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Abstract: In this paper, we present a rapid boundary stabilization of a Timoshenko beam with
anti-damping and anti-stiffness at the uncontrolled boundary, by using PDE backstepping. We
introduce a transformation to map the Timoshenko beam states into a (2+2) x (2+2) hyperbolic
PIDE-ODE system. Then backstepping is applied to obtain a control law guaranteeing closed-
loop stability of the origin in the H' sense. Arbitrarily rapid stabilization can be achieved by
adjusting control parameters. Finally, a numerical simulation shows that the proposed controller
can rapidly stabilize the Timoshenko beam. This result extends a previous work which considered
a slender Timoshenko beam with Kelvin-Voigt damping, allowing destabilizing boundary
conditions at the uncontrolled boundary and attaining an arbitrarily rapid convergence rate.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)

1. INTRODUCTION

Flexible beams are widely used in many applications rang-
ing from aerospace to civil structures. Correspondingly,
beam stabilization has become an important research
topic. Among all the beam models, the Timoshenko model,
as the most realistic of the 1D distributed parameter
models, takes into account both the rotatory inertia of the
beam cross-sections and the deflection due to shear effect.

We next give an overview of past results on control of
Timoshenko beams. More than three decades ago, Kim
and Renardy [15] used a classical boundary damper feed-
back which required both the space and time derivatives
at the tip of the beam. Later, considering a clamped-
free Timoshenko beam, Morgul [24] proposed a more
general dynamic boundary feedback. Balakrishnan [2; 3]
considered boundary conditions leading to superstability
(vanishing of the beam states in finite time), for clamped
boundary conditions on the uncontrolled end. Taylor and
Yau [30] studied a rotating Timoshenko beam that can be
stabilized by both applying a force at the free end and a
torque at the pivoted end. Xu et al. [33] investigated the
use of pointwise feedback controls based on asymptotic
analysis of eigenvalues and the eigenfunctions. Soufyane
et al. [29] achieved uniform stabilization by using a lo-
cally distributed damping; in this case, stability can be
guaranteed if and only if the two wave equations have
the same speeds. Macchelli et al. [21] used a distributed
port Hamiltonian (dpH) approach to describe Timoshenko
beams and proposed a finite dimensional passive controller
that shapes the beam’s total energy. This approach has
also been followed by other authors; for instance, Siuka
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journal submission [6], which contains further details of our results.

et al. [25] also adopted a dpH model and proposed an
invariant-based method to achieve stabilization and Wu et
al. [32] used a passive LQG control design method. Xu [34]
presented a boundary feedback design for the exponential
stabilization of a Timoshenko beam with both ends free,
and gave an explicit asymptotic formula of eigenvalues of
the closed loop system . Considering a Timoshenko beam
with local Kelvin Voigt damping, Zhao et al. [36] obtained
exponential stability under some additional hypotheses.
Krstic et al [16; 26]. extended the backstepping method,
by using a singular perturbation approach, to controller
and observer design for a slender Timoshenko beam, with
actuation only at the beam base and sensing only at
the beam tip. For a nonuniform Timoshenko beam with
spatial-varying parameters, Ammar-Khodja et al. [1] stud-
ied the stabilization for both internal and boundary cases
with one control force. He et al. [12] designed an output-
feedback control law using a Lyapunov-based approach
with a disturbance observer; the Lyapunov approach is a
powerful tool in design of control laws for beams, not only
for the Timoshenko model (see e.g. [7]). Extending the ap-
proach, He et al. [13] proposed an adaptive integral-Barrier
Lyapunov function boundary control for inhomogeneous
Timoshenko beams with constraints. Considering both
system uncertainties and uncertain input backlash non-
linearity, He et al. [11] gave vibration boundary control
law using a disturbance observer. Allowing for hysteresis
of the boundary control input, Liu and Xu [19] proposed a
dynamic feedback control law that exponentially stabilized
the beam with distributed delay. Yildirim et al. [35] pro-
posed a novel optimal piezoelectric control approach for
suppressing vibrations. Finally, to cite several very recent
contributions, Ma et al. [20] introduced a prescribed per-
formance function restricting within an arbitrarily small
residual set, Guo and Meng [9] consider a two-dimensional
robust output tracking for a Timoshenko beam equation
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by using an observer-based error feedback control ap-
proach, and Mattioni et al. [22] address a beam clamped on
a moving inertia actuated by an external torque and force
with the dpH method using strong dissipation feedback,
and also in the case of having a mass at the controlled
end [23].

