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Abstract—In this paper, we propose a greedy clustering
algorithm to identify groups of related genes and a new
measure to improve the results of this algorithm. Clustering
algorithms analyze genes in order to group those with similar
behavior. Instead, our approach groups pairs of genes that
present similar positive and/or negative interactions. In order to
avoid noise in clusters, we apply a threshold, the neighbouring
minimun index(λ), to know if a pair of genes have interac-
tion enough or not. The algorithm allows the researcher to
modify all the criteria: discretization mapping function, gene–
gene mapping function and filtering function, and even the
neighbouring minimun index, and provides much flexibility to
obtain clusters based on the level of precision needed. We have
carried out a deep experimental study in databases to obtain a
good neighbouring minimun index, λ. The performance of our
approach is experimentally tested on the yeast, yeast cell-cycle
and malaria datasets. The final number of clusters has a very
high level of customization and genes within show a significant
level of cohesion, as it is shown graphically in the experiments.
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to obtain a HC based on a tree structure view from GO. In

Sharan et al. [14] graph–theoretic and statistical techniques

were used to identify tight groups of highly similar elements.

In Speer et al. [15] a memetic algorithm is presented,

i.e., a genetic algorithm combined with local search -based

on a tree representation of the data - for clustering gene

expression data. With this aim, in Jiang et al. [6] is explored

a novel type of gene–sample–time microarray data sets,

which records the expression levels of various genes under

a set of samples during a series of time points. Recently, a

graph based algorithm has been proposed to generate clusters

of genes with similar expression profiles by Huttenhower et

al. [5]. Hao et al. [4] have used Bayesian information criteria

to estimate the correlation between gene expression levels. In

this work a preprocess step has been carried out, the Gausian

model is used to describe the data. Currently, the Gausian

model is also applied in [12] to estimate the parameters of

different clustering based on models which utilize the factor

analysis covariance structure.

All of these methods are based on the idea of grouping

those genes that show the same behavior. In this work, we

propose a clustering algorithm to identify groups of related

genes based on the idea of clustering pair of genes which

present the same type of interaction. To avoid the posible

noise when we work with this algorithm, we introduce a new

measure, the neighbouring minimum index, extracted from

different experiments on databases. In this way, we use this

measure to decide if a pair of genes has enough interaction

in early steps of our algorithm. We have tested our algorithm

and our new measure on malaria [8], yeast cell-cycle [16]

and yeast [17].

In broad outlines, the remainder of the paper is organized

as follows. In section II, the characteristics of our approach

are detailed. Later in Section III, we describe the results of

our experiments. Finally, the most interesting conclusions

are summarized in Section IV.

II. DESCRIPTION

The clustering process presented in this paper, named

INTERCLUS, can be divided into four steps: encoding of each

gene expression (segmentation), representation of the inter-

action of every two genes (gene–gene interaction), filtering

of most representative interactions (filtering), and clustering

I. INTRODUCTION

In any biologic process, cells and genes in particular play 
an important role which can be measured by their different 
levels of expression. These levels depend on the type of 
process, on the stage, and on the experimental condition that 
is analyzed. The knowledge about these, under a specific 
situation, helps to understand the function that genes play 
in a particular biological process.

Current works accomplished by researchers in the Bioin-

formatic field, like SAGE [19] for measuring gene ex-

pression, or like [9], [13] to store this gene expression in 
structure denominated microarray, make possible the simul-

taneous study of numerous genes under different conditions. 
Many different approaches have been applied to analyze 
this structure, including principal component analysis [22] 
as well as supervised [2] and unsupervised [6], [11], [14],

[15], [17] learning. In unsupervised learning, clustering 
techniques [7] are used to identify groups of genes that show 
the same expression pattern under different conditions.

Tavazoie et al. [17] applied the k–means algorithm to find 
clusters in yeast data. In Luo et al. [10], we can find many 
hierarchical clustering (HC) examples applied in genomic 
research. Lately, Wang et al. [20] developed a new technique 
to analyze methilation data. Wrobel et al. [21] used Pearson



interactions (neighborhood–based clustering). These steps

are depicted in Figure 1 and they are described in detail in

the next subsections.

A. Segmentation

The first step addresses the segmentation of each gene

expression level. Due to the fact these levels are represented

by numerical values, the segmentation is done by discretiz-

ing the range of values obtaining a new matrix(discretized

matrix) with the same dimension that stores segmented

values. In this way, different labels are obtained according

to the gene expression level under particular stimulus (ex-

perimental condition). However, the discretization is local,

i.e., the same expression level for two different genes might

transform into different labels.

