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Abstract In this paper we propose a self-assessed adaptive

region growing segmentation algorithm. In the context of an

experimental virtual-reality surgical planning software plat-

form, our method successfully delineates main tissues rel-

evant for reconstructive surgery, such as fat, muscle, and

bone. We rely on a self-tuning approach to deal with a great

variety of imaging conditions requiring limited user inter-

vention (one seed). The detection of the optimal parame-

ters is managed internally using a measure of the varying

contrast of the growing region, and the stopping criterion is

adapted to the noise level in the dataset thanks to the sam-

pling strategy used for the assessment function. Sampling

is referred to the statistics of a neighborhood around the

seed(s), so that the sampling period becomes greater when

images are noisier, resulting in the acquisition of a lower

frequency version of the contrast function. Validation is pro-

vided for synthetic images, as well as real CT datasets. For

the CT test images, validation is referred to manual delin-

eations for 10 cases and to subjective assessment for an-

other 35. High values of sensitivity and specificity, as well as

Dice’s coefficient and Jaccard’s index on one hand, and sat-
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isfactory subjective evaluation on the other hand, prove the

robustness of our contrast-based measure, even suggesting

suitability for calibration of other region-based segmenta-

tion algorithms.

Keywords CT · Segmentation · Region Growing · Surgical

Planning · Virtual Reality

1 Introduction

One of the most promising applications of medical image

computerized visualization is virtual reality surgical plan-

ning. Traditional surgical planning uses volumetric informa-

tion stored in a stack of intensity-based images, usually from

computerized tomography (CT) scanners. Based on a num-

ber of these image slices, surgeons build their own mental

3D model of the relevant tissues. This task is difficult even

for experienced surgeons. As a consequence, they can miss

important information or draw incorrect conclusions due to

anatomical variability, either of which can lead to subopti-

mal treatment strategy decisions [1]. Using volumetric ren-

derings of anatomical structures, and the appropriate virtual

tools for basic surgical operations, the complexity of many

plastic surgery interventions can be addressed ahead of the

actual physical procedure.

A main bottleneck for these computer environments is

the delineation of the tissues involved, to such an extent that

automated approaches become mandatory. If we can provide

a technique that is able to automatically detect the tissues of

surgical interest (fat, bone, muscle), then these tissues can

be rendered, excisioned directly in 3D, and manipulated or

repositioned using the virtual reality platform.

Automatic segmentation is a problem exhaustively ad-

dressed in the literature. Any inaccuracies in the process can

distort the simulated measures and surgical operations. In

this paper we propose a novel segmentation strategy in the
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context of the development of a virtual surgical planning en-

vironment.

The environment under study was conceived for the sim-

ulation of different kinds of reconstructive surgery, provid-

ing virtual tools for tissue excision and repositioning, tissue

quantification and stereo-lithographic prototyping. In such

a framework the need for proper delineation of tissues like

fat, muscle and bone becomes crucial. In the initial version

of the platform, a simple voxel classification scheme was

proposed [2]. Beyond classical segmentation methods like

thresholding and simple region growing [3–5], which rely on

a number of tuning parameters, developments in automatic

parameter-free segmentation approaches become necessary.

In order to pay back the cost and burden of this virtual

surgical planning platform development, a wide range of

situations were to be covered with the proposed technique.

Most available resources, i.e. imaging devices, must be com-

patible with the method, even ensuring backwards compat-

ibility (for images acquired in the past). As a consequence

neither resolution, contrast nor SNR specific standards can

be expected. Further, no imaging protocol can be presumed,

as regarding reconstruction algorithm, patient positioning in

the scanner, presence of radioactive contrast, body segment

of the patient to be imaged and so on.

A few authors have referred to the issue of classifying

this concrete set of tissue types using a common method. In

their work, Zhou et al. [6] developed a technique for skin,

fat, muscle, organs and bone segmentation. Their approach

was mainly articulated by threshold automatic selection, ex-

cept for bony tissue, for which the authors made use of a

self-assessed adaptive region growing algorithm. Their thres-

hold selection method, based on hierarchical discriminant a-

nalysis made assumptions on the histogram that turned out

to be unaffordable in our less predictable context. Their strat-

egy for bony tissue, that had been earlier proposed for bron-

chus segmentation by Law and Heng [7], computed the op-

timal adaptive threshold by detecting sudden increases in

the segmented volume. Its main weakness is the need for

an empirical range in this increase, in order to distinguish

routinary growth from undesired explosion. This range can

hardly be established in our more general problem, since we

are faced with varying noise levels, which makes it hard to

generalize how much growth must be considered explosion.

Apart from manual trial-and-error adaptive threshold se-

lection [8], some self-assessed region growing strategies,

outside our context of application, have been proposed in the

past. Some general requirements are expected from any re-

gion growing algorithm for clinical use. Such methods must

operate in a parameter-free manner, the degree of interaction

should be minimal, the output must be provided in reason-

able time ranges, and also similar results should be produced

for alternative seeding schemes in the region of interest [9].

