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 In this paper, novel stability result for discrete-time infinite horizon optimal 

control using fuzzy objective functions is presented. For this class of control, 

the fuzzy goals and the fuzzy constraints introduced in the fuzzy objective 

function handle the constraints placed on both the state and the control 

vectors. We analyze the asymptotic stability of the equilibrium for the 

infinite horizon fuzzy optimal control law using the minimum aggregation 

operator. We show that the infinite horizon control with the minimum 

aggregation operator does not guarantee the asymptotic stability of the 

equilibrium in general. This is done by deriving an analytical solution of the 

control law for a simple linear system using a fuzzy dynamic programming 

approach. An example that shows the novel asymptotic stability result of the 

equilibrium for discrete-time infinite horizon optimal control with fuzzy 

objective function problem is given. 
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1. INTRODUCTION 

Receding horizon control (RHC) has become the standard control technique for constrained 

dynamical systems [1]–[7]. RHC involves an open-loop finite horizon optimal control problem at each 

sampling instant where an objective function has to be optimized at each sample time. This objective 

function should well reflect the real performance specifications of the closed loop system. Most RHC 

algorithms use classical objective functions, namely the 1-norm, the Euclidean norm, or the infinity norm. 

However, in many cases, those standard objective functions only roughly reflect the real performance 

requirements. Fuzzy decision-making functions [8] are objective functions that more transparently reflect the 

performance requirements. A useful overview of decision-making fuzzy objective functions for dynamic 

systems control is given in [9]. However, only open-loop control applications were considered. It was 

initially mentioned in [10] how fuzzy decision-making could be applied to RHC. A method for weighing the 

importance of goals and constraints in RHC with fuzzy objective functions was addressed in [11] and 

successful applications can be found, e.g., in [12]–[15]. 

Asymptotic stability of the equilibrium is an overriding performance specification for closed loop 

control systems. For RHC with standard quadratic objective functions, asymptotic stability of the equilibrium 

was studied and derived using Lyapunov results [16] with set invariance theory [17]. The appropriate 

Lyapunov function for establishing the asymptotic stability of RHC with standard objective functions was the 

infinite horizon objective function associated with an auxiliary local stabilizing controller. In fact, the 

https://creativecommons.org/licenses/by-sa/4.0/
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stabilizing RHC schemes with standard objective functions are based on the result that the infinite horizon 

optimum controller asymptotically stabilizes the system to equilibrium under specific conditions 

(stabilizability and detectability). Thus, to derive asymptotically stabilizing RHC with fuzzy objective 

functions in a manner similar to the standard RHC case, it is important to first investigate the stability of the 

infinite horizon optimal control with fuzzy objective functions. It is also worth noting that the class of 

optimal control considered here differs from the fuzzy model optimal control case where only the model 

under control is fuzzy whereas the objective function is the standard one. For this, latest research on stability 

has reached a relatively a mature stage, see e.g., [18]–[22]. 

Asymptotic stability of the equilibrium under an infinite horizon optimal control law with fuzzy 

objective functions has been studied first in [23]. It has been shown that the product aggregation operator 

asymptotically stabilizes the infinite horizon optimal control with fuzzy objective functions to the 

equilibrium. This paper deals with asymptotic stability of equilibrium under an infinite horizon optimal 

control with fuzzy objective functions that use the minimum operator which is one of the most used 

aggregation operators. We show that the minimum aggregation operator does not guarantee, in general, the 

convergence of the infinite horizon optimal control with fuzzy objective functions to the equilibrium for all 

feasible initial states. We show the non-convergence of this control law by deriving an analytical solution for 

a simple first-order linear system using fuzzy dynamic programming [24], [25]. 

The paper's reminder is organized as follows. Infinite horizon optimal control problem with a fuzzy 

objective function that uses the minimum aggregation operator is introduced for a linear system in section 2. 

Section 3 presents the analytical solution for a linear system. The non-convergence of the resulting closed-

loop linear system is given in section 4 and section 5 presents the conclusion. 

 

 

2. INFINITE-HORIZON OPTIMAL CONTROL WITH MINIMUM AGGREGATION OPERATOR 

Consider the discrete-time linear state space model: 

 

𝑥(𝑡 + 1) = 𝑎𝑥(𝑡) + 𝑏𝑢(𝑡) (1) 

 

where 𝑡 ≥ 0 is the current moment, 𝑥(𝑡) ∈ ℝ, and 𝑢(𝑡) ∈ ℝ are the state and the control input, 

respectively. The infinite horizon optimal control problem with fuzzy objective function seeks to  

identify a control sequence {𝑢(𝑡)}𝑡≥0 = {𝑢(0), 𝑢(1),⋯ , 𝑢(∞)} that maximizes the fuzzy objective 

function: 

 

𝐽0,∞(𝑥(0), {𝑢(𝑡)}𝑡≥0) = ∧

𝑡=0
∞

{𝜇𝐺(𝑥(𝑡)) ∧ 𝜇𝐶(𝑢(𝑡))} (2) 

 

subject to 

 

𝑥(𝑡 + 1) = 𝑎𝑥(𝑡) + 𝑏𝑢(𝑡) (3) 

 

where 𝜇𝐺(𝑥(𝑡)) and 𝜇𝐶(𝑢(𝑡)) are the fuzzy goals and the fuzzy constraint imposed on the state variable 

and the control effort, respectively. Fuzzy goals and fuzzy constraints are characterized by their 

membership functions which are mappings from the domain of the state variable and control action to 
[0,1]. Here the operator ∧ denotes the minimum aggregation operator and 𝐽0,∞(𝑥(0), {𝑢(𝑡)}𝑡≥0) given in (2) 

is the fuzzy objective function. Infinite horizon optimum controller that maximizes (2) subject to (3) is 

given by {𝑢∗(𝑡)}𝑡≥0 = 𝑎𝑟𝑔 𝑚𝑎𝑥
{𝑢(𝑡)}𝑡≥0

𝐽0,∞(𝑥(0), {𝑢(𝑡)}𝑡≥0) which is the point where the confluence between 

the fuzzy goals and the fuzzy constraints is at its maximum. 

