
SmarTest: A Test Case Prioritization Tool for Drupal
Ana B. Sánchez and Sergio Segura

Department of Computer Languages and Systems
University of Seville

Seville, Spain
{anabsanchez,sergiosegura}@us.es

ABSTRACT

Test case prioritization techniques aim to identify the optimal or-
dering of tests to accelerate the detection of faults. The importance 
of these techniques has been recognized in the context of Soft-
ware Product Lines (SPLs), where the potentially huge number 
of products makes testing extremely challenging. We found that 
the open source Drupal framework shares most of the principles 
and challenges of SPL development and it can be considered a 
real-world example of family of products. In a previous work, we 
represented the Drupal configuration space as a feature model and 
we collected extra functional information about its features from 
open repositories. Part of this data proved to be a good indicator of 
faults propensity in Drupal features. Thus, they become valuable 
assets to prioritize tests in individual Drupal products. In this paper, 
we present SmarTest, a test prioritization tool for accelerating the 
detection of faults in Drupal. SmarTest has been developed as an 
extension of the Drupal core testing system. SmarTest supports the 
prioritization of tests providing faster feedback and letting testers 
begin correcting critical faults earlier. Different test prioritization 
criteria can be selected in SmarTest, such as prioritization based 
on the number of commits made in the code, or based on the tests 
that failed in last executions. A customizable dashboard with sig-
nificant system information to guide the testing is also provided 
by SmarTest at run-time. This work represents an interesting ap-
plication of SPL-inspired testing techniques to real-world software 
systems, which could be applicable to other open-source SPLs.

KEYWORDS

Software product lines,

 Variability, 

Tool, 

Prioritization, 

Testing

1 INTRODUCTION
A Software Product Line (SPL) is a family of related software prod-
ucts. Each product represents a specific combination of features
of the SPL. In previous works, we found the open source Drupal
framework to be a motivating example of a real highly-configurable
software system [9, 11, 12]. Drupal is a highly modular web content
management framework written in PHP [2, 14]. Drupal provides
extensive documentation about its modules and detailed fault re-
ports including fault description, severity, type, status, etc. Further-
more, it is maintained and developed by a community of more than
630,000 users and developers. Although Drupal is not the result
of an SPL engineering approach, it shares most of the principles
and challenges of SPL development. Hence, Drupal products are
created by composing modules, described as "features" in the Dru-
pal documentation, where each feature is an increment in product
functionality [14]. Also, as in SPLs, Drupal modules (i.e., features)
can be divided into core features (i.e., core compulsory modules)
and optional features (i.e., core optional and additional modules)
and can present restrictions among them.

Although software development based on SPLs provides many
advantages, such as reduction of the overall software development
costs, it challenges quality assurance. Testing SPLs is extremely
hard to manage due to the potentially huge number of products
under test [4, 8]. For instance, Drupal provides more than 30,000
modules that can be combined with restrictions leading to billions
of potential different products [14]. This often makes testing all the
products in an SPL infeasible. To alleviate this problem, numerous
techniques have been proposed to reduce the test space to a man-
ageable subset of products to be tested [3, 5, 7]. Other studies have
presented test prioritization techniques to find the optimal order in
which the products should be tested to detect faults faster [1, 6].

In previous works, we presented an industry-strength case study
based on Drupal with more than 2 billion of configurations to be
used as a realistic subject for further and reproducible validation of
variability testing techniques [9, 11]. We mined the Drupal reposi-
tories to extract significant information from the system. Among
other results, we identified 3,392 faults in single features and 160
faults triggered by the interaction of up to four features in Drupal
v7.23. We also found positive correlations relating the number of
bugs in Drupal features to their size, cyclomatic complexity, number
of changes and fault history. Our evaluations showed that extra
functional system properties are effective drivers to accelerate the
detection of faults, outperforming other related prioritization cri-
teria as test case similarity. In addition to this, we observed that
the official tool to test Drupal modules, named SimpleTest1, suf-
fers from several drawbacks, essentially: 1) it is not a customizable

1www.drupal.org/simpletest

https://doi.org/10.1145/3109729.3109757
https://doi.org/10.1145/3109729.3109757


SPLC ’17, September 25-29, 2017, Sevilla, Spain Ana B. Sánchez et al.

