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 Classification is an important activity in a variety of domains. Class imbalance 

problem have reduced the performance of the traditional classification 

approaches. An imbalance problem arises when mismatched class 

distributions are discovered among the instances of class of classification 

datasets. An advance extended binomial GLMBoost (EBGLMBoost) coupled 

with synthetic minority over-sampling technique (SMOTE) technique is the 

proposed model in the study to manage imbalance issues. The SMOTE is used 

to solve the proposed model, ensuring that the target variable's distribution is 

balanced, whereas the GLMBoost ensemble techniques are built to deal with 

imbalanced datasets. For the entire experiment, twenty different datasets are 

used, and support vector machine (SVM), Nu-SVM, bagging, and AdaBoost 

classification algorithms are used to compare with the suggested method. The 

model's sensitivity, specificity, geometric mean (G-mean), precision, recall, 

and F-measure resulted in percentages for training and testing datasets are 

99.37, 66.95, 80.81, 99.21, 99.37, 99.29 and 98.61, 54.78, 69.88, 98.77, 96.61, 

98.68, respectively. With the help of the Wilcoxon test, it is determined that 

the proposed technique performed well on unbalanced data. Finally, the 

proposed solutions are capable of efficiently dealing with the problem of class 

imbalance. 
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1. INTRODUCTION  

The objective of classification is to study about input and target variables. Imbalanced can hinder the 

performance of the classification algorithms. Imbalanced problems outline a scenario when the number of 

examples of the majority class far more that of the minority class [1], [2]. In data mining imbalanced 

classification is an attentive topic to research. Some of the real-world problems are fraud detection, fault 

classification in manufacturing, text classification, disease diagnosis, event classification, oil spill detection, 

and intrusion detection [3]–[9]. Ensemble methods can handle the problems of imbalanced data [10]. Ensemble 

algorithm is used to integrate multiple classifiers into a single classifier to get more accurate results [11], [12]. 

A collection of techniques that can transform weak learners into strong ones are referred to as the “boosting 

ensemble method”. A powerful learner is very close to fine performance, whereas a weak learner is only 

marginally finer than a random utterance on the surface. Boosting is a sequential ensemble strategy for reducing 

bias error and constructing powerful prediction models. The term “boosting” refers to a collection of algorithms 

https://creativecommons.org/licenses/by-sa/4.0/
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that help a weak learner become a strong learner. As the performance metrics accuracy and its complement, 

misclassification rate is not worked well on imbalanced data, so other metrics should take into consideration 

like geometric mean (G-mean)[13]. In this study, a generalized liner model (GLM) is used due to its good 

performance quality [14], [15]. Also, synthetic minority oversampling technique (SMOTE) approach is applied 

to obtain the new training set [16]. So, the Boosting GLM [17] method is proposed for the imbalanced datasets. 

To get better insight into dealing with imbalanced data issues, few literatures have been studied and 

are discussed and reviews of handling imbalance datasets are described. Alibeigi et al. [18] have presented the 

advantages of genetic algorithm with neural classifiers in the ensemble method for the electrocardiography 

registration. In this [19] paper a new “synthetic informative minority over-sampling (SIMO) algorithm” with 

leveraging “support vector machine (SVM)” is proposed to show the best performance. A powerful ensemble 

classification algorithm called random under sampling Boost is suggested to handle the inequality problems 

[20]. To solve class [21] imbalance problems, a new weighted SVM is proposed using 10 types of imbalanced 

datasets and analyze the proposed method with SVM and other SVMs hybrid with sampling and boosting 

techniques. The article is focused on reducing the time by proposing a neural networks classifier (pattern 

recognition) for inaccurate data [22]. In the paper [23], Di Martino et al. have presented a new method 

developed for imbalanced problems to maximize F-measure. In [24], an improved ensemble method based on 

under-sampling, is helpful for the ensemble system and pruning procedure is included to remove the irrelevant 

models. Błaszczyński and Stefanowski [25] proposed a method called neighborhood balanced bagging, in 

which the sample probabilities of examples are adjusted based on the distribution of classes in the 

