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 The goal of this paper was to create an adaptive virtual inertia controller (VIC) 

for superconducting magnetic energy storage (SMES). An adaptive virtual 

inertia controller is designed using an extreme learning machine (ELM). The 

test system is a 25-bus interconnected Java Indonesian power grid. Time 

domain simulation is used to evaluate the effectiveness of the proposed 

controller method. To simulate the case study, the MATLAB/Simulink 

environment is used. According to the simulation results, an extreme learning 

machine can be used to make the virtual inertia controller adaptable to system 

variation. It has also been discovered that designing virtual inertia based on 

an extreme learning machine not only makes the VIC adaptive to any change 

in the system but also provides better dynamics performance when compared 

to other scenarios (the overshoot value of adaptive VIC is less than -5×10-5). 
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1. INTRODUCTION  

Over the last few years, there has been a significant increase in the development of energy storage. 

This occurred as a result of the advancement of power electronics devices [1], [2]. Energy storage has the 

ability to store and release electricity over a short period of time. Furthermore, because energy storage can 

handle the uncertain power output of wind and photovoltaic, it could aid in increasing the high penetration of 

renewable-based power plants such as wind and photovoltaic [3]. Several energy storage systems have been 

used in industrial sectors and in university research. Capacitor energy storage, battery energy storage, redox 

flow batteries, and superconducting magnetic energy storage are all types of energy storage (SMES). 

Dhundhara and Verma [4] described the use of capacitor energy storage (CES) for frequency 

regulation. The test system is a multisource deregulated power system that is used to investigate the impact of 

adding CES on frequency stability. The simulation results show that CES can regulate frequency in a 

multisource power system. Zhang et al. [5] proposed battery energy storage systems for voltage regulation. 

The test system is a research-active distribution system. Distributed generation is also thought to complement 

battery energy storage systems. It has been discovered that by co-planning distributed generation and battery 

energy storage systems, static voltage stability in distribution systems can be significantly improved.  

Oshnoei et al. [6] proposed the use of a redox flow battery for a load frequency control scheme. To 

simulate the proposed method, two-area power systems are used as the plant. Wind turbine power plants are 

used to simulate inverter-based power plants. According to the simulation results, adding the redox flow battery 

to the system results in less overshoot and a faster settling time for the area control error. Furthermore, the 

https://creativecommons.org/licenses/by-sa/4.0/
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system’s frequency has a lower rate of frequency change (RoCof) when compared to a system without a redox 

flow battery. Furthermore, when a redox flow battery is installed on the systems, the difference between 

mechanical and electrical power is reduced. Among these, superconducting magnetic energy storage has gained 

favor due to its quick response and ability to solve power system problems [7], [8]. Although SMES can be 

used to solve a variety of problems in power systems, when a low inertia problem arises in a power system, SMES 

becomes obsolete. As a result, it is critical to have an additional controller SMES so that SMES can also be used 

to regulate the system’s total inertia. A virtual inertia controller is a name given to the controller. 

Kerdphol et al. [9] described the use of a virtual inertia controller to improve frequency stability. The 

microgrid serves as the system for testing the performance of a virtual inertia controller for improving 

frequency stability. According to reports, adding a virtual inertia controller to the system could help it reduce 

the rate of frequency change. Kerdphol et al. [10] described the use of a virtual inertia controller for inertia 

emulation in a low inertia system. The microgrid is used as the test system, as in previous research, to 

investigate how virtual inertia control can simulate inertia in the system. The simulation shows that when 

energy storage is installed with proper design parameters, virtual inertia controller parameters can provide 

inertia emulation without the addition of a rotating machine. It is clear from the research that designing and 

tuning virtual inertia controller parameters is critical. Metaheuristic algorithms are commonly used to optimize 

the design of the virtual inertia controller. 

Abo-Elyousr [11] describes the use of artificial bee colonies in the design of virtual inertia controllers. 