In their work [10], Hojjatoleslami and Kittler proposed

a 3D segmentation method based on finding the global max-

ima for two different contrast measures which they com-

puted iteratively, as intensity-decreasing pixels were added

to the segmented region. The success of the assessment was

founded on the assumption that maximal contrast occurred

on region boundaries, which is a reformulation of approa-

ches assuming that the variation of the gray values within

regions is smaller than across regions, an inherent assump-

tion in all region growing techniques [11]. Unfortunately,

the exhaustivity of their per-voxel approach entailed very

low computational efficiency, aggravated by their multiple

complex peripheral measures. Moreover, the fact that they

computed contrast for every voxel addition results in low

robustness when facing increasing levels of noise. Revol-

Muller et al. [12] used morphological measures to assess

the multiplier of the adaptive range in 3D region growing.

Instead of computing their assessment function for every

pixel addition to the region, they sampled the function for

an evenly-spaced set of values.

Another popular region growing technique was proposed

by Udupa and Samarasekera [13], based on the fuzzy con-

nectivity measure. This technique computes the path of s-

trongest affinity between each point and the seed point. The

fuzzy connectivity algorithm has been used in various medi-

cal applications [14–17]. All of these approaches exhibit the

inconvenience of parameter-tuning stages prior to their ex-

ecution, which prevents their use by untrained specialists.

For the algorithm in [18], the fuzzy connectivity threshold

value is not needed, but as a counter-effect the need for user

interaction is considerably increased, and the required com-

putational time rises to impractical values.

In our method we propose an assessment function based

on a modified version of the evolving contrast for the region

growing sequence. Our approach could be considered as an

adaptive sampling strategy for the contrast measure, that is

usually computed for every voxel addition to the growing re-

gion. This adaptive, regularly-spaced sampling can account

for variations in the noise level as it can convey the proper

low frequency trend of the evolving contrast, filtering off

spurious variations. This results in increased stability and

lower computational time, as fewer contrast values ought to

be computed.

In Sect. 2 we will analyze the proposed technique, dis-

cussing the assumptions made on the intensity distribution

of the tissues involved. We will describe the algorithm and

the key aspects that constitute the novelty in our approach. In

Sect. 3 we will present our validation experiments, and will

objectively and subjectively analyze the accuracy, precision

and efficiency of the algorithm according to trained expert

assessments. The improvements obtained in virtual-reality

surgical planning after integration of our technique will also

be outlined. Finally, in Sect. 4 we will conclude with some

remarks and future possibilities for our technique.
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Fig. 1 Comparison of dynamic range extension performed by sig-

moidal and linear mappings. When the derivative of the sigmoid over-

passes the constant derivative of the linear mapping for a given range

of values, then the range gets expanded. The opposite indicates a range

contraction.

2 Method

2.1 Normalization and Denoising

From the nature of our regions of interest, we will consider

tissue segments that exhibit an inherently constant density,

and thus a similar requirement is expected from intensity

in the image domain, except for the effects of acquisition

noise. We intend to group together all voxels that belong to

the same tissue class, and are connected to a provided set

of seeds. We model then our object of interest as a con-

nected region whose pixel intensities are sampled from a

Gaussian distribution with unknown mean and standard de-

viation. We may presume that our tissues of interest are sur-

rounded by other tissues derived from other, sometimes ad-

jacent, intensity distributions, like other authors have pro-

posed [19]. Due to the nature of our assessment function as

described below, we need intensity values to be mapped in

a range of positive values between zero and one. We make

use of a sigmoidal mapping with varying slope depending on

the statistics of the a region surrounding the provided sam-

ples. This can amplify the significance of critical values of

the assessment measure in comparison with those obtained

with a simpler linear mapping. The reason is that sigmoidal

mapping expands the range of values around its center and

contracts those away from it. See Fig. 1 for a comparison

of the derivatives of linear and sigmoidal functions. Aside

from this, any mapping into positive ranges will do the job

similarly as concluded from our tests.

If x is a voxel position, f is a function assigning intensity

levels for every position in the image domain, as given by

the dataset under study, and | � | denotes cardinality of a set

in voxels, we define the following operations on a set A of

voxels:

f̄A =
1

|A| ∑
x∈A

f (x) , (1)

σ fA =

√

1

|A| ∑
x∈A

(

f (x)− f̄A

)2
. (2)

These expressions are known as the sample mean and

sample standard deviation of the population obtained from

the elements in A. If Ni is a cubic neighborhood of radius R

around the i-th element of a set of M seeds, and N =
⋃M

i Ni,

then f̄N and σ fN are the Maximum Likelihood (ML) esti-

mates of the mean and standard deviation of the underlying

distribution from the provided population samples if:

f̄N =
1

M

M

∑
i=1

f̄Ni
, (3)

σ fN =
1√
M

M

∑
i=1

σ fNi
. (4)

According to these estimates we proceed by application

of a non-linear mapping consisting of a sigmoidal window

centered at the mean, with width linearly dependent on the

standard deviation:

f ′(x) =



1+ exp



− f (x)− f̄N
(

Kσ fN
3

)









−1

. (5)

The width of such a sigmoidal window is usually con-

sidered to extend Kσ around the center f̄N of the mapping.

