,
the compliance rule can be associated with a data context,
that is reflected by the events occurring in the run of the
activity executions. The latter is captured within the event
context, reflecting all data contexts an event might refer to.

��������	
���
�	������

���������
����
�������
��

1..* *

�

�

* 1

Figure 2. Conceptual model of Compliance Rules, Activities, Data
Contexts and Event Contexts

The data context of a compliance rule 𝑐 is described by
a set of pairs ⟨Name, type⟩. In Figure 1, the data context
associated to compliance rules c1 or c2 is {Payment list:
string}, and for c3 or c4 the data context associated to each of
them is {Payment list: string, Item: integer}. Although each
compliance rule is only defined for one data context, and an
activity can participate in more than one compliance rule, it
is not possible that an activity is involved in two compliance
rules defined for different data contexts. In Figure 3 the
relation between data contexts (Payment and {Payment List,
Item}), compliance rules and activities for the example is
shown.

The event context of an event 𝑒 is defined as the set
of specific values of each event e for the data context
of the activity that the event represents. Then, each event
context is described by the triple ⟨activity, instantiation of the
data context, list of information associated with the event⟩,
that represents the activity that was executed, the specific
instantiation for the data context associated to the activity
of the type specified in the data context, and optionally a
data value if it is necessary for the compliance rules (as in
the compliance rule 𝑐2 of Figure 1).

An example of reception of events, where the time is
represented by means of a number of seconds after a time
reference, is:
e1 = ⟨1584, ⟨Payment run, {Payment list: A}, amount = 60.000⟩⟩
e2 = ⟨2145, ⟨Transfer to bank, {Payment list: A}⟩⟩
e3 = ⟨2589, ⟨Check bank statement, {Payment list: A}⟩⟩
e4 = ⟨3256, ⟨File payment list, {Payment list: A}⟩⟩
e5 = ⟨3267, ⟨Payment confirmed, {Payment list: A, item: 1}⟩⟩

Compliance rule c1

Compliance rule c2

Compliance rule c3

Compliance rule c4

B A A A
Antecedent
occurrence

Antecedent
absence

Consequence
occurrence

Consequence
absence

C Data context

Payment
run

Transfer to
bank

Check bank
statement

Payment List

Payment List

Payment
run

Transfer to
bank

amount > 10,000

Sign payment
list

File payment
list

Payment List, Item

Payment
confirmed

Mark as
cleared

Payment List, Item

Mark as
cleared

Put on
payment list

Figure 1. CRGs for the example

 Payment run
 Check bank Statement

 Transfer to Bank

 Payment confirmed

 Marked as cleared

 Sign payment List
 File Payment List

 Put On payment

c1

c2

c3

c4

Payment List Payment List, Item

Figure 3. Relation between Data Contexts, Compliance Rules and
Activities

e6 = ⟨3589, ⟨Payment confirmed, {Payment list: A, item: 2}⟩⟩
e7 = ⟨4435, ⟨Mark as cleared, {Payment list: A, item: 2}⟩⟩
e8 = ⟨4431, ⟨Payment confirmed, {Payment list: A, item: 3}⟩⟩
e9 = ⟨5214, ⟨Mark as cleared, {Payment list: A, item: 3}⟩⟩
e10 = ⟨5512, ⟨Put on payment list, {Payment list: A, item: 3}⟩⟩

For example, if an event e𝑗 has an event context ⟨Payment
confirmed, {Payment list: A, Item: 2}⟩, it expresses that
the activity Payment confirmed has been executed with the
specific data context (A, 2).

Finally, compliance rules as well as process activities can
be clustered with respect to their data context (see Definition
1), i.e., the data they share and operate on. Based on such
clusters it becomes possible to monitor and diagnose the
compliance of multiple instances during runtime. Another
approach to cluster compliance rules was proposed in [11],
but there the clustering was done based on the processes a
rule refers to not the data context.

