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 Face analysis is an essential topic in computer vision that dealing with 
human faces for recognition or prediction tasks. The face is one of the 

easiest ways to distinguish the identity people. Face recognition is a type of 

personal identification system that employs a person’s personal traits to 

determine their identity. Human face recognition scheme generally consists 
of four steps, namely face detection, alignment, representation, and 

verification. In this paper, we propose to extract information from human 

face for several tasks based on recent advanced deep learning framework. 

The proposed approach outperforms the results in the state-of-the-art. 
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1. INTRODUCTION 

Face analysis is a major topic in machine vision, and it has been applied in various applications such 

as security surveillance, biometric recognition, tele-medicine, human behavior, kinship verification. Facial 

human can be used to extract different information: age or gender prediction, identification, and matching. 

Detecting human faces from a video is a challenging issue. Many advanced face detection and alignment 

approaches have been proposed in the past decades [1]–[3]. Early approaches of face analysis and recognition 

are based on the extraction of hand-crafted features [4]–[6]. For example, Vinay et al. [7] presents a double 

filter based on the extraction of GIST features for face recognition task. More recently, deep learning method 

prove its efficiency in computer vision with various applications [8]–[10]. Deng et al. [11] proposed a 

method for face detection based on the self-supervised learning combined with the extra-supervised method 

by using pixel-wise determination. Additive angular margin loss (ArcFace) [12] is a model proposed in 2019 

for face recognition. This model also uses margin-based loss which outperforms other loss functions such as 

triplet loss from FaceNet. Multitask cascade convolutional neural network (MTCNN) [13] is a face detection 

and alignment method which aims at boosting both detection and alignment’s performance by exploiting the 

inherent correlation between the two processes. Li et al. [14] apply CNN cascade for improving the face 

detection stage. The CelebA [15] and WIDER FACE [16], [17] dataset is used for building training and 

evaluating this approach. Wang et al. [18] apply region-based fully convolution networks based on  
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region-based fully convolutional networks (R-FCN) [19] for face detection. This architecture is applied for 

extracting features, and then fed into RPN to generate a batch of the region of interests (ROIs) according to 

the anchors. To aggregate the class scores and bounding box predictions, two global average pooling 

methods are applied to both class score maps and bounding box prediction maps in the final step. R-FCN is 

built upon ResNet-101 and consists of a region proposal network (RPN) and a R-FCN module. Deep 

hypersphere embedding for face recognition [20], [21] is a face recognition method proposed by Liu et al. 

[20]. The authors of SphereFace aim at improving the performance of face recognition model by 

implementing Angular softmax loss. In this paper, we propose to apply several recent advance deep learning 

frameworks for real-time face matching and gender prediction on videos. The rest of this paper is organized 

as: section 2 presents related works with face detection and alignment by RetinaFace and ArcFace. Section 3 

introduces experimental setup and results. Finally, section 4 presents the conclusion and discuss the future 

works.  

 

 

2. RELATED BACKGROUND 

This section reviews face detection and alignment method, and generated face embeddings using 

ArcFace. After the face image is detected, the facial area is cropped and generated face embedding. These 

techniques are explained as follows: 

 

2.1.  Face detection and alignment 

RetinaFace is achieved state-of-the-art performance by performing three different face localization 

tasks together, that are face detection, 2D face alignment and 3D face reconstruction based on a single shot 

framework. This model is robust as it achieved mean average precision (mAP) of 88.5 on WIDER FACE 

dataset. Figure 1 shows the detection and alignment procedure using RetinaFace. An image can be fed into 

this model to detect faces, the model then returns the facial area coordinates and facial landmarks (eyes, nose, 

and mouth). Consequently, the face can be extracted and aligned using these coordinates. 

 

 

 
 

Figure 1. Face detection and alignment process by RetinaFace 

 

 

2.2.  Generated face embeddings using ArcFace 

Wang et al. [18] apply ResNet and improve this model by using smaller anchors and modify the 

position sensitive ROI pooling to a smaller size for suiting the detection of small faces. Next, they change the 

normal average pooling to position-sensitive average pooling for the last feature voting in R-FCN, which 

leads to improved embedding. Finally, multi-scale training strategy and online hard example mining 

(OHEM) strategy are adopted for training. Schroff et al. [22] introduced FaceNet which studied featured 

from facial images via a compact Euclidean space for enhancing the recognition and verification task. Zeiler 

and Fergus [23] investigated the performance of face recognition based on ImageNet dataset and large CNN 

models by a novel visualization approach. Moreover, ArcFace [12] is a model proposed by Deng et al. [11] 

for face recognition. For comparison, 8 different identities with enough sample (around 1,500 images/class) 

to train 2-D feature embedding networks with the softmax and ArcFace loss, respectively. Figure 2 shows 

examples of the softmax and ArcFace loss, the softmax loss generates notable ambiguity in decision 

boundaries but gives roughly separable feature embedding in Figure 2(a), whereas the suggested ArcFace 

loss may clearly enforce a larger separation between the neighboring classes in Figure 2(b). 
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Like SphereFace, ArcFace also uses margin-based loss which outperforms other loss functions such 

as triplet loss from FaceNet. ArcFace loss is based on softmax loss with modifications that give better 

discriminative power. These are formula of softmax loss and ArcFace loss respectively: 

 

𝐿Softmax = −
1
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Figure 2. Examples of 2D feature embedding networks (a) the softmax loss and (b) ArcFace loss 

 

 

3. EXPERIMENTAL RESULTS 

In this section, the experiment and the results are explained. Dataset are prepared for training and 

testing stage. Afterthat, the experimental results are shown and discussed. 