The test system is a large-scale interconnected power system. The artificial bee colony’s efficacy is investigated 

using time domain simulation. According to the simulation results, designing the virtual inertia control using 

an artificial bee colony improves the system’s response frequency over using a conventional virtual inertia 

controller alone. Saleh et al. [12] used manta ray foraging optimization to design a virtual inertia controller, 

similar to [11]. The test system is an islanded microgrid. Renewable energy sources are installed in the system 

to simulate low inertia conditions. The simulation results show that manta ray foraging optimization can be 

used to optimally design a virtual inertia controller. In [13], [14], the use of particle swarm optimization (PSO) 

and the firefly algorithm (FA) to optimize parameters was described. It is clear that PSO and FA can provide 

better parameters than traditional optimization methods. The issue arose when the system’s operating 

conditions varied. The parameter will be optimized by the algorithm in every operating condition. In addition, 

each iteration algorithm necessitates a longer execution time. As a result, it is critical to create a virtual inertia 

controller that is adaptable to changing operating conditions. This paper proposed a novel method for designing 

an adaptive virtual inertia controller for superconducting magnetic energy storage based on an extreme learning 

machine. 
 

 

2. METHOD  

2.1. Inertia representation 

To control the system frequency in a synchronous generator, the active power and the resulting kinetic 

energy function must be controlled. The rotor’s rotating mass generates inertia power measured in joules-

seconds (J∙s) or watt-seconds squared (W∙s^2). This inertia power is used to compensate for a disturbance during 

the first 1 to 5 seconds of operation or when the primary and secondary controls are not activated. Based on the 

swing equation, the inertial response of a synchronous machine can be written as follows, as described in (1) [15], 
 

𝐽𝑆
𝑑𝜔

𝑑𝑡
= 𝑇𝑚 − 𝑇𝑒 =

𝑃𝑚

𝜔
−

𝑃𝑒

𝜔
  (1) 

 

where 𝐽𝑆, 𝜔, 𝑇𝑚, 𝑇𝑒,𝑃𝑚,𝑃𝑒, is the moment of inertia, rotor speed, mechanical torque, electrical torque, mechanic 

power, and electrical power. The (2) and (3) describe the mathematical representation of inertia (3). Where S 

is the synchronous generator’s power rating output [16]. 
 

𝐻 =
𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑘

𝑆
  (2) 

 

𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑘 =
1

2
𝐽𝑆𝜔2 (3) 

 

when the system is made up of several interconnected generators, the total inertia constant is the ratio of the 

kinetic energy of each generator added together. Furthermore, the system output power rating influences the 

inertia constant. As a result, referring to the total inertia can be written using (4) [17], 
 

𝐻 =
∑ (𝐻𝑖𝑆𝑆𝐺𝑖)𝑖

𝑆𝑃𝑆
  (4) 
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where the system’s minimum inertia can be used to solve two major dynamic problems. The first issue is 

lowering the rate of change of frequency (RoCof) after the perturbation appears. The second issue is to dampen 

frequency overshoot and limit frequency nadir when there is a disturbance in the system. RoCof is the 

deferential frequency used to calculate the system’s inertia response. The system’s RoCof value should be 

limited to ±1 Hz/s. RoCof’s mathematical representation can be described using (5) [18]. Where 𝑓0 is the 

nominal frequency of the system. 

 

𝑅𝑜𝐶𝑜𝑓 =
𝑑(∆𝑓)

𝑑𝑡
=

𝑓0(𝑃𝑚−𝑃𝑒)

2𝐻𝑆
  (5) 

 

2.2.  Dynamic representation of virtual inertia controller 

The virtual inertia controller (VIC) operates on the implementation of the swing equation applied to 

the inverter-based power plant so that the inverter, which lacks inertia, can be controlled to mimic the inertia 

characteristics possessed by generators in general. The term “virtual inertia” refers to the ability of the 

generator’s rotor characteristics to be emulated without the use of any rotating mass. Controllers to emulate 

virtual rotors are used to control how much additional inertia power output is required by the system. The 

virtual inertia itself is represented as a proportional and derivative controller. Furthermore, the proportional 

controller is represented as virtual damping while the derivative controller is represented as virtual inertia. The 

dynamic equation for imitating a virtual rotor is written as (6) [19]. 

 

∆𝑉𝐼𝐶 =
𝐾𝑗𝑠+𝐾𝑑

1
(∆𝑓)  (6) 

 

The value of virtual inertia is determined based on a derivative technique that determines the 

magnitude of the change in frequency (df/dt) or the rate of change of frequency (RoCoF) so that the amount of 

active power compensation in the system can be adjusted. Virtual inertia itself is used to reduce frequency 

overshoot. Virtual damping is used to quickly restore system frequency stability after contingency and 

penetration of new renewable energy generators in the electric power system. This virtual damping can mimic 

the effect of the damper winding on a synchronous generator [20]. 