Definition 1 (Activity and Compliance Rule Cluster (dc:
Data Context)). Let C be a set of compliance rules and 𝒜
a set of activities. Then we define compliance rule cluster
𝐶𝑑𝑐 and activity cluster 𝐴𝑑𝑐 based on data context 𝑑𝑐 as
follows:

𝐶𝑑𝑐 := {𝑐 ∈ 𝐶 ∣ 𝐷𝑎𝑡𝑎𝐶𝑡𝑥𝑡(𝑐) = 𝑑𝑐}
𝐴𝑑𝑐 := {𝑎 ∈ 𝐴 ∣ 𝑐 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑜𝑣𝑒𝑟 𝐴 ∧ 𝐷𝑎𝑡𝑎𝐶𝑡𝑥𝑡(𝑐) = 𝑑𝑐}

It is not possible that two events of an activity during
a monitoring cycle have the same identifier for the event
context. For example, it is not possible that two events of the
activity Payment run have the identifier of context {Payment
list: A} in the same cycle of monitoring, since it is necessary
to establish the trace of the events during the execution.

III. DESCRIBING COMPLIANCE RULES BY MEANS OF

NUMERICAL CONSTRAINTS

In order to carry out the model-based diagnosis, the
compliance rules and the events monitored need to be
included in the model to solve. As we aim at finding out
the possible correct time intervals for a malfunction, it is
necessary to use a model that permits to include numerical
aspects, such as numerical constraints to describe the time
instant of the event executions, not only the temporal order
relation between them.

A. Modeling events by means of Numerical Constraints

As it is introduced in the previous section, an event is
described by means of an instant, and an event context. It im-
plies that an observational model is described by a sequence
of events, ordered in function of the instant when they were
thrown 𝜎 = <e1, . . ., e𝑛> [12], and where this trace can
involve different instances of the same process model. In
this paper we assume that events are only represented by
means of an occurrence in an instant, not with a duration.

To diagnose a compliance rule violation in a business
process, it is necessary to model the executed events and the
events that can be executed in the future as well, to determine
possible non-compliances according to the compliance rules.
Obviously, it is not possible to know the events that will
be executed in the future, but we have some information
derived from the use of the compliance rules that describe
the model. For example, analysing the compliance rule 𝑐4
of the example, if an event related to the activity Mark as

cleared is executed, it is possible that an event for the activity
Put on payment list will be executed in the future, although it
is described as an incorrect behaviour of the process. In order
to model the scenario to diagnose, the executed events and
the non-executed events must be included as well, since they
can be related by means of the different compliance rules
that govern the process behaviour. For example, if activity
A must be executed after activity B, and an event about A
was executed in the instant 𝑡𝑧 , to satisfy the compliance
rule, an event of B has to be executed after the instant 𝑡𝑧
and before the instance ends. As the event included in the
model can represent events thrown in the past, or the events
that can be executed in the future, we propose to include in
the model-based diagnosis for each event (executed or not) a
new variable associated to the timestamp, where the pair of
variables ⟨Executed, Time⟩ represents if the event has been
executed with the Boolean variable Executed, and the instant
when it was executed with the numerical variable Time.
Depending on the instant when an event is executed, both
parameters (Executed and Time) can take different values. It
has to satisfy the following rules depending on the execution
of each event:

∙ If the event e has been executed: Executed = true ∧
Initial Time ≤ Time ≤ current Time (𝑒𝑣𝑒𝑛𝑡𝑖 in Figure
4)

∙ If the event e has not been executed but will be executed
in the future: Executed = true ∧ Time > current Time
(𝑒𝑣𝑒𝑛𝑡𝑗 in Figure 4)

∙ It the event e has not been executed and will not be
executed in the future: Executed = true ∧ Time = −1

�

������
������

�������	
���

Figure 4. Possible execution of events

B. Modeling Compliance Rule Graphs by means of Numer-
ical Constraints

In order to infer if an activity has been executed in an
incorrect instant, according to a set of events, we propose
to transform each CRG into a numerical constraint to be
combined with the model of execution of events explained in
the previous subsection. The inclusion of numerical aspects
into compliance rule validation process enables proactive
treatment of future violations. Each edge involved in the
CRG is transformed into a numerical constraint to represent
the time and temporal order execution of the activities. Fol-
lowing the possible patterns of relation that can exist for the
components of a CRG, Figure 5 shows the transformation

of each combination of nodes in a logical formula that will
be included in the numerical model to diagnose the business
process execution. In Figure 5, the execution of an activity A
and the instant when it is executed are represented by means
of the variables A𝐸𝑥 and A𝑇 respectively. The patterns put
the constraints of antecedents before the implication operator
’→’, and the constraints of the consequences after it. The
temporal order is represented related the variables A𝑇 with
the ’<’ operator, and the occurrences and absences by means
of the Boolean variables A𝐸𝑥 for the different activities.