 

 

3. ANANALYTICAL SOLUTION 

Let us first consider the optimal controller 𝑢∗(𝑡) with finite horizon and fuzzy objective function: 

 

𝑢∗(𝑡) = 𝑎𝑟𝑔 𝑚𝑎𝑥
{𝑢(𝑡)}0≤𝑡≤𝑁−1

𝐽0,𝑁(𝑥(0), {𝑢(𝑡)}0≤𝑡≤𝑁−1), (4) 

 

subject to 

 

𝑥(𝑡 + 1) = 𝑎𝑥(𝑡) + 𝑏𝑢(𝑡) (5) 
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where {𝑢(𝑡)}0≤𝑡≤𝑁−1 = {𝑢(0), 𝑢(1),⋯ , 𝑢(𝑁 − 1)} and 𝑁 ≥ 1 is the finite horizon. The fuzzy objective 

function 𝐽0,𝑁(𝑥(0), {𝑢(𝑡)}0≤𝑡≤𝑁−1) with a finite horizon is given by (6). 

 

𝐽0,𝑁(𝑥(0), {𝑢(𝑡)}0≤𝑡≤𝑁−1) = 𝑚𝑖𝑛 (𝜇𝐶(𝑢(0)), 𝜇𝐺(𝑥(1)),⋯ , 𝜇𝐶(𝑢(𝑁 − 1)), 𝜇𝐺(𝑥(𝑁))) (6) 

 

The membership functions 𝜇𝐺(𝑥(𝑡)), 1 ≤ 𝑡 ≤ 𝑁 and 𝜇𝐶(𝑢(𝑡)), 0 ≤ 𝑡 ≤ 𝑁 − 1 are given in Figure 1(a) and 

Figure 1(b), respectively.  

 

 

  
(a) (b) 

 

Figure 1. Membership functions (a) fuzzy goal and (b) fuzzy constraint 

 

 

In this scenario, if the state x equals zero, i.e., the equilibrium is reached, then the goal is fully 

achieved. Nevertheless, if −𝐹 ≤ 𝑢(𝑡) ≤ 𝐹, the constraint is fully satisfied. Moving away from zero for the 

state and away from the interval [−𝐹, 𝐹] for the control action, the level of the fuzzy goal's and constraint's 

fulfillment would steadily decline. Note that these membership function choices satisfy the hard constraints 

−𝐸 ≤ 𝑢(𝑡) ≤ 𝐸 and −𝑆 ≤ 𝑥(𝑡) ≤ 𝑆. 

In the sequel, the optimal partial objective function of (6) from stage 𝑁 − 𝑟 to stage 𝑁, where  

𝑟 = 1, 2,⋯ ,𝑁, is given by (7), 

 

𝐽𝑁−𝑟,𝑁
∗ (𝑥(𝑁 − 𝑟)) = 𝑚𝑎𝑥

{𝑢(𝑡)}𝑁−𝑟≤𝑡≤𝑁−1
𝐽𝑁−𝑟,𝑁(𝑥(𝑁 − 𝑟), {𝑢(𝑡)}𝑁−𝑟≤𝑡≤𝑁−1) (7) 

 

where 

 
{𝑢(𝑡)}𝑁−𝑟≤𝑡≤𝑁−1 = {𝑢(𝑁 − 𝑟), 𝑢(𝑁 − 𝑟 + 1),⋯ , 𝑢(𝑁 − 1)} (8) 

 

and 𝐽𝑁−𝑟,𝑁(𝑥(𝑁 − 𝑟), {𝑢(𝑡)}𝑁−𝑟≤𝑡≤𝑁−1) is the partial objective function from stage 𝑁 − 𝑟 to stage 𝑁. It 

would be given for a minimum aggregation operator by (9): 

 

𝐽𝑁−𝑟,𝑁(𝑥(𝑁 − 𝑟), {𝑢(𝑡)}𝑁−𝑟≤𝑡≤𝑁−1) = 𝑚𝑖𝑛 (𝜇𝐶(𝑢(𝑁 − 𝑟)), 𝜇𝐺(𝑥(𝑁 − 𝑟 + 1)),⋯ , 𝜇𝐶(𝑢(𝑁 −

1)), 𝜇𝐺(𝑥(𝑁))) (9) 

 

Lemma 1: If 0b   and  1a S bE  , then the optimal control sequence solution of (7)-(9) subject 

to system (5) is given by (10a) to (10f):   

 

𝑢∗(𝑁 − 𝑟) =
(𝐹−𝐸)𝑎𝑟𝑥(𝑁−𝑟)+𝐹𝑆

𝑏(𝐸−𝐹)(𝑎𝑟−1)/(𝑎−1)+𝑆
 𝑖𝑓 

−𝑆−𝑏𝐸(𝑎𝑟−1)/(𝑎−1)

𝑎𝑟
< 𝑥(𝑁 − 𝑟) ≤

𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
 (10a) 

 
𝐹𝑆−𝑎(𝐸−𝐹)𝑥(𝑁−𝑟)

𝑆+𝑏(𝐸−𝐹)
 𝑖𝑓 

𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
≤ 𝑥(𝑁 − 𝑟) ≤

−𝑏𝐹

𝑎
 (10b) 

 

–
𝑎

𝑏
𝑥(𝑁 − 𝑟) 𝑖𝑓 

–𝑏𝐹

𝑎
≤ 𝑥(𝑁 − 𝑟) ≤

𝑏𝐹

𝑎
 (10c) 