For K = 3 the width of the window would be enough to map

99.7% of the samples, of a Gaussian distribution with simi-

lar mean and standard deviation. Greater values of K ensure

sufficient mapping for the estimated distribution (that of the

tissues of interest), avoiding saturation.

Finally, we perform non-linear denoising using an in-

slice two-dimensional median filter with kernel radius Γ .

Other denoising schemes have been tested without signifi-

cant impact on the overall performance.

2.2 Self-Assessed Region Growing

Departing from a normalized and filtered version of the im-

age under study, whose intensities lie in the range [0,1],

and a manually provided set of seeds, we perform the self-

assessed contrast-maximizing algorithm. Basically, the out-

put of the region growing process depends on a confidence

interval defined by coefficient ki, that gets incremented from

an initial value k0 in equal steps of adaptive size ∆k. The set

of operations for the i-th iteration is described in the follow-

ing steps:

1. Compute i-th coefficient ki = k0 + i∆k
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2. For j = 0,1,2, ...L−1, and Ri0 = N:

– Compute tolerance interval Ii j using (1), (2) and:

Ii j = I(Ri j) =

[

f̄ ′Ri j
± kiσ f ′Ri j

]

. (6)

– Compute Ri( j+1) as the greatest 26-connected set of

voxels inside the Ii j tolerance interval, that contains

Ri j and is 26-connected to it.

3. Compute the assessment function Oi

(

f̄ ′RiL
, f̄ ′Pi

)

accord-

ing to the intensity average f̄ ′RiL
in RiL and the intensity

average f̄ ′Pi
in the external perimeter Pi of RiL:

Pi = (RiL ⊕B)∩RiL , (7)

where ⊕ denotes morphological dilation, and set B is

some structuring element, using

Oi

(

f̄ ′RiL
, f̄ ′Pi

)

=

∣

∣

∣

∣

f̄ ′Pi
− f̄ ′RiL

f̄ ′Pi
+ f̄ ′RiL

∣

∣

∣

∣

. (8)

4. If Oi−1 is a local maximum, when compared to Oi−2 and

Oi (only when i ≥ 2), then the algorithm stops and the

output is R(i−1)L. Otherwise another iteration takes place

Of all aforementioned parameters only k0 and ∆k are

critical for the performance of the algorithm. Higher val-

ues of k0 affects computational efficiency requiring a greater

number of iterations before a local maximum of O
(

f̄Ri
, f̄Pi

)

is actually found. Therefore, its fine tuning for a specific

scanner, could save some computational time. From obser-

vation of the region growing sequence, we conclude that

these first iterations are typically very fast, so the improve-

ment is frequently negligible. With regard to ∆k, the choice

must guarantee that the assessment function is being sam-

pled adequately in order to detect its local variations, but

also coarsely enough so that contrast variations due to noise

do not stop the algorithm on spurious maxima.

Fortunately, the fact that ∆k affects the tolerance interval

in each iteration through multiplication with the standard de-

viation, guarantees that the sampling of the assessment func-

tion adapts to the noise level in the dataset. As compared to

the contrast evolution for regularly increasing intensity val-

ues, the resulting sampling will be spaced according to the

standard deviation of the grown region (estimated with ever-

increasing precision as the region grows). Assuming approx-

imately piece-wise constant regions of interest, this variance

can be attributed mostly to noise. As a consequence, for a

constant value of ∆k, the sampling adapts to the roughness

of the assessment function in such a way that the main trend

of the evolution is captured, and higher frequency compo-

nents are ignored.

Beyond these considerations, we have determined the

exact value of ∆k empirically from the available datasets,

and this value has proven to be rather general according to

our experimental results.

To illustrate the pertinence of our assessment function,

we provide in Fig.11 an exhaustive analysis of the contrast
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Single seeded
Multi-seeded

Fig. 2 Contrast evolution comparison for head CT bone segmentation.

Red curve depicts single seeding evolution, and blue curve does multi-

ple seeding evolution

evolution for our region growing sequence in three differ-

ent segmentation scenarios. Using the same dataset, we have

provided one single seed for bone, muscle and fat segmen-

tations. Instead of stopping the algorithm at the first maxi-

mum, the region growing proceeds until the iteration right

before full-image flooding. Contrast evolution curves where

all maxima have been arrow-marked can be seen in Sub-

figs. 11(a)-(c). The segmentation output for these marked

iterations are shown in Subfigs. 11(e)-(g) for bone segmen-

tation, in Subfigs. 11(h)-(k) for muscle segmentation and in

Subfigs. 11(l)-(s) for fat segmentation. Notice both the ade-

quateness of the first-maximum criterion, and the semantic

value of contrast maxima. The adaptation of the sampling

process to the characteristics of the tissue surrounding the

seeds, allows for an interactive scheme, in which the user

can decide to provide additional seeds after getting an in-

complete solution, in an iterative manner. This approach has

proven to be naturally accepted by the clinical practitioners

on field, as they seem to prefer this intuitive way of incorpo-

rating their knowledge into the segmentation process. This

is especially relevant as the variety of acquisition scenarios

grows, like is the case for our domain of application.