For the example of Section II, the constraints that describe
the compliance rules according to the CRGs are:
∙ c1: PaymentRun𝐸𝑥 → (TransferToBank𝐸𝑥

∧ PaymentRun𝑇 < TransferToBank𝑇) ∧
(CheckBankstatement𝐸𝑥 ∧ TransferToBank𝑇

< CheckBankstatement𝑇)

∙ c2: (PaymentRun𝐸𝑥 ∧ amount > 10,000

∧ TransferToBank𝐸𝑥 ∧ PaymentRun𝑇 <

TransferToBank𝑇) → (SignPaymentList𝐸𝑥

∧ PaymentRun𝑇 < SignPaymentList𝑇 ∧
SignPaymentList𝑇 < TransferToBank𝑇) ∧
(FilePaymentList𝐸𝑥 ∧ TransferToBank𝑇 <

FilePaymentList𝑇)

∙ c3: PaymentConfirmed𝐸𝑥 → MarkAsCleared𝐸𝑥 ∧
PaymentConfirmed𝑇 < MarkAsCleared𝑇

∙ c4: MarkAsCleared𝐸𝑥 → ¬(PutOnPaymentList𝐸𝑥

∧ PutOnPaymentList𝑇 > MarkAsCleared𝑇)

These constraints are close to the model necessary to
diagnose, but they are not exactly the same, since multiple
instances have to be taken into account. The next sections
present how to create the different diagnosis models depend-
ing on the observed events for several instances.

IV. CREATING DIAGNOSIS MODELS FOR SEVERAL

INSTANCES

Model-based diagnosis analysis is used to ascertain
whether the behaviour of a system is correct or not, and who
is the responsible of the malfunction. This identification is
carried out by comparing the expected behaviour (the model)
with the observed behaviour (the observational model). As
in this paper we deal with the diagnosis of multiple instances
of a process, where an activity can be executed more than
once in each instance, it is necessary to introduce two types
of diagnosis models, the static model that describes the
compliance rules for any instance (as explained in Section
III), and the dynamic models formed by the compliance rules
for each instance found in the observational model, thereby
related to the data contexts and event contexts.

For this reason, we extend the architecture presented in
[8], including the necessary modules to create dynamic
models according to the observational model to diagnose
the incorrect events, and propose the event time execution
intervals that make all the compliance rules satisfiable (Fig-
ure 6). Each dynamic model is automatically created and

Figure 5. Patterns of transformation from CRGs to numerical constraints

solved using constraint programming paradigm as explained
in the following subsections.

A. Creating the Diagnosis Dynamic Models

As it was commented in Section II-B, our proposal allows
the diagnosis of several instances included in the same ob-
servational model. It is related to the definition data contexts,
that permits the differentiation of the different instances in a
business process execution. Depending on the data contexts
that exist for a set of events observed, the dynamic diagnosis
models will be different. For each set of events, related
between them to belong to the same data context, will be
necessary to define compliance rules represented by means
of numerical constraints that describe their relations. The
compliance rules that describe the activities order relation
will be used as a pattern for the different dynamic models
that will be created in function of the observational model.
In order to clarify the difference between static, observa-
tional and dynamic models, the following definitions are
introduced:

Definition 2 (Static Diagnosis Model (SDM)). It is formed
by:

∙ The activities {a1, . . ., a𝑛} of the business process.
∙ The compliance rules represented by numerical con-

straints {c1, . . ., c𝑚} following the patterns shown in
Figure 5.

∙ The data contexts {dc1, . . ., dc𝑓}.
∙ The activity clusters for each data context following

Definition 1: A𝑑𝑐(dc1) → {a𝑖, . . ., a𝑗}, A𝑑𝑐(dc2) → . . .
∙ The compliance rule clusters for each data context fol-

lowing Definition 1: C𝑑𝑐(dc1) → {c𝑖, . . ., c𝑗}, C𝑑𝑐(dc2)
→ . . .

Definition 3 (Observational Model (OM)). The events {e1,
. . ., e𝑝} that make visible the execution of the activities out
of the process for the Compliance Monitoring layer (Figure
6). Each event is associated to one and only one activity,
although an activity can be represented by several events.
The observational model is also composed of the current
time and the initial time for each instance.