 
–𝐹𝑆−𝑎(𝐸−𝐹)𝑥(𝑁−𝑟)

𝑆+𝑏(𝐸−𝐹)
 𝑖𝑓 

𝑏𝐹

𝑎
≤ 𝑥(𝑁 − 𝑟) ≤

–𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
 (10d) 
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(𝐹−𝐸)𝑎𝑟𝑥(𝑁−𝑟)−𝐹𝑆

𝑏(𝐸−𝐹)(𝑎𝑟−1)/(𝑎−1)+𝑆
 𝑖𝑓 

–𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
≤ 𝑥(𝑁 − 𝑟) <

𝑆+𝑏𝐸(𝑎𝑟−1)/(𝑎−1)

𝑎𝑟
 (10e) 

 

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑖𝑓 |𝑥(𝑁 − 𝑟)| ≥
𝑆+𝑏𝐸(𝑎𝑟−1)/(𝑎−1)

𝑎𝑟
 (10f) 

 

for all 𝑟 = 1, 2,⋯ ,𝑁, and the optimal partial fuzzy objective function is given by (11a) to (11f):  

 

𝐽𝑁−𝑟,𝑁
∗ (𝑥(𝑁 − 𝑟)) =

𝑎𝑟𝑥(𝑁−𝑟)+𝑏𝐸(𝑎𝑟−1)/(𝑎−1)+𝑆

𝑏(𝐸−𝐹)(𝑎𝑟−1)/(𝑎−1)+𝑆
   

𝑖𝑓 
−𝑆−𝑏𝐸(𝑎𝑟−1)/(𝑎−1)

𝑎𝑟
< 𝑥(𝑁 − 𝑟) ≤

𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
 (11a) 

 
𝑆+𝑎𝑥(𝑁−𝑟)+𝑏𝐸

𝑆+𝑏(𝐸−𝐹)
 𝑖𝑓 

𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
≤ 𝑥(𝑁 − 𝑟) ≤

−𝑏𝐹

𝑎
 (11b) 

 

1 𝑖𝑓 
–𝑏𝐹

𝑎
≤ 𝑥(𝑁 − 𝑟) ≤

𝑏𝐹

𝑎
 (11c) 

 
𝑆−𝑎𝑥(𝑁−𝑟)+𝑏𝐸

𝑆+𝑏(𝐸−𝐹)
 𝑖𝑓 

𝑏𝐹

𝑎
≤ 𝑥(𝑁 − 𝑟) ≤

–𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
 (11d) 

 
−𝑎𝑟𝑥(𝑁−𝑟)+𝑏𝐸(𝑎𝑟−1)/(𝑎−1)+𝑆

𝑏(𝐸−𝐹)(𝑎𝑟−1)/(𝑎−1)+𝑆
 𝑖𝑓 

–𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
≤ 𝑥(𝑁 − 𝑟) <

𝑆+𝑏𝐸(𝑎𝑟−1)/(𝑎−1)

𝑎𝑟
 (11e) 

 

0 𝑖𝑓 |𝑥(𝑁 − 𝑟)| ≥
𝑆+𝑏𝐸(𝑎𝑟−1)/(𝑎−1)

𝑎𝑟
 (11f) 

 

for all 𝑟 = 1, 2,⋯ ,𝑁. 

Proof: the proof is done by induction. First, note that applying the principle of optimality to problem 

(7)-(9) subject to system (5) we can write: 

 

𝐽𝑁,𝑁
∗ (𝑥(𝑁)) = 0 (12) 

 

and 

 

𝐽𝑁−𝑟,𝑁
∗ (𝑥(𝑁 − 𝑟)) = 𝑚𝑎𝑥

𝑢(𝑁−𝑟)
  

𝑚𝑖𝑛{𝜇𝐶(𝑢(𝑁 − 𝑟)), 𝜇𝐺(𝑥(𝑁 − 𝑟 + 1)), 𝐽𝑁−𝑟+1,𝑁
∗ (𝑥(𝑁 − 𝑟 + 1))} (13) 

 

where  

 

𝑥(𝑁 − 𝑟 + 1) = 𝑎𝑥(𝑁 − 𝑟) + 𝑏𝑢(𝑁 − 𝑟), 𝑟 = 1,⋯ ,𝑁 (14) 

 

The optimal control sequence and the optimal partial fuzzy objective functions will be derived using  

(12)-(14). From Figure 1(a) and Figure 1(b), it follows that 

 

0 𝑖𝑓 |𝑢(𝑁 − 𝑟)| ≥ 𝐸 (15a) 

 
𝑢(𝑁−𝑟)+𝐸

𝐸−𝐹
 𝑖𝑓 − 𝐸 ≤ 𝑢(𝑁 − 𝑟) ≤ −𝐹 (15b) 

 

1 𝑖𝑓 |𝑢(𝑁 − 𝑟)| ≤ 𝐹 (15c) 

 
−𝑢(𝑁−𝑟)+𝐸

𝐸−𝐹
 𝑖𝑓 𝐹 ≤ 𝑢(𝑁 − 𝑟) ≤ 𝐸 (15d) 

 

and 

 

𝜇𝐺(𝑥(𝑁 − 𝑟 + 1)) = 0 𝑖𝑓 |𝑥(𝑁 − 𝑟 + 1)| ≥ 𝑆 (16a) 

 
𝑥(𝑁−𝑟+1)+𝑆

𝑆
 𝑖𝑓 − 𝑆 ≤ 𝑥(𝑁 − 𝑟 + 1) ≤ 0 (16b) 
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−𝑥(𝑁−𝑟+1)+𝑆

𝑆
 𝑖𝑓 0 ≤ 𝑥(𝑁 − 𝑟 + 1) ≤ 𝑆 (16c) 