To illustrate the effects of multiple seeding, we provide

the region growing contrast evolution and growing sequence

for a sample bone tissue segmentation in Figs. 2 and 10 un-

til the first maximum is reached. Colors in Fig. 10 indicate

iterations, and vary from yellow to violet as the total num-

ber is reached. The last iteration occurs earlier when using

multiple seeds, as revealed by the smaller number of col-

ors available in Subfig. 10(c). Figure 2 shows how the first

maximum is reached earlier, as the assessment function gets

more coarsely sampled. This adaptation of the sampling rate

simultaneously results in less sensibility to spurious max-

ima and lower precision in the localization of the maximum

of interest. So the greater number of seeds decreases the
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0.1-0.1
0.3-0.3
0.5-0.5
0.7-0.7

Fig. 3 Contrast evolution for some constant-valued spheres

(a) (b)

Fig. 4 Constant-valued sphere segmentation for σb = 0.5, σn = 0.5.

(a) Slice of the test image. (b) Segmentation for the same slice.

precision of the segmentation, but provides a solution for

eventual incomplete segmentations that can occur for some

of the noisier datasets, where spurious maxima can prema-

turely stop the algorithm. For color illustrations please refer

to the electronic version of this document.

In the following section, experimental validation is pro-

vided for both single and multiple seeding schemes.

3 Results

We have implemented our algorithm using open source med-

ical image processing libraries, more precisely the Insight

Toolkit [20] for algorithm development, and the command

line executable module infrastructure provided by 3DSlicer

for fast prototyping, calibration, evaluation, and manual seg-

mentation [21]. The algorithm that we will validate, and

that was finally implemented in the virtual reality platform

that motivated its development, uses the following parame-

ter values: R= 2,K = 12,Γ = 1,k0 = 1, ∆k = 0.1, L = 3 and

B is the 3×3 binary cross structuring element.

To validate our algorithm we have proposed several ex-

periments, based on synthetic and real CT datasets. In their

inspiring work, Udupa et al. [22] deployed a methodology

for the validation of medical volume segmentation meth-

ods. For a segmentation algorithm to be proven useful it

Fig. 5 Sets for accuracy assessment.

has to demonstrate its accuracy (quality of results), preci-

sion (parameter independence) and efficiency (human and

computational times). Accuracy is evaluated in terms of sev-

eral classical measures, i.e. sensitivity (Sn), specificity (Sp),

Dice’s coefficient (D) [23], and Jaccard’s index (J) [24]. All

four measures are dependent on the concepts of True Posi-

tive (TP), True Negative (TN), False Positive (FP) and False

Negative (FN) for a given segmentation and ground truth.

To produce such a ground truth a reference delineation of

the object must be available. This delineation can be accom-

plished manually by a trained medical expert. Accuracy can

also be assessed by subjective evaluation by an accredited

observer in cases where manual delineation is impractical.

Sensitivity and specificity are widely-known, classical

assessment rates. They compute the proportion between de-

tected truth and full truth. Furthermore, Dice’s coefficient

and Jaccard’s index are related measures that provide a com-

bination of sensitivity and specificity characteristics.

Sn =
|TP|

|TP|+ |FN| , (9)

Sp =
|TN|

|TN|+ |FP| , (10)

D =
2|TP|

|FN|+ |FP|+2|TP| , (11)

J =
|TP|

|FN|+ |FP|+ |TP| . (12)

Precision is also evaluated according to the Jaccard’s index

applied on two different outputs rather than on a segmen-

tation and a ground truth set. Precision can be computed

in terms of inter/intra-operator variability and inter-scanner

variability. Since our method relies on only a seed selection

procedure, and is supposed to work for a variety of acquisi-

tion devices, we decided to compute precision for inter-seed

variability. This variability is accounted for by comparing

the resulting segmentation from seeds placed randomly in-

side the tissue of interest. Several seeds can be used so that

J is computed for all possible combinations of outputs, and

then averaged to obtain a more representative measure.

Efficiency relates to the segmentation performance time,

human as well as computational time. According to Udupa
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et al. [22], it is extremely hard to provide an efficiency mea-

sure that proves useful when comparing different methods.

One possible way of summing up all efficiency factors is

related to the economic cost of usage for an algorithm. Hu-

man time is much more expensive than computer time. In

our method, usage is designed to be extremely simple, and

reduces to placing a handful of seeds on the desired object.