JavaSCript/AJAX
BD

Hook

Themes

Themes Engine

Drupal Core

Modules

.info

.install

.module

.inc

Module’s
structure

Figure 1: Drupal architecture and module structure.

and configurable tool, 2) it does not return any feedback from test
executions while the tests are running, and 3) it does not support
test case prioritization. This is crucial since running all the tests
in Drupal can take many hours (e.g. 10 hours in a basic Drupal
product with 40 modules) and it could be useful to prioritize the
tests to detect as many faults as possible sooner.

Considering previous findings, we found that the information
collected for testing Drupal at the family level is also helpful to
test individual Drupal products, creating an interesting loop where
individual Drupal-based applications are more effectively tested
using the feedback obtained from the whole family of products. This
idea can provide to SPL community a valuable example on how to
manage the complexity of testing a real-world SPL. In this line, we
have developed SmarTest, a test prioritization tool for accelerating
the detection of faults in Drupal.

The paper is structured as follows. We describe an overview of
Drupal and its core testing system in Section 2.We present SmarTest,
its capabilities and structure within Drupal in Section 3. Finally, we
summarize the conclusions and future work in Section 4.

2 SIMPLETEST IN DRUPAL
Drupal is an open source PHP framework used to build a variety of
web sites including internet portals and e-commerce applications.
Figure 1 shows an overview of the Drupal architecture, which is
composed of the following main elements: the core, modules, hooks
and themes [14]. The core includes code that allows the Drupal
system to bootstrap when it receives a request, a library of com-
mon functions frequently used with Drupal, and core modules that
provide basic functionality like user management, templating and
testing. A Drupal product is composed of a set of modules, which
can be classified into core modules and additional modules. Core
modules are included by default in the basic installation of the Dru-
pal framework. Additional modules can be optionally installed and
enabled. These modules are developed by the Drupal community
and shared under the same GNU Public License (GPL) as Drupal.

Drupal is built on a system of hooks, sometimes called callbacks.
Hooks are how modules can interact with the core code of Drupal.
Hooks occur at various points in the thread of execution, where
Drupal seeks contributions from all the enabledmodules. The theme
layer in Drupal is responsible for creating the HTML (or JSON, XML,
etc.) that the browser will receive. Drupal uses PHP Template as
the primary templating engine [14].

SimpleTest is the only core module for testing in Drupal. It per-
mits to define and run the tests of all the installed modules automat-
ically. SimpleTest reads the tests defined in a Drupal product and
shows a listing of tests grouped by categories, such as cache-based
or user-based tests, as illustrated in Figure 2(a). Then, it enables the
selection or deselection of the tests to be executed. Although Sim-
pleTest is a powerful testingmodule, it has the following limitations:

Lack of historical data. SimpleTest presents just a list of tests to
be executed (see Figure 2(a)). It does not show any information to
the tester about historical data such as previous test executions or
about the modules containing modifications that need to be tested.

Limited tests configuration functionality. SimpleTest only allows the
selection or deselection of tests to be run. It does not provide any
features to configure the following test execution, running the tests
always in the same established order.

No feedback at run-time. SimpleTest does not return any feedback
until all tests finish their executions. This is relevant since running
all the tests in Drupal can take many hours.

3 SMARTEST
SmarTest has been developed as an extension of the Drupal core
module SimpleTest. SmarTest can be considered a contributed mod-
ule in Drupal within the category of additional modules. It is devel-
oped using hooks to extend and enhance the SimpleTest function-
ality. The tool is freely distributed under GNU GPL v2 license and
can be downloaded from the official Drupal projects page2.

SmarTest, like every Drupal module, is mapped to a directory
including source files such PHP files, CSS stylesheets, JavaScript
code and help documents. Each Drupal module must include a .info
file and a .module file, whose names must match the name of the
module. The .info file contains information about the module such
as the module description, PHP and Drupal versions, dependencies
with other modules, etc. The .module file is the main PHP file that
contains all of the code. Also, modules can include a .install file
that it is run the first time the module is enabled, and some .inc
PHP files including specific functionality. The structure of a Drupal
module is showed in Figure 1. Drupal modules can also include a
test directory with the test cases associated with the module.