To carry out the discretization, we need to define an

alphabet Ω, which is used to provide labels for the mapping,

and a mapping function α, which is used to assign labels

from Ω to the numerical values. The definition of Ω and α

is provided by the user: characters for Ω and a discretization

mapping table for α, in which the user can also make use

of symbols ∞, μ and σ, standing for infinite, mean and

standard deviation. Any expression that uses these special

symbols is valid, together with arithmetical operators and

numbers. For instance, in Figure 1, the first step transforms

the gene expression level matrix into a discretized matrix by

using the discretization mapping α, defined over a three–

symbol alphabet Ω = {I,M,E}. If the gene expression

level is in (−∞, μ − σ) then the label “I” is assigned

(inhibited); if it is in [μ − σ, μ + σ], then the label is “M”

(medium); and finally, if it is in (μ + σ,+∞), then “E”

(expressed). An expression like μ + 0.5σ is also feasible,

and any number of labels as well.

Note that although we use values like μ or σ, these

values are different for each gene, so the discretization is

local. A value of 0.6 for a gene can mean “expressed”,

and perhaps “inhibited” for another one, where both states

translate further into labels.

B. Gene–Gene Interaction

Once each gene expression level has been labelled, we

will focus on the interaction between every pair of genes.

Firstly, another alphabet Π is needed to assign a label to any

possible combination of gene pairs. For example, we might

be interested in differentiating the interaction inhibited–

expressed from the interaction expressed–expressed. In gen-

eral, the size of the set Π is, at maximum, the square of

the size of the set Ω, although usually should be lower. In

Figure 1, it is shown in the first step that |Ω| = 3, and

in the second step, the gene–gene interaction mapping has

exactly 9 combinations, but the size of the alphabet Π is 5,

corresponding to {Z,S,P,N,Q}. In this example, Z stands for

null, S for similar, P for positive, N for negative, and Q for

both expressed. The interaction mapping function β is also

defined by the user, as a mapping table, β : Ω× Ω → Π.

As the microarray has M genes and N experiments, for

each gene, M − 1 interactions with the remaining genes are

needed. In short, there will be M×(M−1) interactions. The

left–hand side of Figure 2 represents the discretized matrix

obtained after the first step, in which rows mean experiments

and columns mean genes. The values Dij of a specific row

and column are discrete, belonging to the alphabet Ω. To the

right, any possible pair of different genes is enumerated in

columns. In general, gene i can interact with other M − 1
genes. The value Iij,k of a row k and a column represents

the symbol from the alphabet Π obtained after analyzing

the two genes i and j involved in the interaction under the

experiment k.
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Figure 2. Gene-Gene Interactions

The new matrix M ′′ encodes the information of all possi-

ble interactions, although not every one might be interesting.

For example, in Figure 1, we see in the table generated by

the second step that many columns have only the symbol

“S”, which means similar, i.e., there is no significant up–

or down–regulation in this case. The last column shows that

genes 6 and 5 have similar behavior, so its interaction is not

relevant. In this way, we might withdraw much irrelevant

information if we were able to select the most interesting

patterns in columns. That is the aim of the third step,

described in the next subsection.

C. Filtering

The fact that two genes are inhibited under most or all of

the experimental conditions, has no biological importance.

Therefore, this situation can be easily ignored. When two

genes are both expressed under most or all of the experi-

mental conditions, that might have biological meaning. In

fact, many studies only focus on this aspect: the interaction

expressed–expressed. In this work, we are also interested in

other cases: for example, when most of the time an inhibited

gene is related to an expressed gene, and vice verse. And this

situation is especially interesting when the complementary

is true as well, i.e., if gene 1 is expressed then gene 2 is

inhibited and if gene 1 is inhibited then gene 2 is expressed.

The last situation is more difficult to detect and is one of

the main goals in this work.

Another interesting issue is that what means “most of

the time” for a pair of genes may not have the same

meaning for another pair. This gives some clues about the



Figure 1. INTERCLUS steps. First and second steps: definition of the discretization mapping function and the gene-gene interaction mapping to obtain the
gene-gene interaction matrix. Third steps: selection of gene-gene interactions that satisfy the filtering criterion. Fourth step: neighborhood-based clustering



strength of interactions, and provides us a specific criterion

for each gene regarding the remainder. Therefore, although

the filtering function is global, the value provided by the

filtering function might be different for each gene.

To explain the use of filtering, we have to define Ci,F .

It denotes the conditions established for the gi–interactions

using the filter F , and SCi,F
represents the subset of genes

whose interactions satisfy the condition Ci,F . As explained

earlier, for the example in Figure 1, the condition C1,F

would be max(|P | + |Q| + |N |) = 4, but C3,F would be

max(|P |+ |Q|+ |N |) = 3.

In the filtering algorithm , LF denotes the list of all the

subsets SCi,F
. That is, LF = {SC1,F

, SC2,F
, ..., SCM,F

}.