In recent years, the backstepping method has proven
itself as a powerful design method for control of infi-
nite dimensional systems. However, beyond the results in
[16; 26], backstepping has not been fully exploited for
Timoshenko beam control, even though it has produced
results for the shear beam model [17] and the Euler-
Bernouilli model [27; 31]. In the present paper, we aim
to achieve rapid stabilization of a Timoshenko beam with
anti-damping and anti-stiffness at the uncontrolled bound-
ary. The decay rate can be prescribed arbitrarily by setting
the controller parameters. Specifically, we propose an ini-
tial transformation of the Timoshenko beam states to a
new set of variables governed by a system of hyperbolic
PIDEs-ODEs. Then the backstepping method is directly
applied to controller design of the new system, by extend-
ing previously-developed tools [§].

Thus, the main contribution of this paper with respect to
previous results is allowing destabilizing boundary con-
ditions at the uncontrolled boundary (numerous works
consider simple clamped conditions) and attaining an ar-
bitrarily rapid convergence rate. The paper is organized as
follows: Section 2 presents the Timoshenko beam model.
Section 3 gives the boundary controller and the main
result. Then, Section 4 analyzes the resulting controller.
Section 5 studies the closed-loop stability. Finally, Section
6 validates the effectiveness of the proposed controller by
numerical simulation.

2. PROBLEM STATEMENT

Our goal is to exponentially stabilize (with arbitrary
convergence rate) the equilibrium at the origin of the
following Timoshenko beam model

EUtt = Ugy — Olg, (]‘)

g (ul’ - a) ) (2>

where u(z,t) denotes the displacement, a(z,t) denotes the
angle of rotation, for x € (0,1), ¢t > 0. We omit time and
space dependency except where necessary for clarity. The
coefficients €, ¢ > 0, a € R are non-dimensional physical
parameters (see [10]). The boundary conditions are

POy = Qzy +

Ouy (07 t) - 5“(0’ t)a (3)

ug(1,8) =VA(t), az(0,t) =0, ay(1,t) = Va(t), (4)
with 6,6 € R (respectlvely, anti-damping and anti-
stiffness), and V4 (t), Va(t % the actuation variables. The ini-
tial conditions for (1)—(4) are denoted by ug(z) = u(z, 0),
ap(z) = a(z,0), uer = ue(2,0), agr = ar(z,0).
Assumption 1. The anti-damping coefficient 6 appear-
ing in (3) verifies 6 # /.

This assumption is critical in what follows. To understand
its underlying reason, consider just a simple wave equation
EUst = Ugy; then, a boundary condition of the type
ug (0,t) = —y/euy (0,t) can be seen to be ill-posed.

3. CONTROLLER DESIGN AND MAIN RESULT

Ug

(Oa t) = a(O, t) -
(

As a first step, the Timoshenko beam is transformed into
a first-order hyperbolic integro-differential system coupled

with ODEs. This represents an alternative, novel idea to
design a controller for this plant, since it opens the door to
apply 1-D hyperbolic system control designs. The system
becomes a (2 + 2) X (2 + 2) heterodirectional system of
hyperbolic PIDEs, coupled with two ODEs, by using the
following transformations

p:Uz‘F\/gUt»q:Um_\@uh (5)
=y + oy, S = g — JHay, (6)
x1 =u(0,1), zo2 = a(0,1). (7)

Then (1)—(4) is equivalent to the PIDE-ODE system

pF%px— (r+s), (8)

1
22

1 a
Tt:ﬁrz+ 26\/ﬁ(zﬂrq)

i | [ sy o)
e A (10)
5= } ot 00

_2€f [/z (r(y,t) +s(y,t)) dy + 23@2} , (1D
i‘l \[ Iy [51‘1 T2 +p(0,t)] ) (12)
. __LS
Tog = \/ﬁ (O, t) s (13)

with boundary conditions
000 ==Y 00,0 - 25 e -, (1)
5(0,t) = —r(0,t), p(1,t) = V,,(¢t), r (1,t) = V,.(t), (15)
where V,(t) = Vi(t) + Veue(1,t) and V,.(t) = Va(t) +

VHaq(1,t) are the redefined control variables for this plant.