In general, SmarTest enables the automated analysis of the sys-
tem under test offering useful information to guide software engi-
neers, and it supports the automated prioritization and execution of
all the tests defined in the modules of the system. More specifically,
current version of SmarTest provides the following features:

Dashboard with information at run-time. SmarTest presents
a dashboard that enables the display of actual information about
the Drupal modules installed and enabled in the system, such as
their size (in terms of lines of code), the number of tests per module
that passed and failed in last tests executions or the complexity of
the modules. This data has been showed to be closely related with
the propensity to faults of Drupal modules [11]. Additionally, the
dashboard shows the percentage of code coverage of the tests, the

2www.drupal.org/project/smartest



(a) SimpleTest module (b) SmarTest module

Figure 2: User interfaces for testing in Drupal

modules with less test coverage, the modules with more failures
detected in last executions, the percentage of tests passed and failed
in last run or even the time taken by the last test execution. Figure
3 illustrates a screenshot of a dashboard created in SmarTest.

Customizable dashboard. SmarTest’s dashboard is totally cus-
tomizable and configurable through widgets functionality. This
means that testers can edit, delete or add new widgets of informa-
tion (e.g., a chart showing the relation between lines of code in
modules and their cyclomatic complexity). Furthermore, SmarTest
allows testers to select the desired format to show the information
(e.g., tag clouds, column graphs or row graphs, number of modules
to show, etc.). Some customized widgets are illustrated in Figure 3.

Prioritization technique selector. SmarTest supports the use of
different test prioritization techniques based on real data of the
Drupal product under test. In particular, we can order the test exe-
cution based on: 1) the cyclomatic complexity of the modules, 2) the
number of commits made in the modules (taken from the Drupal
project GitHub automatically), 3) the code covered by the tests, 4)
the number of tests that failed or threw exceptions in last execu-
tions, and 5) the size of the modules. The prioritization selector is
showed on the top left of the Figure 2(b).

Time-out execution button. SmarTest provides a stop button to
optionally indicate the time (given in minutes or hours) in which
the tests will be running. Figure 2(b) illustrates this button on the
top right, specifying 3 hours of test execution.

Test case prioritization. Once we have indicated the test prioriti-
zation technique and the execution time, SmarTest displays all the
tests of the enabled modules ordered by the prioritization criterion

selected, showing the prioritization value and the time taken in the
last run for each group of tests. Then, the system allows us to select
the tests to be run in the established order. As an example, consider
the Figure 2(b), where the tester selected the prioritization criterion
driven by Git changes to guide the testing. Thus, the modules in
Drupal with higher number of Git changes will have higher priority
to be tested.

Automated testing with continuous feedback at real time. It
is noteworthy that when the execution of a test finishes, SmarTest
returns a detailed result report immediately. This enables the con-
tinuous feedback on the testing progress in real time, which allows
software engineers to start fixing the bugs earlier. Note that run-
ning all the tests in Drupal can take many hours or even days.

SmarTest has been warmly welcomed by the Drupal Community.
Evidence of this was the presentation of our project in the Na-
tional Conference DrupalCampSpain [13], and the later invitation
to present SmarTest in the International Conference DrupalConEu-
rope [10], where thousands of Drupal professionals meet annually.
It is worth mentioning that SmarTest counts on the assistance of
some Drupal professional altruistic contributors interested in the
development of a more advanced testing tool. The SmarTest module
is installed and enabled in a Drupal product and it can be checked
at http://www.isa.us.es/smartest/demo-instructions.html following
the instructions.

4 CONCLUSIONS AND FUTUREWORK
In this paper, we have presented SmarTest, a test prioritization tool
for Drupal framework. Our goal is to make our research accessible
and useful to both the academic and the industrial community. Our

http://www.isa.us.es/smartest/demo-instructions.html


Figure 3: SmarTest’s dashboard

tool is an example of how open source communities can benefit
from the SPL techniques, and how SPL community can take advan-
tage of the problems detected in open source highly-configurable
systems. SmarTest presents relevant improvements with respect
to Simpletest, the core testing module in Drupal, namely: 1) a cus-
tomizable dashboard with valuable system information to guide
the testing and 2) test case prioritization with continuous feedback
at run-time enabling early bug fixes. SmarTest is distributed under
the GNU GPL v2 license recommended by Drupal to allow other
Drupal developers take part in its development. SmarTest has been
presented in the National Conference DrupalCampSpain and the
International Conference DrupalConEurope with very positive ac-
ceptance from the community. It is remarkable that SmarTest is
currently being reviewed and used by some companies and Drupal
professionals. We trust that our experience could be replicated in
other open source SPLs, where the data extracted from the family
of products can be used to select and prioritize tests on individual
products in a more effective way.