 

for all 𝑟 = 1,⋯ ,𝑁. Substituting (14) into (16a)-(16c) we obtain: 

 

𝜇𝐺(𝑥(𝑁 − 𝑟 + 1)) = 𝜇𝐺(𝑎𝑥(𝑁 − 𝑟) + 𝑏𝑢(𝑁 − 𝑟)) = 0   

𝑖𝑓 𝑢(𝑁 − 𝑟) ≤
−𝑎𝑥(𝑁−𝑟)−𝑆

𝑏
 𝑜𝑟 (𝑁 − 𝑟) ≥

−𝑎𝑥(𝑁−𝑟)+𝑆

𝑏
 (17a) 

 
𝑎𝑥(𝑁−𝑟)+𝑏𝑢(𝑁−𝑟)+𝑆

𝑆
 𝑖𝑓 

−𝑎𝑥(𝑁−𝑟)−𝑆

𝑏
≤ 𝑢(𝑁 − 𝑟) ≤

−𝑎𝑥(𝑁−𝑟)

𝑏
 (17b) 

 
−𝑎𝑥(𝑁−𝑟)−𝑏𝑢(𝑁−𝑟)+𝑆

𝑆
 𝑖𝑓 

−𝑎𝑥(𝑁−𝑟)

𝑏
≤ 𝑢(𝑁 − 𝑟) ≤

−𝑎𝑥(𝑁−𝑟)+𝑆

𝑏
 (17c) 

 

for all 𝑟 = 1,⋯ ,𝑁.  

Now, let us show the validity of (10a)-(10f) and (11a)-(11f) for 𝑟 = 1. Letting 𝑟 = 1 in (15a)-(15d) 

and (17a)-(17c), we get the membership functions 𝜇𝐺(𝑎𝑥(𝑁 − 1) + 𝑏𝑢(𝑁 − 1)) and 𝜇𝐶(𝑢(𝑁 − 1)). They 

are shown in Figure 2. 

 

 

 
 

Figure 2. Variation of the membership functions 𝜇𝐶(𝑢(𝑁 − 1)) and 𝜇𝐺(𝑥(𝑁)) 
 

 

From Figure 2, we conclude that:  

 Case 1: If 
−𝑎𝑥(𝑁−1)+𝑆

𝑏
≤ −𝐸 or 

−𝑎𝑥(𝑁−1)−𝑆

𝑏
≥ 𝐸, or equivalently if |𝑥(𝑁 − 1)| ≥

𝑆+𝑏𝐸

𝑎
, then there is no 

intersection between the two membership functions. This shows (10f) and (11f) for 𝑟 = 1.  

 Case 2: If 
−𝑎𝑥(𝑁−1)+𝑆

𝑏
> −𝐸 and 

−𝑎𝑥(𝑁−1)

𝑏
≤ −𝐹 or equivalently if 

𝑏𝐹

𝑎
≤ 𝑥(𝑁 − 1) <

𝑆+𝑏𝐸

𝑎
, then the 

control action that maximizes the fuzzy objective function 𝐽𝑁−1,𝑁(𝑥(𝑁 − 1), 𝑢(𝑁 − 1)) =

𝑚𝑖𝑛(𝜇𝐶(𝑢(𝑁 − 1)), 𝜇𝐺 (𝑎𝑥(𝑁 − 1) +𝑏𝑢(𝑁 − 1))) is the intersection between 𝜇𝐶(𝑢(𝑁 − 1)) and 

𝜇𝐺(𝑎𝑥(𝑁 − 1) + 𝑏𝑢(𝑁 − 1)) given in (15b) and (17c) for 1r  . It satisfies  

 
𝑢∗(𝑁−1)+𝐸

𝐸−𝐹
=

−𝑎𝑥(𝑁−1)−𝑏𝑢∗(𝑁−1)+𝑆

𝑆
 (18) 

 

Hence, (10d), (10e), (11d) and (11e) follow for 𝑟 = 1. 

 Case 3: If −𝐹 ≤
−𝑎𝑥(𝑁−1)

𝑏
≤ 𝐹 or equivalently if 

–𝑏𝐹

𝑎
≤ 𝑥(𝑁 − 1) ≤

𝑏𝐹

𝑎
, then 𝑢∗(𝑁 − 1) =

−𝑎𝑥(𝑁−1)

𝑏
 and 

𝐽𝑁−1,𝑁
∗ (𝑥(𝑁 − 1)) = 1. Thus, proving (10c) and (11c) for 1r  .  

Equations (10a), (10b), (11a) and (11b), for  𝑟 = 1, can be shown in a similar fashion. Now assume, 

as induction hypothesis, that (10a)-(10f) and (11a)-(11f) hold for 1r   and we will show their validity for  𝑟. 

The membership functions 𝜇𝐶(𝑢(𝑁 − 𝑟)), 𝜇𝐺(𝑥(𝑁 − 𝑟 + 1)) and 𝐽𝑁−𝑟+1,𝑁
∗ (𝑥(𝑁 − 𝑟 + 1)) are given in 

Figure 3, Figure 4, and Figure 5, respectively with 𝑧 =
(𝑎−1)𝑆−𝑏𝐸

(𝑎−1)𝑆−𝑏(𝐸−𝐹)
. Figure 3 is obtained from (15a)-(15d), 

Figure 4 from (16a)-(16c) and Figure 5 from (11a)-(11f) substituting r  with 𝑟 − 1.  
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Figure 3. 𝜇𝐶(𝑢(𝑁 − 𝑟)) Figure 4. 𝜇𝐺(𝑥(𝑁 − 𝑟 + 1)) 
 

 

 
 

Figure 5. 𝐽𝑁−𝑟+1,𝑁
∗ (𝑥(𝑁 − 𝑟 + 1)) 

 

 

If we pose 𝜇(𝑥(𝑁 − 𝑟 + 1)) = 𝑚𝑖𝑛{𝜇𝐺(𝑥(𝑁 − 𝑟 + 1)), 𝐽𝑁−𝑟+1,𝑁
∗ (𝑥(𝑁 − 𝑟 + 1))}, then (13) might 

be rewritten as (19). 
 