The system (8)—(15) is similar to the one stabilized with

backstepping in [§]. Thus, the method therein can be easily
adapted. Assuming % > ﬁ (the other cases can be

analogously treated), define

SHESHES S}

Then, (8)—(15) can be written in the following simplified
matrix form

(16)

Zy=%Z, + M (Z+Y)+ Ao X

+ [ Fiz60+ Y 0l (17)
Y, = fonm + MY +2) + A X
+ [ Pz + Y0l (18)
= (A+ ByD)X + (By + BoC)Z(0,8)  (19)
with boundary conditions
Z(1,t) =V, Y(0,t) = CZ(0,t) + DX (20)

where
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-1 1
— 0 0o —
¥ \f L=, 20\@ , (21)
L B 2e /1
00 0 0
Ao=|g__* |, F=|g__* |, (22)
L e/ 2e\/p
¢ 1 L,
A=| -0 e—0| Bi=|e—6 |, (23
0 0 0 0
[0 0 e+ d 0
B2_ 7i aC: \/5—0 ’ (24>
NG 0 -1
2V 2yE
D=| -0 e—0 (25)
0 0

The system (17)-(20), differently from [8], contains inte-
gral coupling terms, and the states of ODEs appearing
inside the domain of the PDEs.

For system (17)—(20
in Section 4.

V= / K (Ly) Z (y, t)dy + / L(Ly)Y (5. 0)dy+B(1)X,
0 0

), the following control law is obtained

(26)
whose gain kernels satisfy the following equations
YK, +K,X=(K+L)A —Qx)K — F
xT
+/ [K(x,s)+ L(z,s)] Fds, (27)
y
YL, - LE=(K+L)A —Qz)L-F
+/ [K(x,s)+ L(z,s)] Fds, (28)
Y
¢, =Y"19A - N Ay + X7 0ByD
—Y71Q>2)® + / YK — L)Aydy
0
+3 7 L(z,0)2D, (29)
with boundary conditions for K and L
YL(z,z) + L(z, )X = —A4, (30)
YK(z,z) — K(z,z)X = —A; + Q(x), (31)
K(z,0) — (2,0)2CE2 ' =3B X7 + 8B,CX 1, (32)
01 1
iy e ——] 4+ —
®(0) = S VE |, (33)
0 —02+/1L
with
100
0w = [0, 0] (31)
where woy(x,t) = (\%ﬂ - %)kgl(x,x) + 5 and K =

1/(y/e — 0). The parameters ;1,02 are arbitrary values
which directly determine the decay rate of the closed-loop
controlled Timoshenko beam (see Section 5). The well-
posedness of the kernel equations for K (x,y), L(x,y), ®(z)
is stated in Theorem 2 in Section 4.

Expressing (26) using the Timoshenko beam variables:

Vi=— / (rnr g (1) + hin g (1, ) iy, D)y
+/O Ve (k11 (1 y) + L (1, y) ue(y, t)dy

1
- / (k2. (1,9) + lizy (L 9)) oy, £)dy

[ VElka(t9) + a1 anty 01y
+ (b (1,1) + ha(1, 1)) u(l, )

— (k11(1,0) +111(1,0) — ¢11(1)) u(0,¢)
—(k12(1,0) 4+ 112(1,0) — ¢12(1)) (0, t)
+(k12(1,1) + 112(1,1))a(1,t) — Veue (1, 1),

\_/\_/

—_ —

(35)

- / (katy (1,9) + oty (1, 9)u(y, £)dy
1
+/0 Ve(kar (L, y) 4+l (1,y))ue(y, t)dy

- / (kany (1) + sy (1, )y, £)dly
+ laa(1,y)) o (y, t)dy

Ju(l,t)

— ¢21(1)) u(0,1)

— ¢22(1)) (0, 1)
)a(l,t) = o (1,7),

The main result is stated next, where the spaces L?(0,1)
and H'(0,1) are defined as usual and denoted simply as
L? and H!.