We plan to work on adapting SmarTest, currently working on
Drupal 7, to Drupal 8. We also plan to integrate our multi-objective
prioritization techniques into SmarTest since we are confident that
this could further improve the process of testing in Drupal.

ACKNOWLEDGMENTS
We thank Gabriel Hidalgo for his development work on SmarTest
and the Drupal contributors for their helpful assistance and con-
tributions. This work was partially supported by the European
Commission (FEDER) and the Spanish and Andalusian R&D&I pro-
grammes (BELI TIN2015-70560-R and COPAS P12-TIC-1867).

REFERENCES
[1] M. Al-Hajjaji, T. Thum, J. Meinicke, M. Lochau, and G. Saake. 2014. Similarity-

Based Prioritization in Software Product-Line Testing. In Software Product Line
Conference. 197–206.

[2] D. Buytaert. accessed in May 2017. Drupal Framework. http://www.drupal.org.
(accessed in May 2017).

[3] X. Devroey, G. Perrouin, and P. Schobbens. 2014. Abstract test case generation for
behavioural testing of software product lines. In Software Product Line Conference,
Vol. 2. ACM, 86–93.

[4] I. do Carmo Machado, J. D. McGregor, Y. Cerqueira Cavalcanti, and E. Santana
de Almeida. 2014. On strategies for testing software product lines: A systematic
literature review. Information and Software Technology 56, 10 (2014), 1183 – 1199.

[5] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. Le Traon. 2013. Multi-
objective Test Generation for Software Product Lines. In International Software
Product Line Conference. 62–71.

[6] R. E. Lopez-Herrejon, J. Ferrer, F. Chicano, E. N. Haslinger, A. Egyed, and E.
Alba. 2014. A parallel evolutionary algorithm for prioritized pairwise testing
of software product lines. In Genetic and Evolutionary Computation Conference.
1255–1262.

[7] D. Marijan, A. Gotlieb, S. Sen, and A. Hervieu. 2013. Practical Pairwise Testing
for Software Product Lines. In Software Product Line Conference. ACM, 227–235.

[8] A. Metzger and K. Pohl. 2014. Software Product Line Engineering and Variability
Management: Achievements and Challenges. In Proceedings of the on Future of
Software Engineering (FOSE 2014). ACM, New York, NY, USA, 70–84.

[9] J. A. Parejo, A. B. Sánchez, S. Segura, A. Ruiz Cortés, R. E. Lopez-Herrejon, and
A. Egyed. 2016. Multi-Objective Test Case Prioritization in Highly-Configurable
Systems: A Case Study. Journal of Systems and Software 122 (2016), 287–310.

[10] A. B. Sánchez, S. Segura, and A. Ruiz Cortés. 2015. SmarTest: Accelerating the
detection of faults in Drupal. In DrupalConEurope 2015.

[11] A. B. Sánchez, S. Segura, J. A. Parejo, and A. Ruiz-Cortés. 2017. Variability Testing
in the Wild: The Drupal Case Study. Software and Systems Modeling Journal 16,
1 (Apr 2017), 173–194.

[12] A. B. Sánchez, S. Segura, and A. Ruiz-Cortés. 2014. The Drupal Framework: A
Case Study to Evaluate Variability Testing Techniques. InWorkshop on Variability
Modelling of Software-intensive Systems. ACM, 11:1–11:8.

[13] A. B. Sánchez, S. Segura, and A. Ruiz-Cortés. 2015. SmarTest: Proposal for
accelerating the detection of faults in Drupal. In DrupalCampSpain 2015. Cadiz.

[14] T. Tomlinson and J. K. VanDyk. 2010. Pro Drupal 7 development: third edition.

http://www.drupal.org

	Abstract
	1 Introduction
	2 SimpleTest in Drupal
	3 SmarTest
	4 Conclusions and Future Work
	Acknowledgments
	References