𝐽𝑁−𝑟,𝑁
∗ (𝑥(𝑁 − 𝑟)) = 𝑚𝑎𝑥

𝑢(𝑁−𝑟)
𝑚𝑖𝑛{𝜇𝐶(𝑢(𝑁 − 𝑟)), 𝜇(𝑥(𝑁 − 𝑟 + 1))} = 𝑚𝑎𝑥

𝑢(𝑁−𝑟)
𝑚𝑖𝑛{𝜇𝐶(𝑢(𝑁 − 𝑟)),

𝜇(𝑎𝑥(𝑁 − 𝑟) + 𝑏𝑢(𝑁 − 𝑟))}  (19) 

 

In view of Figure 4 and Figure 5, and since 𝜇𝐺 (𝑥(𝑁 − 𝑟 + 1) = ±
𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
) =

(𝑎−1)𝑆−𝑏𝐸

(𝑎−1)𝑆−𝑏(𝐸−𝐹)
 (denoted 

z  in Figure 5), which is obtained by direct substitution into (16b) and (16c), 𝜇(𝑥(𝑁 − 𝑟 + 1)) would be as 

shown with thick line in Figure 6, where 𝑚1 =
−𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
 and 𝑚2 =

𝑆+𝑏𝐸(𝑎𝑟−1−1)/(𝑎−1)

𝑎𝑟−1
. Thus, 

 

𝜇(𝑥(𝑁 − 𝑟 + 1)) = 0 𝑖𝑓 |𝑥(𝑁 − 𝑟 + 1)| ≥
𝑆+𝑏𝐸(𝑎𝑟−1−1)/(𝑎−1)

𝑎𝑟−1
 (20a) 

 
𝑎𝑟−1𝑥(𝑁−𝑟+1)+𝑏𝐸(𝑎𝑟−1−1)/(𝑎−1)+𝑆

𝑏(𝐸−𝐹)(𝑎𝑟−1−1)/(𝑎−1)+𝑆
 𝑖𝑓

–𝑆−𝑏𝐸(𝑎𝑟−1−1)/(𝑎−1)

𝑎𝑟−1
< 𝑥(𝑁 − 𝑟 + 1) ≤

𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
 (20b) 

 
𝑥(𝑁−𝑟+1)+𝑆

𝑆
 𝑖𝑓 

𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
≤ 𝑥(𝑁 − 𝑟 + 1) ≤ 0 (20c) 

 
−𝑥(𝑁−𝑟+1)+𝑆

𝑆
 𝑖𝑓 0 ≤ 𝑥(𝑁 − 𝑟 + 1) ≤

−𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
 (20d) 

 
−𝑎𝑟−1𝑥(𝑁−𝑟+1)+𝑏𝐸(𝑎𝑟−1−1)/(𝑎−1)+𝑆

𝑏(𝐸−𝐹)(𝑎𝑟−1−1)/(𝑎−1)+𝑆
 𝑖𝑓 

–𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
≤ 𝑥(𝑁 − 𝑟 + 1) <

𝑆+𝑏𝐸(𝑎𝑟−1−1)/(𝑎−1)

𝑎𝑟−1
 (20e) 

 

Substituting (14) into (20a)-(20e), we obtain:  
 

𝜇(𝑎𝑥(𝑁 − 𝑟) + 𝑏𝑢(𝑁 − 𝑟)) = 0 𝑖𝑓 𝑢(𝑁 − 𝑟) ≥
𝑆+𝑏𝐸(𝑎𝑟−1−1)/(𝑎−1)−𝑎𝑟𝑥(𝑁−𝑟)

𝑏𝑎𝑟−1
 (21a) 

 

𝑎𝑟𝑥(𝑁−𝑟)+𝑎𝑟−1𝑏𝑢(𝑁−𝑟)+
𝑏𝐸(𝑎𝑟−1−1)

(𝑎−1)
+𝑆

𝑏(𝐸−𝐹)(𝑎𝑟−1−1)

(𝑎−1)
+𝑆

 𝑖𝑓   

–𝑆−𝑏𝐸(𝑎𝑟−1−1)/(𝑎−1)−𝑎𝑟𝑥(𝑁−𝑟)

𝑏𝑎𝑟−1
𝑢(𝑁 − 𝑟) ≤

𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
−

𝑎

𝑏
𝑥(𝑁 − 𝑟) (21b) 
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𝑎𝑥(𝑁−𝑟)+𝑏𝑢(𝑁−𝑟)+𝑆

𝑆
 𝑖𝑓 

𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
−

𝑎

𝑏
𝑥(𝑁 − 𝑟) ≤ 𝑢(𝑁 − 𝑟) ≤ −

𝑎

𝑏
𝑥(𝑁 − 𝑟) (21c) 

 
−𝑎𝑥(𝑁−𝑟)−𝑏𝑢(𝑁−𝑟)+𝑆

𝑆
 𝑖𝑓 −

𝑎

𝑏
𝑥(𝑁 − 𝑟) ≤ 𝑢(𝑁 − 𝑟) ≤

−𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
−

𝑎

𝑏
𝑥(𝑁 − 𝑟) (21d) 

 

−𝑎𝑟𝑥(𝑁−𝑟)−𝑎𝑟−1𝑏𝑢(𝑁−𝑟)+
𝑏𝐸(𝑎𝑟−1−1)

(𝑎−1)
+𝑆

𝑏(𝐸−𝐹)(𝑎𝑟−1−1)