Definition 4 (Dynamic Diagnosis Model (DDM)). It is
created according to the SDM and the OM, then for the same
SDM different DDM can be defined depending on the events
involved in the cycle of monitoring. The DDM is formed by:

∙ The event contexts {ec1, . . ., ec𝑑} for the OM that are
described by a tuple ⟨dc, value⟩ where dc represents
the data context and value represents the specific value
of the data context. For the example of Section II,
the event contexts obtained are: {⟨Payment list, A⟩,
⟨(Payment list, Item), (A, 1)⟩, ⟨(Payment list, Item), (A,
2)⟩, ⟨(Payment list, Item), (A, 3)⟩}.

∙ Being {v1, . . ., v𝑛} all the different values of a data
context dc for an OM, for each value v𝑖 ∈ {v1, . . ., v𝑛},
a set of compliance rules associated to the data context
dc (C𝑑𝑐 (dc)) is created {c1𝑣𝑖 , c2𝑣𝑖 , . . .}. The variables
that represent the execution of the activities and the
timestamp, in the patterns shown in Figure 5, will be
adjusted for the different values of the data contexts.
Then, the variables of the numerical constraints will
be A𝑣𝑎𝑙𝑢𝑒

𝐸𝑥 and A𝑣𝑎𝑙𝑢𝑒
𝑇 that represent the execution of

the activity A in an event context with a specific value.
∙ A𝑣𝑎𝑙𝑢𝑒

𝐸𝑥 and A𝑣𝑎𝑙𝑢𝑒
𝑇 are also related by means of the

constraint: (A𝑣𝑎𝑙𝑢𝑒
𝐸𝑥 ∧ InitialTime ≤ A𝑣𝑎𝑙𝑢𝑒

𝑇 ≤ current-
Time) ∨ (A𝑣𝑎𝑙𝑢𝑒

𝐸𝑥 ∧ currentTime < A𝑣𝑎𝑙𝑢𝑒
𝑇) ∨ (¬A𝑣𝑎𝑙𝑢𝑒

𝐸𝑥

∧ currentTime = −1).

Figure 6. Business Rule Monitoring Architecture

The constraints of the compliance rules for the DDM of
the example of Section II for the events {e1, . . ., e10} are:
∙ Compliance rules for the Data Context Payment list for

the value A:
– c𝐴

1 : PaymentRun𝐴
𝐸𝑥 → (TransferToBank𝐴

𝐸𝑥

∧ PaymentRun𝐴
𝑇<TransferToBank

𝐴
𝑇)

∧ (CheckBankstatement𝐴
𝐸𝑥 ∧

TransferToBank𝐴
𝑇<CheckBankstatement

𝐴
𝑇)

– c𝐴
2 : (PaymentRun𝐴

𝐸𝑥 ∧ amount>10,000

∧ TransferToBank𝐴
𝐸𝑥 ∧

PaymentRun𝐴
𝑇<TransferToBank

𝐴
𝑇) →

(SignPaymentList𝐴
𝐸𝑥 ∧ PaymentRun𝐴

𝑇 <

SignPaymentList𝐴
𝑇 ∧ SignPaymentList𝐴

𝑇 <

TransferToBank𝐴
𝑇) ∧ (FilePaymentList𝐴

𝐸𝑥

∧ TransferToBank𝐴
𝑇 < FilePaymentList𝐴

𝑇)

∙ Compliance rules for the Data Context (Payment list,
Item) for the value (A, 1):

– c𝐴,1
3 : PaymentConfirmed𝐴,1

𝐸𝑥 →
MarkAsCleared𝐴,1

𝐸𝑥 ∧ PaymentConfirmed𝐴,1
𝑇

< MarkAsCleared𝐴,1
𝑇

– c𝐴,1
4 : MarkAsCleared𝐴,1

𝐸𝑥 →
¬(PutOnPaymentList𝐴,1

𝐸𝑥 ∧
PutOnPaymentList𝐴,1

𝑇 > MarkAsCleared𝐴,1
𝑇)

∙ Compliance rules for the Data Context (Payment list,
Item) for the value (A, 2):

– c𝐴,2
3 : PaymentConfirmed𝐴,2

𝐸𝑥 →
MarkAsCleared𝐴,2

𝐸𝑥 ∧ PaymentConfirmed𝐴,2
𝑇

< MarkAsCleared𝐴,2
𝑇

– c𝐴,2
4 : . . .

∙ Compliance rules for the Data Context (Payment list,
Item) for the value (A, 3):

– c𝐴,3
3 : . . .