neighborhood. An integrated sampling method is proposed [26], which uses both the over-sampling and under-

sampling and addition with an ensemble SVMs to increase the performance percentage of the classifier. A 

novel ensemble method [27] with specific ensemble rule adding 3 conventional sampling methods, 1 cost-

sensitive learning method, 6 boosting and bagging ensemble methods with forty-six unbalanced datasets are 

taken for solving the highly unbalanced issues. A novel quicker positive-unlabeled (PU) learning methodology 

based on bootstrap aggregating (bagging) techniques with a conceptually simple implementation has been 

developed, and the method [28] has demonstrated the best PU learning performance. 

To construct (main contribution of the paper) the model, the proposed method “extended binomial 

GLMBoost (EBGLMBoost) ensemble method” where the synthetic SMOTE [29], [30] sampling method is 

combined with the extended binomial GLMBoost algorithm [14]. SMOTE is an advanced sampling technique 

that goes far above simple under and over sampling. Using convex combinations of surrounding examples, this 

technique generates new instances of the minority class. Then the proposed method is compared with other 

methods. The rest of the text is formatted as: section 2 and 3 explains the suggested model for the unbalanced 

dataset with a general overview, system configuration, datasets preparation, and performance measures. The 

result analysis and statistical test are shown in section 4. The conclusion and suggestions for further research 

are presented in section 5. 
 

 

2. PROPOSED MODEL FOR IMBALANCED DATASET 

The flow chart of the proposed method is shown in Figure 1 to handle imbalanced datasets. A "10-

fold cross-validation" technique is selected for evaluating the models [31] and obtaining unbiased outputs from 

the systems. There are 20 different types of unbalanced datasets Table 1 used as input to the model. The 

unbalanced datasets are sorted into training and testing datasets, where the training datasets are trained using 

the SMOTE method (to get the new balanced training set from the original imbalanced training set) with five 

types of classification approaches including the proposed method EBGLMBoost. The SVM, Nu-SVM, 

bagging, boosting and AdaBoost algorithms are taken. An extended binomial GLM and boosting method are 

combined to construct the model [32]. Finally, the results are analyzed using the performance metrics. 

 

 

 
 

Figure 1. Diagram for the proposed method [an advance EBGLMBoost coupled with SMOTE technique] 
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Table 1. Information of imbalanced datasets 
IDS Datasets  Attributes Examples Classes Imbalance Ratio (IR) 

ID1 Kr_vs_k_three_vs_eleven 6 2935 2 35.23 
ID2 winequality_red_8_vs_6 11 656 2 35.44 

ID3 abalone_17_vs_7_8_9_10 8 2338 2 39.31 

ID4 abalone_21_vs_8 8 581 2 40.50 

ID5 winequality_white_3_vs_7 11 900 2 44.00 

ID6 winequality_red_8_vs_6_7 11 855 2 46.50 

ID7 kddcup_land_vs_portsweep 41 1061 2 49.52 

ID8 abalone_19_vs_10_11_12_13 8 1622 2 49.69 

ID9 kr_vs_k_zero_vs_eight 6 1460 2 53.07 

ID10 Winequality_white_3_9_vs_5 11 1482 2 58.28 
ID11 poker_8_9_vs_6 10 1485 2 58.40 

ID12 shuttle_2_vs_5 9 3316 2 66.67 

ID13 winequality_red_3_vs_5 11 691 2 68.10 
ID14 abalone_20_vs_8_9_10 8 1916 2 72.69 

ID15 Kddcup_buffer_overflow_vs_back 41 2233 2 73.43 

ID16 kddcup_land_vs_satan 41 1610 2 75.67 
ID17 Kr_vs_k_zero_vs_fifteen 6 2193 2 80.22 

ID18 poker_8_9_vs_5 10 2075 2 82.00 

ID19 poker_8_vs_6 10 1477 2 85.88 
ID20 kddcup_rootkit_imap_vs_back 41 2225 2 100.14 

 

 