After this process, the filtering algorithm will generate the

list of subsets of genes related to each one, if exists. In

Figure 1 is provided, in the third step, the list of four subsets

of genes, each of them with only one gene, by using the filter

max(|P |+ |Q|+ |N |).
Also, in this filtering process we establish a minimum

threshold, named neighbouring minimun index (λ). This

value will have been satisfied for each Ci,F , so that if the

condition established for gi-interactions do not satisfy it,

SCi,F
will be empty and, therefore, it will not be part of LF .

In this way, we manage to give greater power to the filter

function, since it is possible to select those gene interactions

that fulfil the filtering criterion a minimum number of times.

The neighbouring minimun index depends on the particular

database and needs a preprocess. We can established its

value using a histogram from accumulated frequencies and

selecting the best value to apply as threshold. In Figure 3,

we can see a graphical representation of the histogram. In

X-axis, we have the possible values of the choosen filter.

In Y-axis, we have the total number of times a given value

corresponds a gen-gen comparision filter value. In section

III, we carry out an exhaustive study that shows how to find

a good λ.

D. Neighborhood–based clustering

Once the relevant interactions between each pair of genes

have been obtained, it is time to cluster them. The clustering

algorithm, named SNN (Similar Nearest Neighbor) [1], is

based on the similarity of groups, instead of analyzing pairs

of elements. It builds clusters by grouping genes whose

neighbors are similar. SNN starts considering each gene as

a separate cluster and at each step merges clusters which

have exactly the same neighbors. Thus, the concept of

neighborhood is redefined to handle correctly with clusters

of neighbors.

Definition 1 (Neighborhood of a gene). The neighborhood

Ng(i, F ) of a gene gi using the Filter F , is the set of genes

whose amount of relevant interactions with regards to the

gene i fulfils the condition Ci,F .

Ng(gi) = SCi
(1)

Algorithm 1 STEP–4 SNN

INPUT LF : List of gene subsets
OUTPUT RSC: Set of Clusters
begin
SC := θ
for all gene gi do
RSC[i] := {gi}

end for
repeat

for all cluster Ch ∈ RSC, 1 ≤ h ≤ |RSC| do
NSC[h] := Nc(Ch)

end for
SC := RSC
RSC := Reduction(SC,NSC)

until SC = RSC
end

Algorithm 2 Reduction

INPUT C: Set of Cluster
NSC: Neighbor Set of Cluster

OUTPUT R: Reduced set of clusters
begin
R := C
for all pair (i, j), with 1 ≤ i ≤ j ≤ |C| do

if S[i] = S[j] then
R[i] := R[i]

⋃
C[j]

remove R[j]
end if

end for
end

Definition 2 (Neighborhood of a cluster). The neighborhood

Nc(C,F ) of a cluster c (cluster neighborhood) using the

Filter F , is the set formed by all the neighborhoods of each

gene belonging to the cluster C.

Nc(C) =
⋃

g∈C

Ng(g) (2)

Once every necessary definition to support the algorithm

at this step have been presented, we will describe the

code depicted in Algorithm 1. The input parameter is LF ,

containing in each position i the neighbors of gi. And the

output parameter is RSC, the reduced set of clusters, where

each one comprises a group of genes. SC is an auxiliary set

of clusters and RSC is initially set with clusters containing

only one gene. The process is repeated until RSC has no

change at an iteration. The neighborhood of every cluster

is calculated in order to analyze the possible reduction of

the set of cluster, task done by the Reduction function

(Algorithm 2). The reduction of a set of cluster follows the

next criterion: two clusters are joined if both have exactly the

same neighborhood. We are aware of the restrictive character

of this criterion and a relaxation of it is considered among

our future research directions.

III. EXPERIMENTS

In this section, we address the evaluation of the perfor-

mance of our approach, which is experimentally tested on

the yeast [17], yeast cell-cycle [16] and malaria [8] datasets.
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Figure 3. Resulting histograms to obtain neighbouring minimun indexes for yeast, yeast cell-cycle and malaria datasets for Q-filter.

The yeast dataset has information on 2884 genes under

17 different experimental conditions. The yeast cell-cycle

dataset has information on 546 genes under 73 condtions.

The malaria dataset has information on 5118 genes and 16

conditions. We have used Expander [18] to validate our

results and to show the relevance of the clusters obtained.

In Table I it is shown the discretization mapping we have

used in the experiments. The symbols μi and σi denote

the mean and the standard deviation, respectively, of the

expression levels of gi under the whole set of experiments.

Thus, the gi expression level under ek will be labeled as I

(inhibited) if it belongs to (−∞, μi−0.25σi], as M (middle)

if it belongs to (μi−0.25σi, μi+0.25σi), or as E (expressed)

if it belongs to [μi + 0.25σi,+∞).