 

2.3.  SMES dynamic 

SMES is used in an electric power system to control the power balance in the synchronous generator 

during dynamic periods [21]. On the power system model, SMES are installed in terminal bus generators [22]. 

A Y-transformer, a voltage source converter based on a GTO thyristor, a two-quadrant DC-DC chopper based 

on a GTO, and a superconducting coil comprise the basic SMES configuration. The DC-DC converters and 

chopper are linked by DC link capacitors [23]. The dynamic characteristics of SMES are critical in this paper. 

The dynamic characteristic of SMES can be captured through Laplace representation as described in (7) and (8), 

where kId is the gain for feedback Id, Tdc is the converter time delay, k0 is the gain constant, and L is the coil 

inductance [24]. The deviation in the SMES unit’s inductor real power is expressed in the time domain as 

described in (9). In addition, the energy stored in SMES can be mathematically described in (10) [25]. 

 

∆𝐸𝑑 =
1

1+𝑇𝑑𝑐𝑠
[𝑘0∆𝑉𝐼𝐶 − 𝑘𝐼𝑑∆𝐼𝑑]  (7) 

 

∆𝐼𝑑 =
1

𝐿𝑠
∆𝐸𝑑  (8) 

 

∆𝑃𝑠𝑚𝑒𝑠(𝑡) = ∆𝐼𝑑0∆𝐸𝑑 + ∆𝐼𝑑∆𝐸𝑑  (9) 

 

𝑊𝑠𝑚𝑒𝑠(𝑡) =
𝐿𝐼𝑑

2

2
  (10) 

 

2.4.  Extreme learning machine 

Setiadi et al. [26] explained that the artificial neural network-based extreme learning machine (ELM) 

is a new learning method invented by Huang. It is a feedforward neural network with a single hidden layer, 

also known as a single hidden layer feedforward neural network. ELM’s learning method was created to 

address the drawbacks of the feedforward neural network method. The disadvantage of feedforward neural 

networks is their learning execution time. There are two reasons why feedforward neural networks have a slow 

learning rate [27]: for training, slow gradient-based learning algorithms are used. The iteration from the training 

process defines the parameter in the network. 

In the learning process, traditional gradient-based learning algorithms methods such as 

backpropagation (BP) or Lavenberg–Marquardt (LM) and others with manually determined feedforward neural 
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network (FNN) parameters are used. These parameters are input weight and hidden bias, and they are also 

linked from one layer to the next. As a result, it necessitates a slow learning rate and is frequently stuck at the 

local minimum. The input weight and hidden bias in the ELM method can be chosen at random, allowing ELM 

to learn quickly and produce good generalizations. The structure of the ELM method is depicted in Figure 1. 

 

 

 
 

Figure 1. ELM structure 

 

 

For example, if N different samples are (𝑥𝑖 , 𝑡𝑖) ∈ 𝑅𝑑 × 𝑅𝑚, the mathematical representation of 

standard single-hidden layer feedforward neural networks (SLFNs) with L hidden node is described in (11) 

[28]. 

 

∑ 𝛽𝑖𝑔𝑖(𝑥𝑗)𝐿
𝑖=1 = ∑ 𝛽𝑖𝐺(𝑎𝑖 , 𝑏𝑖 , 𝑥𝑗) = 𝑜𝑗 , 𝑗 = 1, … , 𝑁𝐿

𝑖=1   (11) 

 

SLFNs could predict this N sample with the mean error using (12). This can happen because there are 𝑎𝑖 , 𝑏𝑖 

and 𝛽𝑖. Hence the equation can be described using (13). 

 

∑ ‖𝑜𝑗 − 𝑡𝑗‖𝐿
𝑖=1 = 0  (12) 

 

∑ 𝛽𝑖𝐺(𝑎𝑖 , 𝑏𝑖 , 𝑥𝑗) = 𝑜𝑗 , 𝑗 = 1, … , 𝑁𝐿
𝑖=1   (13) 

 

We can further simplify (13) as described in (14) to (17). H is the matrix output hidden layer from 

SLFNs, column i-th from H is the output from hidden node i-th that connected with the input 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁. In 

addition, feature mapping of hidden layers is described as ℎ(𝑥) = 𝐺(𝑎1, 𝑏1, 𝑥𝑁), … , 𝐺(𝑎𝐿 , 𝑏𝐿 , 𝑥𝑁). Row i-th in 

matrix H is a mapping feature of the hidden layer that is related to the i-th input from 𝑥𝑖: ℎ(𝑥𝑖). 𝛽 is the matrix from 

weight output and T is the target matrix or the output of ELM [29]. 