Theorem 1. Consider system (1)—(4), with initial condi-

tions wug, a9 € H',ug;, a0; € L%, under the control law
(35)—(36). If the value of d1,d2 (the controller parameters
appearing in (33)) are set large enough so that the constant

. 4 1
Cgmln{51,52}2max{w,u}, (37)

is positive, there exists a solution u(-,t),a(-,t) € H?,
ug(+,t), (-, t) € L? for t > 0, and the following inequality
is verified, guaranteeing the exponential stability of the
equilibriimu=a =u; = a; = 0:

(36)

) + G, O+ s 12 + o 011
< Cre™ %" ([fuallf + llao 3 + Iluor 32 + lleor 172 ) (38)

The proof of Theorem 1 is given in Section 5.
4. CONTROLLER ANALYSIS

This section presents the steps leading to (26). We start
by designing a target system as follows

oy = Yo, + Q(z)o,
i = — Sty + Ay (6 + ) + / Za(z, y)o(y, t)dy
0

(39)
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+ [ ety + 210X, (40)
0
X =E\X + Eyo(0,t), (41)
with boundary conditions
O'(lat) =0, ¢(0at) = E3X+CU(05t)v (42)

where

o= {g} , By = (By + ByC)®(0) + A+ BoD, (43)

Ey,=C%®(0)+ D, E3 = By + B2C, (44)
and where the values of = (z), E2(x,y), and Es(z,y) are
obtained in terms of the inverse backstepping transforma-
tion (which is given subsequently). The stability of this
target system is shown in Section 5.

Next we introduce the backstepping transformation. Firstly,
inspired by [18], we introduce

—/Ormx,y)Z(y,t)dy

x
[ LY wow-e@x. @)

0

Y=Y. (46)

The kernel equations are deduced as usual, by a tedious
but straightforward procedure of taking derivatives in the
transformation, replacing the original and target equa-
tions, and integrating by parts. The details are skipped
for brevity. The following result holds

Theorem 2. There exists a unique bounded solution
kij(x,y),lij(z,y),t = 1,2;5 = 1,2,3,4, coefficients of the
matrices appearing in (27)—(32); in particular, there exists
M > 0 such that

[kij (z, )], |l (2, y)] < MeM®. (47)
The proof follows along the lines of [8] and is skipped;
it is based on using the method of characteristics to write
(27)—(32) in the form of integral equations and then posing
a solution in terms of a successive approximation series,
whose convergence is proven recursively. The derivations
of [8] can be easily adapted to the presence of integral
terms and the differences in the boundary conditions.

Since the kernels appearing in (45) are bounded, the
transformation is invertible from the theory of Volterra
integral equation. Thus one can define

Z:0+/ K (z,y) o (y,t)dy
0

+[ Lol +s@x @)
0

with bounded kernels. Both the transformation and its

inverse, having bounded kernels, map L? functions into

L2 functions (see e.g. [14]). From (48), the kernels =;(x),
Ea(z,y), Z3(x,y) in (40) are

=) =) o+ [ Fody,  (49)

0
Zo(z,y) = MK (z,y) + F + /0 FK(s,y)ds, (50)
Zs(z,y) = A L(x,y) +F+/Ox FL(s,y)ds.  (51)

5. STABILITY OF CLOSED LOOP

This section proves Theorem 1; we start solving (39)-
(42) with the method of characteristics. The solution of
o converges to zero in finite time /. Thus, for t > /5,

wt($7t) = —Z%c(%t) + Aﬂ/J(m,t) +
E b b d b
+/0 3@, )6y, D)dy

X=EX, (53)
with ¢(0,¢) = EsX. Solving for X we get X(t) =
eP11 X (0), where we used the matrix exponential. Then

El(l‘)X
(52)

bi(m, t) = =St (2, 1) + Ayip(z, t) + E ()X (0)

+ / Za(x, y)0(y, t)dy,

with 1(0,¢) = E3ef1' X (0). By the method of characteris-
tics, two Volterra-type integral equations can be found for
the components of ¥. Details are skipped, but it is easy to
see that one can always find a unique L? solution for 1.

