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prediction of upper body power. Similarly, Delibasic 

et al. [10] developed model for ski injury predictive 

system by analyzing skier transportation data from 

six consecutive seasons. The predictive system is 

based on logistic regression and chi-square 

automatic interaction detection decision tree. The 

lowest ski injury risk is observed for skiers who 

spend more time in the ski lift transportation system 

and ski faster than average skier. In the same 

manner, a comparison of several models based on 

data mining, expert modeling and a combination of 

both have been evaluated in [11]. The analysis 

showed that expert models are 10-15% less accurate 

in comparison with data mining models. 

In addition, analysis of different ski tasks is up to 

date research area [12, 13]. 

In this paper, we showed that structured regression 

algorithms can significantly improve prediction 

performances in cases when unstructured predictors 

scores are poor due to a small number of relevant 

features. 

3. METHODOLOGY 

The generalized form of GCRF conditional 

distribution  is given in form of 

condtional random field (CRF) and can be expressed 

as: 

 (1) 

Two different feature functions are used: association 

potential  to model relations between 

outputs  and corresponding input vector  and 

interaction potential  to model pairwise 

relation between nodes. Vectors  and  are 

parameters of the association potential  and the 

interaction potential . The association potential is 

defined as:  

 (2) 

where  represents unstructured predictor of 

for each node in the graph. This unstructured 

predictor can be any regression model that gives 

independent prediction of output  for given 

attributes .  is the total number of unstructured 

predictors. The interaction potential functions is 

defined as:  

 (3) 

where  is a value that express the similarity 

between nodes  and  in graph .  is the total 

numbers of graphs (similarity functions). Graphs can 

express any kind of relations between nodes e.g., 

spatial and temporal correlations between outputs. 

Hence, the conditional probability distribution of the 

presented model is defined as: 

 (4) 

The quadratic form of interaction and association 

potential enables conditional distribution 

 to be expressed as multivariate 

Gaussian distribution. The canonical form of GCRF 

is:  

 (5) 

where precision matrix  and distribution 

mean  is defined as, respectively:  

 (6) 

 (7) 

The representation of GCRF is illustrated in Fig. 1.  

Figure 1. GCRF representation. 

Due to the convexity of multivariate Gaussian 

distribution the inference task  is 

straightforward. The maximum posterior estimate of 

 is the distribution expectation .

The objective of the learning task is to optimize 

parameters  and  by maximizing conditional log 

likelihood . One way to 
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ensure positive definiteness of covariance matrix of 

GCRF is to impose constraints that all elements of 

and  be greater than 0. The derivative od the 

conditional log likelihood can be expressed in the 

following form: 

 (8) 

The optimization of the parameters can be obtained 

by gradient descent method with log transformation 

of derivatives. Moreover, the optimization can also 

be performed by a truncated Newton algorithm for 

nonlinear functions with constraints or sequential 

quadratic programming. The GCRF code used in 

this work is publicly available.1

4. RESULTS AND DISCUSSION 

Kopaonik is one of the largest ski resort in a 

southern part of Europe with more than 55 km of ski 

slopes and 25 ski lifts. One of the biggest problem in 

Kopaonik is crowds on ski lifts, due to that it is 

necessary to predict average skiing times between 

two ski gates. With this average skiing times it is 

possible to predict occurance of rush hours on ski-

lifts. 

Dataset used in this research includes information on 

ski lift entrance for a period from 15th to 30th of 

March for years between 2006-2011. Totally seven 

ski lifts were considered: Karaman Greben, Mali 

Karaman, Marine vode, Duboka I, Karaman, 

Pancicev vrh, Duboka II.  

All used features are separated in the three distinct 

groups: 

1. Descriptive features: the total number of skiers, 

total unique number of skiers, time expressed 

in hours and minutes 

2. Statistical features: mean, tenth percentile, first 

and second quartile, ninetieth percentile, 

median, minimum value, maximum value, 

kurtosis and skewness of average skiers 

velocity 

3. Weather features: wind speed, temperature, 

dew point, cloud cover and pressure 

All features were evaluated by observing shifts in 

time periods of 5 minutes, whereas prediction was 

made 15 minutes in advance. 

1
https://github.com/andrijaster

The two graphs for potential interaction between ski 

lifts (nodes) were used. The first graph is obtained 

by differences between the history of average skiing 

time in the period of 30 minutes, whereas the second 

graph was obtained by differences between the 

history of average skiing time in slopes for the 

whole dataset. A total number of instances in the 

dataset was 4850 for each ski lift, which is totally 

33950. The 20% of the dataset was used for testing, 

whereas the rest was used for training. Half of the 

training data was used for unstructured predictor 

learning, whereas the rest was used for optimizing 

GCRF parameters. All methods are implemented in 

Python and experiments were run on Windows 16 

GB of memory and 2.5 GHz CPU. The results of the 

learning, concerning score metrics, are presented in 

Table 1. 

Table 1. Prediction performances 

It can be seen that GCRF outperformed unstructured 

predictors. Even though best-unstructured predictor 

Random forest provides satisfactory prediction 

performances, GCRF has best metrics R2 and mean 

absolute error. It is important to emphasize that not 

only features are important in this particular case, 

but also the correlation structure between ski lifts. 

5. CONCLUSION 

In this paper, Gaussian conditional random fields 

(GCRF), well-known structured regression 

algorithm is applied on task of predicting skier 

average time between ski gates. The unstructured 

predictor that are used as association function in 

GCRF are: ridge regression, LASSO regression, 

random forest and support vector machine. It was 

shown that in this particular case dependencies 

among outputs are significant, such that GCRF 

outperformed all other regression algorithms. 

Further studies should concern comparing GCRF 

with other structured regression on real-world sports 

tasks.  

Ridge

regression

LASSO

regression

Random

forest

Support

vector

machine

GCRF

Mean

absolute

error

364.87 367.72 343.6 388.05 336.44

R
2

0.578 0.585 0.549 0.484 0.613
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