 

𝐻 × 𝛽 = 𝑇  (14) 

 

𝐻 = [
ℎ(𝑥1)

⋮
ℎ(𝑥𝑁)

]  (15) 

 

𝐻 = [
𝐺(𝑎1, 𝑏1, 𝑥1) … 𝐺(𝑎𝐿, 𝑏𝐿, 𝑥𝐿)

⋮ … ⋮
𝐺(𝑎1, 𝑏1, 𝑥𝑁) … 𝐺(𝑎𝐿, 𝑏𝐿, 𝑥𝑁)

]  (16) 

 

𝛽 = [
𝛽1

𝑇

⋮
𝛽𝐿

𝑇
] and 𝑇 = [

𝑇1
𝑇

⋮
𝑇𝐿

𝑇
]  (17) 

 

In ELM, weight input and hidden bias are defined randomly. Hence, weight output that has a relation with the 

hidden layer can be described using (18) [30]. 
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𝛽 = 𝐻𝑇 × 𝑇  (18) 

 

2.5.  Implementation 

The section depicts the method’s implementation process (adaptive VIC on SMES based on ELM). 

The goal of this process is to make the VIC more adaptable to the uncertainty of system operating conditions. 

This training uses real power (P) and reactive power as input data (Q), while the output (predicted) parameter 

is the VIC parameter, Kj and Kd. 

The adaptive VISMA procedure consists of the following steps. 

1) Provide the training data of actual VIC condition.  

2) Conduct the training process 

3) Calculate the precision of the predicted parameter using mean absolute error (19), 

 

𝑀𝑆𝐸 =  ∑
(�̃�𝑖−𝑦𝑖)2

𝑁

𝑁
𝑖=1   (19) 

 

where �̃�𝑖 is the predicted data produced by the proposed learning algorithm, and 𝑦𝑖  is the actual data. N 

denotes the number of data points used in the training phase.  

4) Print the results if the MSE value is the smallest. If not, proceed to step 3 until the minimum MSE is 

obtained. 

 

 

3. RESULTS AND DISCUSSION 

This section concentrated on the experimental results and paper discussion. The test system is  

the 25-bus Java Indonesian power grid, which is used to demonstrate the efficacy of the proposed controller 

method. The Suralaya bus now includes SMES. The Suralaya bus is bus number one (represented as G1 in 

Figure 2). Suralaya has the highest generation capacity (3,059 MW) on the west side of Java. The generator 

serves as the system’s reference point. As a result, it is critical to maintain stable conditions by incorporating 

SMES to smooth the frequency response of the Suralaya power plant (detailed data on the Java Indonesian 

power grid is attached as an appendix of the paper). The system is implemented in the MATLAB/Simulink 

environment. Figure 3 depicts a single-line diagram of the Java Indonesia power grid. 
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Figure 2. Single line diagram of Java-Bali Indonesian power grid 

 

 

This section examines the performance of the proposed method using three different case studies. The 

first case study demonstrates the capabilities of ELM in training VIC data (training phased). The performance 

of VIC training data in non-linear time domain simulation is demonstrated in the second case study (testing 

phased). In addition, in the second case study, a comparison of VIC-based ELM and conventional VIC is 

performed. The final case study is a comparison phased case study. In this case study, comparisons between 

different algorithm methods and the proposed method are made to demonstrate the efficacy of the paper’s 

proposed method. 
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3.1.  Training phase 

In this step, an investigation of the ELM performance for training the VIC-optimized parameter is 

conducted, where the input of ELM is the active and reactive power variation. In addition, the output of ELM 

is the VIC parameter. Figure 3 depicts a comparison of Kj conventional and Kj based on ELM. Figure 4 shows 

a comparison of Kd conventional and Kd-based ELM. It is clear that ELM can replicate the value of VIC 

conventional. 

 

 

  
  

Figure 3. Kj trained parameter Figure 4. Kd trained parameter 

 

 

ELM takes only 0.0625 seconds to execute in order to find the trained parameter. Furthermore, 

Figure 3 shows that the maximum error for Kj is 2.5548 and the minimum error is 0.0285. The maximum error 

for Kd value is 4.0757, while the minimum error for Kd value is 0.2471, as shown in Figure 4. Based on these 

findings, it is possible to conclude that the ELM can estimate the VIC value based on the operating conditions. 