 

3.1.  Data preparation 

Many datasets have been introduced [21], [24], [25] in the literature. In this paper, the VNCleb 

dataset is considered for evaluating the proposed approach. It consists of two parts: (1) the training subset has 

21,626 face images of 100 celebrities. Each class in this subset has around 200 images. Figure 3 illustrates 

several images selected from this part, (2) the testing set contains 8,970 images of the above 100 celebrities 

and is cropped from 300 videos of these celebrities and was downloaded from YouTube with various 

resolutions. Each class in test set has around 90 images. Figure 4 shows the cropped images from the testing 

subset. 

 

 

 
 

Figure 3. Selected images from the training set (1) 
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Figure 4. Selected images from the testing set (2). These images are cropped from the videos 

 

 

Face images from testing subset follow the exact same pre-processing step which it is also 

represented by a 512-dimension array by using ArcFace. Several distance metrics, Euclidean, Manhattan and 

Cosine, are considered for comparing the two images. The process is illustrated in Figure 5. Figure 6 presents 

the scheme for gender and age prediction by using visual geometry group face (VGGFace) models. Face 

images are converted to 224×224 resolution. Images are then normalized by dividing each pixel by 255. 

 

 

 
 

Figure 5. Perform face identification using distance metrics 

 

 

 
 

Figure 6. Gender and age prediction procedure using VGGFace 

 

 

3.2.  Results 

This section presents the results achieved in experiments with different ArcFace models. We have 

tested 5 ArcFace models with a variety of backbones (ResNet18, ResNet34, ResNet50, ResNet100)  

pre-trained on different datasets (CASIA, Glint360k). The accuracy, precision, recall and F1 score metrics 

are employed to evaluate the performance. The performance of the proposed approach on the testing subset is 

summarized in Table 1. It can be learnt that training ArcFace on larger dataset like Glint360k (360 thousand 

class with a total of 17 million images) gives better result compare with the same model trained on CASIA 

(10 thousand class with a total of 0.5 million images). Furthermore, the accuracy is also affected by its 

architecture, as deeper ResNet architecture tends to outperform the shallower ones. ArcFace model with 

ResNet-100 backbone trained on Glint360k dataset outperforms others, achieving 94% accuracy, 0.93 on 

precision, 0.94 on recall and 0.93 on F1-score on testing subset. 
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Table 1. Performance comparison on different ArcFace models 
Model Parameters Precision Recall F1 Accuracy 

ArcFace+ResNet34+CASIA 34 million 0.82 0.82 0.80 0.82 
ArcFace+ResNet34+Glint360k 34 million 0.86 0.87 0.85 0.86 
ArcFace+ResNet100+Glint360k 65 million 0.93 0.94 0.93 0.94 

 

 

ArcFace give a good performance on identifying the 100 celebrities of the testing subset with 

minimal false positive and false negative predictions. Confusion matrix of ResNet-100 ArcFace on the 

testing subset is illustrated in Figure 7. Investigating some images that is failed to predict, we observe that 

most incorrect predictions are given from faces that are turning right and left. 

 

 

 
 

Figure 7. Confusion matrix of ResNet-100 ArcFace on the testing subset 

 

 

Figure 8 shows several examples where ArcFace model fails to identify, most these are faces that 

are turned left/right to the point where we can only see half of the face. Therefore, model’s performance 

improves when more face images of different position is added to the train set. Moreover, the gender and age 

estimation are predicted by using VGGFace model. The results are presented in Table 2. The VGGFace 

gender achives 94% of accuracy of gender prediction on the testing subset. Several failed cases are then 

selected to illustrate in Figure 9. We observe that these images only appear some part of faces so the model 

cannot detect face.  
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Figure 8. Several failed cases of the identification task. The model in used (from the top to bottom): 

ArcFace+R34+CASIA, ArcFace+R34+Glint360k, ArcFace+R100+Glint360k 

 

 

Table 2. Performance of pre-trained VGGFace model on test set 
Model Parameters Precision Recall F1 Accuracy 

VGGFace Gender 134 million 0.94 0.94 0.94 0.94 

 

 

 
 

Figure 9. Some failed cases of gender prediction task. Male and female on the first and second row, 

respectively 

 

 

4. CONCLUSION 

In this paper, we have applied RetinaFace for face detection and ArcFace for face identification. The 

ArcFace model with ResNet-100 backbone outperform other models as it has more layers, and it was trained 

on a very large dataset. While this model performs decently on the testing subset, there is still limitation as it 

is not performing well on side faces due to the lack of this kind of poses in the train dataset. We also applied 

VGGFace models for gender and age classification which has decent accuracy on the testing subset. The 

future of this work is now continuing to improve and compress model for better performance and 

representation.  
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