B. Solving Diagnosis Models by means of Constraint Pro-
gramming

The DDM and the OM determine the necessary com-
pliance rules to describe the instance-executions, but this
model needs to be transformed into a computable model
to be diagnosed. For this reason, we propose the use of
Constraint Programming (CP) paradigm [13], building and
solving Constraint Satisfaction Problems (CSP) automati-
cally from the DDM. The use of CP permits the combination
of numerical and Boolean variables to represent the model
and deduce the incorrect events and the possible correct time
intervals where they should have been executed.

The CSPs represent a reasoning methodology consisting
of a model a problem formed by variables, domains and
constraints. Formally, it is defined as a triple ⟨X, D, C⟩
where X = {𝑥1, 𝑥2, . . ., 𝑥𝑛} is a finite set of variables,
D = {𝑑(𝑥1), 𝑑(𝑥2), . . ., 𝑑(𝑥𝑛)} is a set of domains of the
values of the variables, and C = {C1, C2, . . ., C𝑚} is
a set of constraints. A constraint C𝑖 = (V𝑖,R𝑖) specifies
the possible values of the variables in V simultaneously to
satisfy R. Usually, to solve a CSP, a combination of search
and consistency techniques is used [14]. The consistency
techniques remove non-compliance values from the domains
of the variables during or before the search. Several local
consistency and optimization techniques have been proposed
as ways of improving the efficiency of search algorithms,
being especially optimized for linear problem. CP is an area
in continuous evolution, with important commercial tools
and with an active research.

In order to compute the DDM, we propose to model a
CSP where:

∙ X is formed by all the variables A𝑣𝑎𝑙𝑢𝑒
𝐸𝑥 and A𝑣𝑎𝑙𝑢𝑒

𝑇 that

represent the execution of each activity (execution and
time) that are necessary to represent the instances.

∙ D is defined as Boolean for the variables A𝑣𝑎𝑙𝑢𝑒
𝐸𝑥 ,

and Integer for the variables A𝑣𝑎𝑙𝑢𝑒
𝑇 . A𝑣𝑎𝑙𝑢𝑒

𝑇 is repre-
sented by means of the absolute number of seconds or
milliseconds (depending on the necessary granularity
in each problem) that have elapsed since midnight,
January 1, 1970, the typical time reference used in the
libraries of some programming languages (for example
System.currentTimeMillis in Java𝑇𝑀).

∙ C is the set of compliance rules represented by means
of constraints derived from the OM as explained in
Definition 4. These compliance rules are defined over
the variables A𝑣𝑎𝑙𝑢𝑒

𝐸𝑥 and A𝑣𝑎𝑙𝑢𝑒
𝑇 . Moreover, it is neces-

sary to assign the values of the observed events to the
variables A𝑣𝑎𝑙𝑢𝑒

𝐸𝑥 , A𝑣𝑎𝑙𝑢𝑒
𝑇 , initial time and current time.

If there is a tuple of values for the variables X in the
domain D, where all the constraints C are satisfiable, the
CSP solver will return a tuple with the possible values
of X, then we can assure that the compliance rules are
satisfiable for the OM. The problem is if there is no a tuple
of values where the set C is satisfiable, we would not have
information about the malfunction, only that, at least, one
event is incorrect. We propose to find out the minimal non-
compliance subset of events that explain the malfunction.
This is equivalent to maximize the number of events that
were thrown in a correct instant. In order to understand how
we can model the CSP to obtain that, two notions need to be
introduced: Reified Constraints and Constraint Optimization
Problems.

A reified constraint consists of a constraint associated
to a Boolean variable which denotes its truth value. The
diagnosis that we propose is centered in the detection of
incorrect instant of event execution, then it is possible that
the assignment of an instant to an event (A𝑣𝑎𝑙𝑢𝑒

𝑇) will be
incorrect. For this reason, in the CSP we do not associate
mandatorily to each A𝑣𝑎𝑙𝑢𝑒

𝑇 the timestamp where it was
executed, then we associate a Boolean variable to each
assignment of a specific value to each variable A𝑣𝑎𝑙𝑢𝑒

𝑇 . Being
the objective to maximize the number of events that occurs
when the Compliance Monitoring layer describes. As the
objective is to maximize the number of reified variables
that are true, then an objective function is necessary. When
an objective function f has to be optimized (maximized or
minimized), then a Constraint Optimization Problem (COP)
is used, which is a CSP and an objective function f. A
COP modelled to find the assignment of reified constraints
is called maximal Constraint Satisfaction Problem (Max-
CSP). A Max-CSP consists of finding out a total assignment
which satisfies the maximum number of constraints. Max-
CSP is an NP-hard problem and generally is more complex
to solve than a CSP. The basic complete method for solving
this problem was designed by Wallace [15]. Max-CSPs

have already been used in model-based diagnosis [16],
although never for business processes. Different algorithms
have been proposed in order to improve the obtaining of all
minimal unsatisfiable subsets using notions of independence
of constraints and incremental constraint solvers [17] and
structural analysis [18].