For that reason we have computed here only computational

times for the execution of our algorithm. The total usage

time comprising loading of dataset, seed placement and al-

gorithm execution, ranges from user to user, but seldom sur-

passes twice the computational time.

All computational times were recorded in a Windows PC

with 2 GHz. Intel Core 2 Duo and 2 GB RAM, although our

implementation is not multi-threaded. The average dataset

size is 512×512×350.

3.1 Constant-valued spheres

To validate the claim that our contrast-based assessment func-

tion accurately detects homogeneous-intensity regions, we

have created synthetic volume images and corrupted them

with some typical CT acquisition artifacts. We have created

a 3D volume composed by two ideal tissues, with constant

intensity. The first tissue is shaped as a ball centered in the

image domain, with radius r = 20 voxels. The second tissue

is the background which extends to a final image domain

with size 512×512×100 voxels. We argue that this simple

phantom is enough to test the effect of artifacts on boundary

detection as long as connectivity is preserved. Our method

depends only on connectivity and intensity shifts, so the pre-

cise shape of the tissue is irrelevant as long as it is connected.

For simulating CT acquisition, we proceeded by blurring

the image (accounting for partial volume effect) and adding

Gaussian noise. Blurring was performed using a Gaussian

smoothing kernel with width σb. Zero-mean Gaussian noise

was generated with standard deviations σn. We produced

segmentations for all combinations for σb ∈ [0.1,0.9] in in-

crements of 0.2, and σn ∈ [0.1L,0.7L] (with L the absolute

intensity difference between the two tissues, L = 1 in our

experiment) in increments of 0.2.

From all the segmentations we computed the aforemen-

tioned measures and show them in Table 1. For a representa-

tive case (σb = 0.5, σn = 0.5), we have computed precision

measure J for all possible combinations of three different

seeds. The average similarity according to J is presented in

Table 2. For efficiency evaluation, computational time tc has

been computed and averaged across all images. We also dis-

play average values for the four measures in Table 2. For a

representative case (σb = 0.5, σn = 0.5), we have computed

similarity Jaccard’s index for all possible combinations of

three different seeds, which we present in Table 2. For ef-

ficiency evaluation, computational time has been recorded

Table 1 Computed measures for constant-valued spheres

σb-σn Sensitivity Specificity Dice Jaccard

0.1-0.1 1.0000 1.0000 0.9900 0.9802

0.1-0.3 0.9998 0.9998 0.9565 0.9165

0.1-0.5 0.9961 0.9997 0.9159 0.8448

0.1-0.7 0.9265 0.9999 0.9257 0.8618

0.3-0.1 1.0000 0.9998 0.9365 0.8805

0.3-0.3 0.9999 0.9998 0.9345 0.8770

0.3-0.5 0.9943 0.9997 0.9293 0.8680

0.3-0.7 0.9264 0.9998 0.9182 0.8488

0.5-0.1 1.0000 0.9997 0.9276 0.8650

0.5-0.3 0.9996 0.9998 0.9434 0.8928

0.5-0.5 0.9888 0.9998 0.9445 0.8949

0.5-0.7 0.9326 0.9998 0.9161 0.8452

0.7-0.1 1.0000 0.9998 0.9329 0.8743

0.7-0.3 1.0000 0.9995 0.8679 0.7666

0.7-0.5 0.9905 0.9998 0.9313 0.8714

0.7-0.7 0.9340 0.9998 0.9092 0.8335

0.9-0.1 1.0000 0.9997 0.9320 0.8727

0.9-0.3 1.0000 0.9996 0.8847 0.7933

0.9-0.5 0.9916 0.9997 0.9085 0.8323

0.9-0.7 0.9351 0.9997 0.8955 0.8108

Table 2 Average accuracy, precision and efficiency for constant-

valued spheres

Avg. Sensitivity 0.9808±0.0298

Avg. Specificity 0.9998±0.0001

Avg. Dice 0.9250±0.0260

Avg. Jaccard 0.8615±0.0452

Precision 0.9250±0.0413

Efficiency (s.) 72.6±40.8

and averaged across all images. Notice in Table 2 how the

experimental values for Sn and Sp are close to one, indicat-

ing very high segmentation fidelity. Precision is close to 1,

indicating weak dependence on seed placement. Times show

great variance due to the iterative nature of the algorithm.

For illustrative purposes we include in Fig. 3 a graphical

representation of the evolution of the assessment function

as the algorithm iterates. See how the fall after the peak de-

creases as noise and blurring increase.

Also, in Fig. 4 we show a slice of the generated volume

for the case 0.5-0.5 and the segmented region marked in blue

over the image. Notice the good results facing noise with

standard deviation as high as half the intensity difference

between the two tissues.