(𝑎−1)
+𝑆

  if 

−𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
−

𝑎

𝑏
𝑥(𝑁 − 𝑟) ≤ 𝑢(𝑁 − 𝑟) <

𝑆+𝑏𝐸(𝑎𝑟−1−1)/(𝑎−1)−𝑎𝑟𝑥(𝑁−𝑟)

𝑏𝑎𝑟−1
 (21e) 

 

Figure 7 shows the variation of the membership functions 𝜇𝐶(𝑢(𝑁 − 𝑟)) given in (15a)-(15d), and 

𝜇(𝑎𝑥(𝑁 − 𝑟) + 𝑏𝑢(𝑁 − 𝑟)) given in (21a)-(21e), with respect to 𝑢(𝑁 − 𝑟). Where: 𝑔0 =
−𝑎𝑥(𝑁−𝑟)

𝑏
,  

𝑔1 = −
𝑆+𝑏𝐸(𝑎𝑟−1−1)/(𝑎−1)+𝑎𝑟𝑥(𝑁−𝑟)

𝑏𝑎𝑟−1
, 𝑔2 =

𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
−

𝑎

𝑏
𝑥(𝑁 − 𝑟), 𝑔3 =

−𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
−

𝑎

𝑏
𝑥(𝑁 − 𝑟) and 

𝑔4 =
𝑆+𝑏𝐸(𝑎𝑟−1−1)/(𝑎−1)−𝑎𝑟𝑥(𝑁−𝑟)

𝑏𝑎𝑟−1
. 𝑒 is obtained by solving the equation 

−𝑢(𝑁−𝑟)+𝐸

𝐸−𝐹
= 𝑧 (𝑧 =

(𝑎−1)𝑆−𝑏𝐸

(𝑎−1)𝑆−𝑏(𝐸−𝐹)
) 

for 𝑢(𝑁 − 𝑟). It is given by 𝑒 =
(1−𝑎)𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
. Thus, the position of 𝜇(𝑎𝑥(𝑁 − 𝑟) + 𝑏𝑢(𝑁 − 𝑟)) with 

respect to 𝜇𝐶(𝑢(𝑁 − 𝑟)) depends on 𝑥(𝑁 − 𝑟).  
 

 

  
  

Figure 6. 𝜇(𝑥(𝑁 − 𝑟 + 1)) Figure 7. 𝜇𝐶(𝑢(𝑁 − 𝑟)) and 𝜇(𝑎𝑥(𝑁 − 𝑟) +

𝑏𝑢(𝑁 − 𝑟)) 
 

 

From Figure 7, we conclude that:  

 Case 1: If 𝑔4 ≤ −𝐸 or 𝑔1 ≥ 𝐸, or equivalently if |𝑥(𝑁 − 𝑟)| ≥
𝑆+𝑏𝐸(𝑎𝑟−1)/(𝑎−1)

𝑎𝑟
, then there is no 

intersection between the two membership functions 𝜇𝐶(𝑢(𝑁 − 𝑟)) and 𝜇(𝑎𝑥(𝑁 − 𝑟) + 𝑏𝑢(𝑁 − 𝑟)) and 

hence 𝑚𝑖𝑛(𝜇𝐶(𝑢(𝑁 − 𝑟)), 𝜇(𝑎𝑥(𝑁 − 𝑟) + 𝑏𝑢(𝑁 − 𝑟))) = 0. From (19), we conclude that 𝐽𝑁−𝑟,𝑁
∗ (𝑥(𝑁 −

𝑟)) = 0. Thus (10f) and (11f) follow. 

 Case 2: If 𝑔4 > −𝐸 and 𝑔3 ≤ −𝑒, or equivalently if 
–𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
≤ 𝑥(𝑁 − 𝑟) <

𝑆+𝑏𝐸(𝑎𝑟−1)/(𝑎−1)

𝑎𝑟
, then 

the maximizer 𝑢∗(𝑁 − 𝑟) is the intersection of 𝜇𝑐(𝑢(𝑁 − 𝑟)) and 𝜇(𝑎𝑥(𝑁 − 𝑟) + 𝑏𝑢(𝑁 − 𝑟)) given in 

(15b) and (21e), respectively. It satisfies (22). 

 
−𝑎𝑟𝑥(𝑁−𝑟)−𝑎𝑟−1𝑏𝑢∗(𝑁−𝑟)+𝑏𝐸(𝑎𝑟−1−1)/(𝑎−1)+𝑆

𝑏(𝐸−𝐹)(𝑎𝑟−1−1)/(𝑎−1)+𝑆
=

𝑢∗(𝑁−𝑟)+𝐸

𝐸−𝐹
 (22) 

 

Then, (10e) follows. (11e) follows easily substituting the maximizer 𝑢∗(𝑁 − 𝑟) into one side of (22). 

 Case 3: If 𝑔3 ≥ −𝑒 and 𝑔0 ≤ −𝐹 or equivalently if 
𝑏𝐹

𝑎
≤ 𝑥(𝑁 − 𝑟) ≤

–𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
, then from (15d) and 

(21d), we get: 

 
𝑢∗(𝑁−𝑟)+𝐸

𝐸−𝐹
=

−𝑎𝑥(𝑁−𝑟)−𝑏𝑢∗(𝑁−𝑟)+𝑆

𝑆
 (23) 

 

which shows (10d). (11d) is obtained by substituting 𝑢∗(𝑁 − 𝑟) into one side of (23).  
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 Case 4: If −𝐹 ≤ 𝑔0 ≤ 𝐹 or equivalently 
–𝑏𝐹

𝑎
≤ 𝑥(𝑁 − 𝑟) ≤

𝑏𝐹

𝑎
, then 𝑢∗(𝑁 − 𝑟) =

−𝑎𝑥(𝑁−𝑟)

𝑏
 and 

𝐽𝑁−𝑟,𝑁
∗ (𝑥(𝑁 − 𝑟)) = 1. Thus, (10c) and (11c) follow. 