 

3.2.  Testing phase 

The trained VIC will be tested against a disturbance in this case study. This study considers 0.05 load 

change to investigate how the system performs in the face of disturbance. To investigate the efficacy of the 

proposed method, two different scenarios are considered. The system with VIC actual data is the first scenario. 

The second scenario is an ELM-based system with VIC (proposed method). The dynamic response of the 

frequency in area 1 is depicted in Figure 5. With VIC actual data, the blue line represents the dynamic frequency 

response in area 1. The red line represents the dynamic frequency response with VIC based on ELM in area 1. 

From Figure 5, it is observed that the response between the system with VIC actual data and VIC-

ELM is almost similar. Hence, it can be concluded that the ELM can mimic the performance of VIC actual 

data. In addition, from Figure 5, it is noticeable that the response of the system with VIC-ELM is better than 

the system with VIC actual data. It is found that a system with VIC-ELM can give less overshoot compared to 

the VIC actual data. Furthermore, to further investigate the efficacy of VIC-based ELM comparison with 

different technique need to be conducted. 

 

3.3.  Comparison phase 

In this section, the comparison of the proposed method with the existing method is carried out. The 

simulation has been done by giving 0.05 load changing in area 1. Figure 6 shows the time domain response of 

the frequency dynamic response of the Suralaya power plant. Different artificial intelligence (AI) is considered 

in this section. The first AI is PSO. The second AI is the FA, while the last AI is our proposed method. The 

VIC-SMES based on PSO is indicated by the blue line while the VIC-SMES-based FA is represented with the 

red line. In addition, the purple line indicates our proposed method. From the simulation results, it is observed 

that the best performance is given by ELM. This is indicated by the smallest overshoot and fastest settling time 

compared to the PSO and FA methods. This could be happening because the VIC-SMES-based ELM could 

give a more detailed control signal. Hence, the SMES could provide detailed active power that can act as virtual 

inertial control to the systems. 

For further information regarding the efficacy of the proposed method, an execution time comparison 

between the proposed method with PSO and FA is carried out. Table 1 shows the execution time of each 

method for finding the optimal value of VIC-SMES. The proposed method shows the fastest execution time 

compared to PSO and FA. As the PSO and FA is optimization method, they need more time to find their optimal 
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value. It is also depending on how much the complexity of the system. Different from ELM, ELM is a training 

method. They do not need a lot of time to train the data. The proposed method could find an optimal value of less 

than a second while PSO and FA need more than 3 minutes to find the optimal solution of VIC-SMES. 

Three different transient indices are used to investigate the efficacy of the VIC-based ELM in 

comparison to the VIC-based PSO and FA. Integral time absolute error (ITAE), integral absolute error (IAE), 

and integral square error are the three indices (ISE). Table 2 compares the indices of VIC-based ELM,  

VIC-based PSO, and VIC-based FA. For all three indices, it is discovered that the VIC-based ELM outperforms 

the VIC-based FA and VIC-based PSO. 

 

 

  
  

Figure 5. Frequency response comparison Figure 6. Frequency dynamics response comparison 

 

 

Table 1. Detailed execution time  
Index PSO FA ELM 

Execution time 10 minutes 5 minutes 0.03 second 

 

 

Table 2. Transient response indices comparison 
Index PSO FA ELM 

ITAE 3.227x10-5 3.339x10-5 3.358x10-5 

IAE 1.71x10-5 1.95x10-5 2.01x10-5 

ISE 3.239x10-10 3.249x10-10 3.25x10-10 

 

 

4. CONCLUSION 

This paper proposed a novel method of adaptive virtual inertia controller based on an extreme learning 

machine for superconducting magnetic energy storage. The goal of this paper is to improve the dynamic 

performance of power systems using SMES and adaptive VIC. The power grid of Java, Indonesia, is used as a 

test system to demonstrate the efficacy of the proposed controller method. According to simulation results, 

extreme learning machines can train VIC to be adaptive to any operating condition variation. It has also been 

discovered that VIC ELM can mimic the performance of conventional VIC while producing better results. 

Furthermore, it is discovered that the proposed control method outperforms the other methods presented in this 

paper. Implementing a more advanced type of machine learning for VIC parameter training can be used to 

conduct additional research. In addition, considering the inverter-based power plant integration could also be 

a further study to make the system more up-to-date and realistic. 
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