For our model-based diagnosis, the objective function to
maximize is {rf1 + . . . + rf𝑛}, where each rf𝑖 ∈ {rf1, . . .,
rf𝑛} represents a reified constraint for each event of the
OM. The CSP solver finds out the minimum combination of
incorrect events that explain the malfunction and the correct
time intervals for incorrect events. The COP obtained after
the transformation of the DDM for the previous example is
shown in Table I.

C. Results for the example

For the example, if the diagnosis process is executed after
the event 𝑒10 is thrown, the set of intervals obtained by
means of our proposal is:

∙ To execute Check bank statement activity of Payment
list A between [2146..instance ends]

∙ To execute Sign payment list of Payment list A between
[1585..2144]

∙ To execute File payment list of Payment list A between
[2146..instance ends]

∙ To execute Marked as cleared of {Payment list A, Item
1} between [3268..instance ends]

V. RELATED WORK

There are many proposals that use the compliance rules
and the monitoring of events to verify the correctness of
a business process instance [19], [5], [8]. The different
solutions depend on the compliance rule language used to
describe the model. In order to describe the compliance
rules, several languages have been proposed to describe
declaratively the ordering and temporal relations between
activities in the business processes. Independently of the
language, the common idea of declarative business process
modeling is that a process is seen as a trajectory in a state
space and that declarative constraints are used to define the
valid movements in that state space [20]. The differences
between declarative process languages are centered in the
different perception of what is an state. Some examples are
the case handling paradigm [21], the constraint specification
framework [22], the ConDec language [23], the PENELOPE
language [24], or EM-BrA2CE [25]. These languages use
different knowledge representation paradigms, that enable
different types of compliance rule verification. For instance,
the ConDec language is expressed in Linear Temporal Logic
(LTL) whereas the PENELOPE language is expressed in
terms of the Event Calculus.

Linear Temporal Logic (LTL) expressions can be used to
represent desirable or undesirable patterns. LTL formula can

//Variables and Domains:
PaymentRunA

𝐸𝑥, PaymentConfirmedA,1
𝐸𝑥, PaymentConfirmedA,2

𝐸𝑥, . . .: Boolean
PaymentRunA

𝑡 , PaymentConfirmedA,1
𝑡 , PaymentConfirmedA,2

𝑡 , . . .: Integer
. . .
rf1, . . ., rf10: Boolean //one for each event

//Initialization of variables
currentTime = 5800
initialTime = 1200

//Compliance rules for each different value of data contexts
c𝐴
1 : PaymentRunA

𝐸𝑥 → TransferToBankA
𝐸𝑥 . . .

. . .
c𝐴,1
3 : PaymentConfirmedA,1

𝐸𝑥 → MarkAsClearedA,1
𝐸𝑥 . . .

. . .
c𝐴,2
3 : PaymentConfirmedA,2

𝐸𝑥 → MarkAsClearedA,2
𝐸𝑥 . . .

. . .
//Reified constraints for each event for the OM
rf1 = (PaymentRunA

𝑇 = 1584)
rf2 = (TransferToBankA

𝑇 = 2145)
. . .
rf10 = (CheckBankDetailsA, 3

𝑇 = 5512)
//Constraints to describe time relation
(PaymentRunA

𝐸𝑥 ∧ InitialTime ≤ PaymentRunA
𝑇 ≤ currentTime) ∨ . . .)

(MarkedAsClearedA
𝐸𝑥 ∧ InitialTime ≤ MarkedAsClearedA

𝑇 ≤ currentTime) ∨ . . .)
. . .
(PaymentConfirmedA,1

𝐸𝑥 ∧ InitialTime ≤ PaymentConfirmedA,1
𝑇 ≤ currentTime) ∨ . . .)

. . .
(PaymentConfirmedA,2

𝐸𝑥 ∧ InitialTime ≤ PaymentConfirmedA,2
𝑇 ≤ currentTime) ∨ . . .)