The proof of (10a), (10b), (11a) and (11b) can be done in a similar fashion. This concludes the proof 

of the lemma. Lemma 1 provides an analytical solution of the finite horizon optimal control problem (7)-(9) 

subject to system (5) under assumptions 0b  ,  1a S bE   and the fuzzy goal and the fuzzy constraint 

given in Figure 1(a) and Figure 1(b), respectively. 

 

 

4. OPTIMALITY DOES NOT IMPLY ASYMPTOTIC STABILITY OF THE EQUILIBRIUM 

The following theorem shows that the optimality of the infinite horizon optimal control with the 

minimum aggregation operator does not imply asymptotic stability of the equilibrium for the closed loop 

linear system (1).  

Theorem 1: The infinite horizon optimal control with fuzzy objective function (2), the minimum aggregation 

operator and the fuzzy goal and constraint given in Figures 1(a) and 1(b) do not converge to the equilibrium 

for all initial feasible states. 

Proof: We also assume here that 𝑏 > 0 and(𝑎 − 1)𝑆 > 𝑏𝐸. Equation (2) can be written as (24). 

 

𝐽0,∞(𝑥(0), {𝑢(𝑡)}𝑡≥0) = 𝑚𝑖𝑛{𝜇𝐺(𝑥(0)),𝑚𝑖𝑛(𝜇𝐶(𝑢(0)), 𝜇𝐺(𝑥(1)), 𝜇𝐶(𝑢(1)),⋯ )} (24) 

 

Letting 𝑁 → ∞ into (6) and substituting it into (24), we can write as (25). 

 

𝐽0,∞(𝑥(0), {𝑢(𝑡)}𝑡≥0) = 𝑚𝑖𝑛{𝜇𝐺(𝑥(0)), 𝐽0,∞(𝑥(0), {𝑢(𝑡)}𝑡≥0)} (25) 

 

Substituting 𝑟 with 𝑁 in (10a)-(10f), (11a)-(11f) and then letting 𝑁 → ∞ one obtains the first optimal control 

action 𝑢∗(0) of the optimal sequence {𝑢∗(𝑡)}𝑡≥0solution of (2)-(3) and the corresponding optimal fuzzy 

objective function 𝐽∗0,∞(𝑥(0)). Note that since 𝑏𝐸 > 0 and (𝑎 − 1)𝑆 > 𝑏𝐸 then 𝑎 > 1 and hence  

𝑙𝑖𝑚
𝑁→∞

𝑎𝑁 = ∞. Thus, the first optimal control action 𝑢∗(0) is given by (26a)-(26b). 

 

𝑢∗(0) =
1−𝑎

𝑏
𝑥(0) 𝑖𝑓 

−𝑏𝐸

(𝑎−1)
< 𝑥(0) ≤

𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
 (26a) 

 
𝑆+𝑎𝑥(𝑁−𝑟)+𝑏𝐸

𝑆+𝑏(𝐸−𝐹)
 𝑖𝑓 

𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
≤ 𝑥(𝑁 − 𝑟) ≤

−𝑏𝐹

𝑎
 (26b) 

 

–
𝑎

𝑏
𝑥(0) 𝑖𝑓 

–𝑏𝐹

𝑎
≤ 𝑥(0) ≤

𝑏𝐹

𝑎
 (26c) 

 

–𝐹𝑆−𝑎(𝐸−𝐹)𝑥(0)

𝑆+𝑏(𝐸−𝐹)
 𝑖𝑓 

𝑏𝐹

𝑎
≤ 𝑥(0) ≤

–𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
 (26d) 

 

1−𝑎

𝑏
𝑥(0) 𝑖𝑓 

–𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
≤ 𝑥(0) <

𝑏𝐸

𝑎−1
 (26e) 

 

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑖𝑓 |𝑥(0)| ≥
𝑏𝐸

𝑎−1
 (26f) 

 

The associated optimal fuzzy objective function is given by (27a)-(27f). 

 

𝐽0,∞
∗ (𝑥(0)) =

(𝑎−1)𝑥(0)+𝑏𝐸

𝑏(𝐸−𝐹)
 𝑖𝑓 −

𝑏𝐸

𝑎−1
< 𝑥(0) ≤

𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
 (27a) 

 
𝑎𝑥(0)+𝑏𝐸+𝑆

𝑆+𝑏(𝐸−𝐹)
 𝑖𝑓 

𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
≤ 𝑥(0) ≤

−𝑏𝐹

𝑎
 (27b) 

 

1 𝑖𝑓 
–𝑏𝐹

𝑎
≤ 𝑥(0) ≤

𝑏𝐹

𝑎
 (27c) 

 

−𝑎𝑥(𝑡)+𝑏𝐸+𝑆

𝑆+𝑏(𝐸−𝐹)
 𝑖𝑓 

𝑏𝐹

𝑎
≤ 𝑥(0) ≤

–𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
 (27d) 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Infinite horizon fuzzy optimal control: optimality does not imply asymptotic stability (Samir Teniou) 

3921 

(1−𝑎)𝑥(0)+𝑏𝐸

𝑏(𝐸−𝐹)
 𝑖𝑓 

–𝑏𝐹𝑆

(1−𝑎)𝑆+𝑏(𝐸−𝐹)
≤ 𝑥(0) <

𝑏𝐸

𝑎−1
 (27e) 

 

0 𝑖𝑓 |𝑥(0)| ≥
𝑏𝐸

𝑎−1
. (27f) 

 

Figure 8 shows the membership functions 𝜇𝐺(𝑥(0)) and 𝐽0,∞
∗ (𝑥(0)) = 𝑚𝑎𝑥

{𝑢(𝑡)}𝑡≥0
𝐽0,∞(𝑥(0), {𝑢(𝑡)}𝑡≥0). 