3.2 Continuous-valued spheres

For this experiment we produced a similar synthetic image,

only now the intensity inside the ball smoothly varies from

0 to 1 proportionally to the Euclidean distance to the cen-

ter of the ball. The intensity value for the background was

set to 1. In this scheme, no clear boundary is available, the

reason is that we wanted to prove that our method does not
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Fig. 6 Contrast evolution for all continuous-valued spheres

(a) (b)

Fig. 7 Continuous-valued sphere segmentation for σn = 0.5. (a) Slice

of the test image. (b) Segmentation for the same slice.

Table 3 Computed measures for continuous-valued spheres

σn Sensitivity Specificity Dice Jaccard

0.1 0.9375 1.0000 0.9617 0.9262

0.3 0.8543 0.9998 0.8791 0.7843

0.5 0.7491 0.9990 0.6813 0.5166

Table 4 Average accuracy, precision and efficiency for continuous-

valued spheres

Avg. Sensitivity 0.8470±0.0944

Avg. Specificity 0.9996±0.0005

Avg. Dice 0.8407±0.1441

Avg. Jaccard 0.7424±0.2080

Precision 0.9300±0.0176

Efficiency (s.) 257±12.9

require abrupt intensity changes, for boundaries to be de-

tected. We corrupted the image only with Gaussian noise of

standard deviation σn = 0.1,0.3 and 0.5. We computed the

same accuracy and efficiency measures, as well as precision

for the case σn = 0.3. Due to the nature of the values in the

regions, seeds must be placed close to the center in order for

the condition (which is inherent to any region growing ap-

proach) of greater variance across than inside regions, to be

met [11]. According to Tables 3 and 4, the results for this

extremely subtle boundary are still acceptable. Sn and Sp

stay somewhat close to 1, and precision is close enough to

1 as to support the claim of low seed location dependence.

Time has increased due to the greater variance of the seg-

mented tissue, which forcer the algorithm to perform more

iterations, so that greater frequency maxima can be detected.

For Fig. 6 we can observe the same effect as in Fig. 3.

Notice the increased roughness in these curves as compared

to those in Fig. 3, especially in the earlier iterations. This is

due to a greater influence of noise on consecutive iterations

of the region growing sequence, due to the non-constant in-

tensity of the tissue. This effect has dramatic consequences

on the contrast evolution for the case σn = 0.1, where the

low value of noise together with the smoothness of the varia-

tion produces, after normalization, significant instability for

early iterations. Notice that this a limit case, as our tissues of

interest display almost constant intensity (apart from noise),

rather than linearly varying intensity.

We present in Fig. 7 again a slice of the generated vol-

ume for the case 0.5 and its segmentation output. The quality

of the segmentation is pretty good even for extremely dim

boundaries.

3.3 Ground truth CT images

For this experiment we have produced automatic segmen-

tations using a set of real CT images for one of the de-

scribed tissues (muscle, fat and bone). The testing set pro-

ceeds from three different scanners present in our clinical

setting (a LightSpeed16 by General Electrics Medical Sys-

tems, Milwaukee, Wisconsin USA; an Aquilion by Toshiba

Medical Systems Company, Tokyo, Japan; and an AVPS by

Philips Medical Systems, Best, the Netherlands). We found

almost no coincidences between datasets regarding recons-

truction kernel, slice thickness, and intensity windowing.

Some of them presented contrast agents in some way.

As explained above, validation of real CT images re-

quires manual segmentations provided by a clinical expert.

In our application context this manual segmentation process

can be extremely time-consuming, or even intractable, due

to considerable tissue delocalization, e.g. manual segmenta-

tion of muscular tissue implies manually avoiding all blood

vessels and fat traces, for up to 500 slices. For this reason

we have computed our accuracy and precision metrics from

an average of 20 evenly-spaced slices, in 10 cases.

Moreover, the manual accuracy of the segmentation is

biased by human high-level knowledge, presenting consid-

erable inter-subject variability, and we (the authors and the

clinical practitioners) have observed that in many cases poor-

er results in accuracy are related to incomplete manual seg-

mentations, rather than incomplete automatic segmentations.

Let us say then, that the quality of the segmentation is at

least as good as the presented results. See in Fig. 8 a cropped

comparison sample showing discrepancies between our seg-

mentation output and the manual delineation provided. For
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(a)

(b) (c)

Fig. 8 Close-up comparison of manual segmentation and automatic

segmentation. (a) Original caption. (b) Manual segmentation. (c) Au-

tomatic segmentation.

Table 5 Accuracy metrics for all CT datasets

Sensitivity Specificity Dice Jaccard

Case 1 0.884 0.998 0.903 0.824

Case 2 0.967 0.996 0.949 0.902

Case 3 0.783 0.999 0.853 0.743

Case 4 0.828 0.951 0.807 0.676

Case 5 0.650 1.000 0.787 0.649

Case 6 0.869 1.000 0.928 0.866

Case 7 0.744 0.999 0.731 0.576

Case 8 0.988 1.000 0.929 0.867

Case 9 0.702 0.997 0.777 0.635

Case 10 0.805 0.987 0.788 0.651

the results presented in Tables 5 and 6, all segmentations

have been used for accuracy and efficiency assessment, and

one particular segmentation and several seeds for precision.