. . .
//Objective Function
Maximize (rf1 + . . . + rf10)

Table I
EXAMPLE OF CONSTRAINT OPTIMIZATION PROBLEM

be evaluated by obtaining an automaton that is equivalent to
the formula and checking whether a path corresponds to
the automaton. Unfortunately the use of automatons does
not allow to infer the correct time intervals even before the
compliance rules are activated. It is due to our proposal does
not only analyse the compliance rules activated because the
antecedent was occurred. We include the whole model in
the diagnosis process as in [26], but with the difference
that in this case a declarative language in used Instead of
an imperative language. The Event Calculus [27] is a first-
order logic programming formalism that represents the time-
varying nature of facts, the events that have taken place at
given time points and the effect that these events reflect on
the state of the system. Although one of the advantages
of the use of event calculus is the ability to deductively
reason about the effects of the occurrence of events and,
more important is the abductive reasoning to discover a
hypothesis about the malfunction to explain the evidence of
events. But it does not have the capacity to propose a new
set of data (events in this case) to avoid this malfunction,
inferring errors in the future.

To the best of our knowledge there are no proposals that
provide the correct time intervals of the events monitored
in a business process for several instances, even before the
compliance rules are violated.

VI. CONCLUSIONS AND FUTURE WORKS

We have presented a framework to diagnose, even before
the compliance rules are violated, the non-conformity of
the set of temporal events in accordance to the compliance
rules that describe the behaviour of a business process. The
diagnosis method that we propose, creates the necessary
dynamic models depending on the events analysed and the
possible events that could be executed in the future. It
permits the diagnosis of errors even before they occur. The
diagnosis and prognosis not only determine the incorrect
event, but find out the possible time intervals where the
events should have been executed to satisfy all the com-
pliance rules. It can be used at run time during instance-
executions, or as a post-mortem process to prevent failures
in future instances. As future work we plan to use this
framework to detect possible patterns of malfunctions, for
example, that an activity is frequently executed later. Also
we think that can be interesting to apply our proposal to
other declarative languages that permit the description of
other types of relations between activities.

ACKNOWLEDGMENT

The work presented in this paper has been partly funded by the
Austrian Science Fund (FWF):I743, the Ministry of Science and

Technology of Spain (TIN2009-13714) and the European Regional
Development Fund (ERDF/FEDER).

REFERENCES

[1] M. Weske, Business Process Management: Concepts, Lan-
guages, Architectures. Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2007.

[2] A. Awad, M. Weidlich, and M. Weske, “Visually specifying
compliance rules and explaining their violations for business
processes,” J. Vis. Lang. Comput., vol. 22, no. 1, pp. 30–55,
2011.

[3] S. Sadiq, G. Governatori, and K. Namiri, “Modeling con-
trol objectives for business process compliance,” in Pro-
ceedings of the 5th international conference on Business
process management, ser. BPM’07. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 149–164. [Online]. Available:
𝑑𝑙.𝑎𝑐𝑚.𝑜𝑟𝑔/𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛.𝑐𝑓𝑚?𝑖𝑑 = 1793114.1793130

[4] L. T. Ly, S. Rinderle-Ma, and P. Dadam, “Design and verifica-
tion of instantiable compliance rule graphs in process-aware
information systems,” in CAiSE, 2010, pp. 9–23.

[5] F. Maggi, M. Montali, M. Westergaard, and W. van der
Aalst, “Monitoring Business Constraints with Linear Tem-
poral Logic: An Approach Based on Colored Automata,” in
Proc. of BPM, ser. LNCS. Springer-Verlag, 2011.

[6] L. T. Ly, F. M. Maggi, M. Montali, S. Rinderle-Ma, and W. M.
van der Aalst, “A framework for the systematic comparison
and evaluation of compliance monitoring approaches,” in 17th
Int’l EDOC Conference, 2013, (accepted for publication).

[7] D. Knuplesch, L. T. Ly, S. Rinderle-Ma, H. Pfeifer, and
P. Dadam, “On enabling data-aware compliance checking of
business process models,” in ER, 2010, pp. 332–346.

[8] L. T. Ly, S. Rinderle-Ma, D. Knuplesch, and P. Dadam,
“Monitoring business process compliance using compliance
rule graphs,” in 19th International Conference on Cooperative
Information Systems (CoopIS 2011), ser. LNCS, no. 7044.
Springer, 2011, pp. 82–99.