This latest is given in (27a)-(27f). It is clear that (𝑎 − 1)𝑆 > 𝑏𝐸 > 0 and 𝑆 > 0 then 𝑆 >
𝑏𝐸

𝑎−1
 and hence (see 

Figure 8) there exists a right hand neighborhood 𝒩1 of 
𝑏𝐸

𝑎−1
, and a left hand neighborhood 𝒩2 of −

𝑏𝐸

𝑎−1
, such 

that 𝜇𝐺(𝑥(0)) > 𝐽0,∞
∗ (𝑥(0)) > 0, for all 𝑥(0) ∈ {𝒩1 ∪𝒩2}. Since by optimality 𝐽0,∞

∗ (𝑥(0)) >

𝐽0,∞(𝑥(0), {𝑢(𝑡)}𝑡≥0), it follows that 𝜇𝐺(𝑥(0)) > 𝐽0,∞(𝑥(0), {𝑢(𝑡)}𝑡≥0), for all 𝑥(0) ∈ {𝒩1 ∪𝒩2}. Thus, from 

(25): 𝐽0,∞(𝑥(0), {𝑢(𝑡)}𝑡≥0) = 𝐽0,∞(𝑥(0), {𝑢(𝑡)}𝑡≥0), for all 𝑥(0) ∈ {𝒩1 ∪𝒩2}. Therefore, if 𝑥(0) ∈
{𝒩1 ∪𝒩2}, then the first control action 𝑢∗(0) of the sequence {𝑢∗(𝑡)}𝑡≥0 solution of the infinite horizon 

optimal control problem that maximizes the fuzzy objective function (2) with the minimum aggregation 

operator and subject to linear system (1) could be obtained from (26a) and (26e). It is given by 𝑢∗(0) =
1−𝑎

𝑏
𝑥(0), for all 𝑥(0) ∈ {𝒩1 ∪𝒩2}. Therefore, 𝑥(1) = 𝑎𝑥(0) + 𝑏 (

1−𝑎

𝑏
𝑥(0)) = 𝑥(0). In this case, we can 

show using the principle of optimality that 𝑢∗(𝑡) =
1−𝑎

𝑏
𝑥(𝑡), ∀𝑡 ≥ 1. It follows that 𝑥(𝑡 + 1) = 𝑎𝑥(𝑡) +

𝑏 (
1−𝑎

𝑏
𝑥(𝑡)) = 𝑥(𝑡), ∀𝑡 ≥ 1 and thus the state of the closed-loop system will not reach the origin 

equilibrium point. 

 

 

 
 

Figure 8. The membership functions 𝜇𝐺(𝑥(0)) and 𝐽0,∞
∗ (𝑥(0)) 

 

 

4.1.  Example 

Consider the first order linear system: 𝑥(𝑡 + 1) = 𝑎𝑥(𝑡) + 𝑏𝑢(𝑡) where 𝑎 = 2, 𝑏 = 1 and  

𝑥(0) = 4.45. The aim is to stabilize asymptotically the system to the equilibrium point (𝑥𝑒 , 𝑢𝑒) = (0,0).  
The fuzzy goal and fuzzy constraint are given in Figures 1(a) and 1(b) with 𝑆 = 10, 𝐸 = 5, and 𝐹 = 4. Using 

(26a)-(26f), one can calculate the first sample of the infinite horizon fuzzy optimal control sequence as: 

 

𝑢∗(0) =

{
 
 
 
 
 

 
 
 
 
 −𝑥(0)             𝑖𝑓       -5 < 𝑥(0) ≤

−40

9
−2𝑥(0) + 40

11
   𝑖𝑓      

−40

9
≤ 𝑥(0) ≤ −2

–2𝑥(0)           𝑖𝑓       -2 ≤ 𝑥(0) ≤ 2

−2𝑥(0) − 40

11
   𝑖𝑓       2 ≤ 𝑥(0) ≤

40

9

−𝑥(0)             𝑖𝑓      
40

9
≤ 𝑥(0) < 5

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒       𝑖𝑓        𝑥(0) ≥ 5  or  𝑥(0) ≤ −5
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We have 
40

9
≤ 𝑥(0) = 4.45 < 5 then 𝑢∗(0) = −𝑥(0). In this case, 𝑥(1) = 2𝑥(0) − 𝑥(0) = 𝑥(0) =

4.45. For an infinite horizon optimal controller and using the principle of optimality, if 𝑥(1) = 𝑥(0) then 

𝑢∗(1) = 𝑢∗(0). Hence, the infinite horizon fuzzy optimal control sequence would be given by 
[𝑢∗(0), 𝑢∗(1), 𝑢∗(2),… , 𝑢∗(∞)] = [−4.45, −4.45, −4.45,… ,−4.45] and the resulting state trajectory is 

given by [𝑥∗(0), 𝑥∗(1), 𝑥∗(2), … , 𝑥∗(∞)] = [4.45,4.45,4.45, … ,4.45]. We conclude that the state of the 

system would never reach the equilibrium point (𝑥𝑒 , 𝑢𝑒) = (0,0).  
 

 

5. CONCLUSION 

In this paper, novel stability result for the infinite horizon optimal control with the fuzzy objective 

function was given. It has been shown that the infinite horizon optimal control law does not make the 

resulting closed-loop system converge to the equilibrium in general if the minimum operator is used to 

aggregate the fuzzy goals and the fuzzy constraints in the fuzzy objective function. This has been achieved by 

solving analytically the infinite horizon optimal control problem for a linear system. Another interesting area 

for research is the investigation of asymptotic stability with various aggregation operators and deriving 

practical implementable RHC algorithms with asymptotic stability guarantees. 
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