While specificity stays very high, ensuring self-contained

segmented regions, sensitivity is still reasonably close to 1.

This prevalence of specificity satisfies our domain of appli-

cation, since surgical planning depends strongly on bound-

aries, and incompleteness of our segmentations usually re-

main in the inner part of the regions. Due to the connected

nature of our output regions, over-segmentation would nece-

ssarily entail boundary alteration. Computational time ran-

ges between 2 or 3 minutes, which implies a great reduc-

tion as compared to previous trial-and-error parameter tun-

ing, according to non-technical users’ opinions.

3.4 Ground truth CT samples

In an attempt to circumvent the inherent difficulty of provid-

ing manual segmentations for our very extensive regions of

interest, we have developed a more tractable experiment. In

Table 6 Average accuracy, precision and efficiency for CT datasets

Avg. Sensitivity 0.822±0.109

Avg. Specificity 0.993±0.015

Avg. Dice 0.845±0.077

Avg. Jaccard 0.739±0.117

Precision 0.733±0.171

Efficiency (s.) 156.0±36.2

Table 7 Accuracy metrics for all CT samples

Sensitivity Specificity Dice Jaccard

Sample 1 0.891 0.986 0.936 0.881

Sample 2 0.928 0.985 0.955 0.914

Sample 3 0.982 0.927 0.845 0.732

Sample 4 0.996 0.867 0.960 0.923

Sample 5 0.985 0.974 0.907 0.830

Sample 6 0.986 0.983 0.961 0.924

Sample 7 0.964 0.947 0.973 0.948

Sample 8 0.988 0.958 0.941 0.888

Sample 9 0.943 0.958 0.933 0.875

Sample 10 0.948 0.983 0.970 0.942

Table 8 Average accuracy, precision and efficiency for CT samples

Avg. Sensitivity 0.961±0.0334

Avg. Specificity 0.957±0.0370

Avg. Dice 0.938±0.0382

Avg. Jaccard 0.886±0.0646

(a) (b) (c)

Fig. 9 Comparison of manual segmentation and automatic segmenta-

tion for the axial view of a sample. (a) Original sample. (b) Manually

delineated sample. (c) Segmentation output sample.

this evaluation strategy we made use of partial volume sam-

ples from a new set of 10 segmented CT scans. As before,

we have performed segmentation for bone, fat and muscle

tissue indifferently on these 10 sets, but instead of com-

paring with manual delineations of full slices, we have ex-

tracted small regions of interest with size 20(axial)×40×40.

The reason is that for such smaller regions, manual delin-

eation can be produced by our expert with much greater pre-

cision. For a comparison between manual/automatic delin-

eations in small samples see Fig.9.

For quantitative evaluation we have computed the val-

ues of sensitivity, specificity, Jaccard’s index and Dice’s co-

efficient as described at the beginning of this section. See

the computed measures in table 7 for each of the concer-

ned datasets. We display in table 8 the average results for
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this validation experiment. Notice how the use of manage-

able regions of interest results in greater performance of the

algorithm, since the obtention of the ground truth is now

trivial.

3.5 Subjective evaluation of real CT cases (Multi-seed

scheme)

For complementary accuracy assessment we provide also

a subjective evaluation performed by a clinical expert in

surgery (a user of the surgical planning platform under de-

velopment) on 35 datasets. These images proceed from the

scanners enumerated in Subsect. 3.3, and also present dif-

ferences in most imaging acquisition parameters previously

described.

Thirty-five segmentations of muscle, fat and bone were

performed randomly on the datasets. In this case the mul-

tiple seeding scheme was used in a maximum of two seed

placement iterations, as described in Subsect. 2.2. The com-

putational time referred below includes both iterations when

applicable.

We required our expert to evaluate the percentage of

slices in the output segmentation, that required further mod-

ifications in order to serve the purpose of surgical planning

for the body region comprised in the dataset. We gave him

instructions to classify segmentation as Excellent if 100-

75% of the slices were good enough, Good for 75-50%, Ac-

ceptable for 50-25%, and Useless for 25-0%. We also asked

him to provide detailed comments on any non-Excellent seg-

mentations, for future improvements of the algorithm.

See in Fig. 12 some examples of the obtained outputs.

First column is for fat segmentation, second for muscle, and

third for bone. Three-dimensional surface models obtained

by means of the marching cubes algorithm [25], as well as

different views are provided. Notice that neither the varying

resolution nor the movement artifacts prevented the overall

correctness of results.

Notice in Table 9 the very good subjective assessment

obtained for most test datasets. Just one segmentation scored

below Good for any of the tissues involved, and that should

be considered in the context of varying scanners and imag-

ing conditions. Besides these results were obtained in rea-

sonable computational times and with minimal user inter-

vention (two multiple-seeding iterations at most).