[9] H. M. W. Verbeek, J. C. A. M. Buijs, B. F. van Dongen, and
W. M. P. van der Aalst, “XES, XESame, and ProM 6,” in
Information Systems Evolution - CAiSE Forum 2010, vol. 72,
2010, pp. 60–75.

[10] S. Hinz, K. Schmidt, and C. Stahl, “Transforming bpel to petri
nets,” in Business Process Management. Springer, 2005, pp.
220–235.

[11] S. Rinderle-Ma, S. Kabicher, and L. T. Ly, “Activity-oriented
clustering techniques in large process and compliance rule
repositories,” in Business Process Management Workshops.
Springer, 2012, pp. 14–25.

[12] Y. Pencolé and A. Subias, “A chronicle-based diagnosability
approach for discrete timed-event systems: Application to
web-services,” J. UCS, vol. 15, no. 17, pp. 3246–3272, 2009.

[13] F. Rossi, P. v. Beek, and T. Walsh, Handbook of Constraint
Programming (Foundations of Artificial Intelligence). New
York, NY, USA: Elsevier Science Inc., 2006.

[14] R. Dechter, Constraint Processing (The Morgan Kaufmann
Series in Artificial Intelligence). Morgan Kaufmann, May
2003.

[15] R. J. Wallace, “Directed arc consistency preprocessing,” in
Constraint Processing, Selected Papers, 1995, pp. 121–137.

[16] R. Ceballos, R. M. Gasca, C. D. Valle, and M. Toro, “Max-
csp approach for software diagnosis,” in IBERAMIA, 2002,
pp. 172–181.

[17] M. G. de la Banda, P. J. Stuckey, and J. Wazny, “Finding all
minimal unsatisfiable subsets,” in PPDP ’03: Proceedings of
the 5th ACM SIGPLAN international conference on Principles
and practice of declaritive programming. ACM Press, 2003,
pp. 32–43.

[18] R. M. Gasca, C. D. Valle, M. T. G. López, and R. Ceballos,
“Nmus: Structural analysis for improving the derivation of all
muses in overconstrained numeric csps,” in CAEPIA, 2007,
pp. 160–169.

[19] F. M. Maggi, M. Montali, and W. M. P. van der
Aalst, “An operational decision support framework for
monitoring business constraints,” in Proceedings of the 15th
international conference on Fundamental Approaches to
Software Engineering, ser. FASE’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 146–162. [Online]. Available:
ℎ𝑡𝑡𝑝 : //𝑑𝑥.𝑑𝑜𝑖.𝑜𝑟𝑔/10.1007/978−3−642−28872−2−11

[20] I. Bider, M. Khomyakov, and E. Pushchinsky, “Logic of
change: Semantics of object systems with active relations,”
Autom. Softw. Eng., vol. 7, no. 1, pp. 9–37, 2000.

[21] W. M. van der Aalst, M. Weske, and D. Grnbauer, “Case
handling: A new paradigm for business process support,”
Data and Knowledge Engineering, vol. 53, 2005.

[22] S. W. Sadiq, M. E. Orlowska, and W. Sadiq, “Specification
and validation of process constraints for flexible workflows,”
Inf. Syst., vol. 30, no. 5, pp. 349–378, 2005.

[23] M. Pesic and W. M. P. van der Aalst, “A declarative approach
for flexible business processes management,” in Proceedings
of the 2006 international conference on Business Process
Management Workshops, ser. BPM’06. Berlin, Heidelberg:
Springer-Verlag, 2006, pp. 169–180.

[24] S. Goedertier and J. Vanthienen, “Designing compliant busi-
ness processes with obligations and permissions,” in Business
Process Management Workshops, 2006, pp. 5–14.

[25] S. Goedertier, R. Haesen, and J. Vanthienen, “Em-bra2ce
v0.1: A vocabulary and execution model for declarative
business process modeling,” K.U.Leuven, FETEW Research
Report KBI 0728, 2007.

[26] M. T. Gómez-López, R. M. Gasca, L. Parody, and D. Borrego,
“Constraint-driven approach to support input data decision-
making in business process management systems,” in Inter-
national Conference on Information System Development, ser.
ISD 2011. Springer, 2011, pp. 15–25.

[27] R. A. Kowalski and M. J. Sergot, “A logic-based calculus of
events,” New Generation Comput., vol. 4, no. 1, pp. 67–95,
1986.