(54)

Obviously the only requirement for stability is that Fj is

Hurwitz as then the origin of the state is exponentially

stable for (52). Nevertheless, for rapid arbitrary stabiliza-

tion, the eigenvalues of F; need to be set. Indeed, since
—v/€A in (43), E; is rewritten as

Ey = A(I — \/eBy) + (B1 + B,C)®(0). (55)
Which, remembering « = 1/(y/ — ), results in
KE + K¢11(0) —K+ li(blg(O)
E| = $21(0) $22(0) (56)
Vi Vi
If we choose the boundary conditions ®(0) as follows:
61(0) =€~ 2L, 41(0) =1 67)
$21(0) =0, ¢22(0) = —d2+/p1; (58)

with 1,02 > 0, then F; is a diagonal matrix with entries
—d01 and —Jdo, which become its eigenvalues. The rate of
convergence of X can be arbitrarily set by adjusting the
value 01, d2 and will be equal to ¢ = min {41, da }.

Next, we use a Lyapunov functional for the stability
analysis of target system, to show exponential stability of
the origin with a fixed convergence rate. Define, for ¢ > 0,

V= XTX—i—C/ 00T (2, )2 o (2, t)dx
1
+ / e 9T (2, )" Vp(z, t)dx (59)
0

Differentiating (59) with respect to ¢, and after a careful
bounding process, we obtain

V<—dXTX — cg/ %ol (2, ) Yo (x, t)dx

1
— / e 9T (z, )X p(x, t)dr < —c'V, (60)
0

with ¢ > min{d1,02} — 2 — max{ﬁﬁ,ﬁ} (see details

in [6]). Thus setting the controller parameters d; and do
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sufficiently large, an arbitrary convergence rate ¢’ > 0 is
achieved for V.

From the Lyapunov inequality just obtained and using
norm equivalences, and the boundedness of the kernels
of both direct (45) and inverse (48) transformations, one

obtains [Ip(, £)[|72 + lgC. )72 + Ir ()72 + s )72 +
w3 (t)+a3(t) < Kie™* t(||po||2Lz+||q0||%2+H7"o||iz+HSoH2L2+
22(0) + 23 (O)), for some K37 > 0. When rewritten in terms

of the physical Timoshenko beam states, the exponential
stability bound of Theorem 1 follows, since

ute) =ar(t)+ 5 [ 0l + att. )i, (61)
atta)=aalt) + 5 [ () + (e, (62)
w(t, ) _p(t,x) —qlt,x) au(t,z) = M'(ﬁg)

2 2/1i

Finally, under the assumptions of Theorem 1, the initial
conditions of p,q,r, s belong to L?. Therefore the initial
conditions of the transformed states are also L. It is easy
to see that the target system is well-posed in L? (see
Section IV.B.1); thus the original system will be as well,
since the inverse transformation maps L? into L2. This
finishes the proof of Theorem 1, by applying (61)—(63).

6. NUMERICAL SIMULATION

To verify the effectiveness of the proposed boundary con-
troller, (1)—(4) is simulated with e = 1, p = 2, a = 1,
0 = —1, & = 1. The initial values are set to ug = 2.8—2.8x—
1.822, uy0 = 0,09 = 2%, oy0 = 0. We use the HPDE tool in
MATLARB, in which the four equivalent first-order hyper-
bolic PDEs (8)—(11) and the ODEs (12)—(13) are solved,
and the evolution of u(z,t),a(z,t) is obtained by using
(61)—(63). The open-loop response is unstable, due to anti-
damping (not shown for lack of space). Next, we apply the
proposed controller (35)—(36) to the Timoshenko beam.
The controller parameters are chosen as d; = 5,5, = 2.
The feedback gains K (1,y), L(z,y) and ®(z) are shown in
Fig. 1 and were computed using a power series approach
as in [5]. There is a discontinuity in the kernel function
k12(1,y) , which is typically present when applying the
backstepping method to a (2+2) x (2+2) system and does
not impact the result [14]. The variables u(z,t), us(z,t),
a(z,t) and a(z,t) evolve as shown in Fig. 2, converging
to zero exponentially, as expected from Theorem 1.
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