Regarding the few cases with non-Excellent qualifica-

tion the main comments made by the observer concerned

issues like poor image quality in the test dataset for muscle

and fat segmentation, or abnormal tissue intensity distribu-

tion for bone segmentation (Osteoporosis condition).

The interest of this kind of subjective assessment is based

in the definition of the evaluation. In this case, the evaluation

is made taking in consideration the application for which

this technique was developed.

3.6 Performance of our technique once integrated in virtual

reality platform VirSSPA

According to our field inquiries, our segmentation technique

(that we integrated with the virtual reality surgical planning

viewer VirSSPA) has produced dramatic time reduction in

surgical planning. Before our algorithm was available for

platform VirSSPA, segmentation was usually performed us-

ing either rough manual delineation, or iterative threshold

selection techniques highly dependent on user interaction.

Now, the developed technique is able to produce very pre-

cise segmentations just from a couple seeds, which can be

introduced quickly and trivially by any operator, thus reduc-

ing the cost and burden of the surgical planning cycle.

Once the whole tissue of interest has been obtained, a

surface rendering is produced through a simple marching

cubes technique [25], and then the surgeon in charge of the

surgical planning proceeds by 3D manipulation, excision

and replacement of different parts of the rendered model.

The accuracy of virtual-reality based surgical planning pro-

cedures using VirSSPA, exemplified by deep inferior epi-

gastric artery perforator (DIEP) flap surgery, has extensively

been demonstrated in [26–28].

Recently, VirSSPA-based surgical planning has been a

key factor in successfully performing the first face transplant

ever performed in Andalusia (second in Spain, and ninth in

the world). The surgical process was simulated using surface

models of the skin, muscle, fat, bone and vessels, most of

which were segmented using the presented technique.

4 Concluding Remarks, Limitations and Future Work

Our work is basically an attempt to generalize a classical

image processing methodology, so it deals properly with real

imaging-condition variations. Few efforts have been pursued

to achieve this kind of robustness, as most methods are ei-

ther manually tuned or based on prior unrealistic assump-

tions that only work for a given set of imaging conditions.

Considering the numeric results for the experimental vali-

dation, we consider our approach successful in solving the

particular needs for which it was conceived. The algorithm

has been integrated in the reference platform and prevents

from previous trial-and-error segmentation, which was very

time-consuming according to its users. Its greatest advan-

tage is thus the absence of tuning parameters and ability to

produce nice results for a wide set of acquisition devices,

with minimal user intervention, in reasonable time frames.

This is founded in the use of our adaptively-sampled con-

trast measure, and in the normalizing strategy that allows

for generalization of the contrast sampling rate.

The most significant limitation to this region growing

approach has to do with the fact that connectivity is some-

times too weak as a requirement for some applications (tu-
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(a) (b) (c)

Fig. 10 Region growing sequence comparison for head CT bone segmentation. (a) Single and multiple seeding. Red cross-hairs is the single seed,

green cross-hairs add to the red one for the multi-seed segmentation. (b) Region growing sequence for single seeding. (c) Region growing sequence

for multiple seeding. (Colder colors represent higher iteration number outputs. For colors please refer to the electronic version.)

Table 9 Subjective assessment for segmentation of real CT images

Excellent (100-75%) Good (75-50%) Acceptable (50-25%) Useless (25-0%) tc(s)

Bone Tissue 76.5% 23.5% 0% 0% 52.3±18.3

Fat Tissue 85.8% 7.1% 7.1% 0% 117.5±27.0

Muscle Tissue 62.6% 37.4% 0% 0% 141.6±48.8

mor segmentation, organ segmentation. . . ), as the region of

interest may be connected to other similar-intensity regions.

For this reason, future improvement for the technique could

consist of incorporating some morphological limitations to

the growth of the region in order to impose some degree

of stiffness, and to avoid flooding towards adjacent, slightly

connected regions. This improvement could make the algo-

rithm useful in greater variety of surgical planning scenarios.

Besides this regularization, another field of exploration

consists of transposing our assessment measure into other

segmentation paradigms, like watersheds or deformable sur-

faces, allowing for automatization of these other schemes,

which rely on manual tuning and intervention for the obten-

tion of adequate results.
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(b)Muscle Segmentation Contrast
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(c)Fat Segmentation Contrast

(d)Original dataset (e)Peak #1 (f)Peak #2 (g)Peak #3
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Fig. 11 Fat, muscle and bone contrast maxima. The areas in blue indicate segmentations for the arrow-marked maxima. Contrast curves are shown

across growing number of iterations
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(a)Fat. Surface rendering. (b)Muscle. Surface render-

ing.

(c)Bone. Surface rendering.

(d)Fat. Axial view. (e)Muscle. Axial view. (f)Bone. Axial view.

(g)Fat. Saggital view. (h)Muscle. Saggital view. (i)Bone. Saggital view.

(j)Fat. Coronal view. (k)Muscle. Coronal view. (l)Bone. Coronal view.

Fig. 12 Fat, muscle and bone segmentation examples. The blue region is the segmentation output.