Table I
DISRETIZATION MAPPING α

Intervals Ω
(−∞, μi − 0.25σi] I

(μi − 0.25σi, μi + 0.25σi) M
[μi + 0.25σi,+∞) E

The alphabet Π, used in the experiments to encode each

pair of gene–gene interaction, and the interaction mapping

function β are shown in Table II. Highly relevant interactions

are those where genes change their state from inhibited to

expressed (P) or from expressed to inhibited (N) or from

expressed to expressed (Q).

Table II
GENE–GENE INTERACTION MAPPING FUNCTION β .

Ω Ω Π Ω Ω Π Ω Ω Π
I I Z I M S I E P

M I S M M S M E S
E I N E M S E E Q

Making diverse experiments with datasets we have real-

ized when we change λ value, the biggest clusters do not

change in most of times. In opposite of that, the smallest

clusters, with size two or three, have a very high variability.

This makes us think the biggest clusters in any biological

dataset and the most interesting too, have a very high level of

interaction and it will be studied in future. We use graphics

as in Figure 3 to discover the most interesting value for the

neighbouring mininum index, λ. In Table III, we can see

the kind of results we obtain when we vary the λ threshold

for yeast dataset. These clusters are ordered decreasingly

according to their sizes. The dimension of each cluster will

be shown at column ‘Size’. The column ‘Number’ represents

the number of cluster which have been obtained with that

size. For example, the size of the biggest cluster obtained

using λ = 9 is 31 and two clusters exist with that dimension.

In this case, the clusters with size 31 do not change in

any gen. It is very important the fact that the three studied

datasets show the same behavior. The most accurate value

for λ will be always the lowest value, but it increases

computational costs in comparison with higher values. If

we are interested only in the biggest clusters, we will always

choose a high value. With the values in Table III, we can

see the best value is 6 because is the most well-balanced

threshold.

Table III
THE BIGGEST CLUSTERS FROM THE OBTAINED RESULTS USING THE

YEAST DATASET WITH λ = 3, λ = 6 AND λ = 9.

λ = 3 λ = 6 λ = 9
Number Size Number Size Number Size

1st 2 31 2 31 2 31

2nd 2 17 1 17 1 8

3th 1 16 1 16 1 7

4th 1 13 1 13 1 6

5th 1 11 1 8 3 5

The result of our approach with filter Q is summarized in

Table IV. The used λ is 6 for malaria, 20 for yeast cell-cycle

and 6 for yeast. Note that the λ values have been obtained

in the same way as it was explained before.

Next, the results obtained are validated. Because we do

not have enough space in this paper, we have chosen only

one image to show the quality of our method. We could have

chosen any other datasets or filtering criterion. The other

clusters obtained with rest datasets, summarized in Table

III, have the same quality.

The results on yeast dataset are shown in Figure 4. The

figures were created using Expander [18] with a prepro-

cessing (standardization and normalization). The expression

level is represented with colors from green(inhibited) to



Figure 4. Resulting clustering for yeast with Q filter and λ = 6 and bigger size than 3.

Table IV
THE BIGGEST CLUSTERS FROM THE OBTAINED RESULTS USING THE

YEAST, YEAST CELL-CYCLE AND MALARIA DATASETS WITH Q FILTER.

yeast malaria yeast cell-cycle
Number Size Number Size Number Cluster

1st 2 31 1 364 1 12

2nd 1 17 1 311 2 6

3th 1 16 1 31 5 5

4th 1 13 1 30 3 4

5th 1 8 1 27 8 3

red(expressed) and the genes in a same cluster present the

same color in their name. The figure shows that our cluster-

ing technique groups genes with very similar behaviour, as

the colors are very alike. So, our approach can be validated

in a positive way [3], since it presents a high level of

compactness among genes within the same cluster, and a

great separation among the different clusters obtained.

We have not given a comparative study with other clus-

tering techniques because of our approach has a high level

of customization and versatility and it could not be possible

to make a fair comparison with other approaches that do not

have or are not similar as ours.

IV. CONCLUSIONS

In this work, we propose a greedy clustering algorithm to

identify groups of related genes and a new measure (λ) to

improve its results. The approach is based on neighborhood

of gene–gene interactions instead of on expression levels.

One of the main features is that the algorithm allows the

researcher to modify all the criteria: discretization mapping

function, gene–gene mapping function and filtering function,

and provides much flexibility to obtain clusters based on the

level of precision needed. We have carried out a deep study

in order to obtain good values for λ and the performance

of our approach is experimentally tested on the yeast, yeast

cell-cycle and malaria datasets and it has been validated with

Expander. The final number of clusters is customizable and

genes within show a significant level of cohesion, as it is

shown graphically in the experiments.
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