3. METHOD 

SMOTE [16] is a data augmentation algorithm that creates synthetic data points depending on the 

original data points. SMOTE can be thought of as a more advanced variant of oversampling or as a specific 

data augmentation process. SMOTE has the advantage of not creating duplicate data points, but rather synthetic 

data points that are somewhat different from the original data points. SVM “is a supervised machine learning 

technique that can be used to classify and predict data. The SVM algorithm seeks to locate a hyperplane in an 

M-dimensional [33] space that clearly categorizes data points”. The number of features determines the 

hyperplane's size. The hyperplane is essentially a line if there are just two input features. The hyperplane 

becomes a two-dimensional plane when there are three input features. It gets impossible to imagine when the 

number of features exceeds three [34]. In Nu-SVM [35], a new class of support vector algorithms for 

classification and regression is proposed. A parameter 𝜈 in these methods allows one to effectively regulate the 

number of “support vectors”. While this is important in and of itself, the parameterization also allows us to 

remove one of the algorithm's two free parameters: the accuracy parameter 𝜀 in the regression case and the 

regularization “constant C” in the classification case [36]. In 𝜈-support vector classification, the primal 

optimization problem [37] is to minimize. 

In bagging, a decision tree's variance is reduced by bagging (Bootstrap Aggregation). In the case of a 

set E of e tuples, a “training set Ei” of e tuples is sampled with replacing from E at each iteration “i” (That is, 

bootstrap). Then, for each training set “E < i” a classifier model Ni is learned. Ni returns the class prediction 

for each classifier. N*, a bagged classifier, calculates the votes and assigns Y to the most popular class 

(unidentified sample) [38]. Boosting is an ensemble modelling technique that seeks to combine many weak 

classifiers into one strong one. It is done by building a model out of a series of weak models. The training data 

is first used to build a model. The second model is then developed in an effort to fix the previous model's flaws. 

This process is repeated until either the maximum number of models have been added or the whole training 

data set has been correctly predicted. AdaBoost was the first truly successful [39] boosting algorithm created 

specifically for binary classification. Adaptive Boosting, or AdaBoost, is a powerful boosting strategy that 

combines several "weak classifiers" into a single "strong classifier". Robert Schapire and Yoav Freund came 

up with the idea. They are also awarded the Godel Prize in 2003 for their efforts. 

 

3.1.  Datasets preparation and parameters  

In the experiment, there are twenty types of imbalanced datasets are used. Table 1 has shown the 

information of Imbalanced datasets. All the datasets are freely available in Keel dataset repository site [40]. 

The experiments consider the SMOTE algorithm settings listed below: 

− k: the number of nearest neighbors is fixed to five. 

− The distribution of classes will be rebalanced to 50–50%.  

− The distance function uses the Euclidean distance to determine which neighbors are nearest. 

 

3.2.  SMOTE  

Synthetic minority oversampling technique (SMOTE) is one of the oversampling strategies [41], 

which creates minority class instances. As a result, it is frequently used to solve problems of class inconsistence 
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and gives better outcomes than basic oversampling strategies. The SMOTE technique is a valuable and strong 

approach that has been employed in a variety of medicinal applications. Synthetic data were developed as per 

to the attribute area in order to apply this approach. “SMOTE” over-samples the minority class by inserting 

synthetic instances along the segmentation of a line connecting any or all of the 𝑘 − 𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 class nearest 

neighbours for each and every minority class sample. Synthetic instances from the k nearest neighbours are 

picked at random based on the quantity of over-sampling necessary. The value of "𝑘" is set to 5 in all SMOTE 

[42] calculations.  

 

3.3.  Statistical performance of extended binomial GLMBoost combined with SMOTE 

GLMBoost, which is based on penalized loglikelihood, is one of the boosting methods. Because it is 

one of the most significant ensembles learning algorithms, this technique can be used to address a wide variety 

of regression or classification issues. GLMBoost has a lot of advantages when it comes to implementation. 

GLMBoost lists a number of benefits in addition [43] to the ease of calculation. It has a large calculating 

capacity and does not require complex tuning processes [44]. It [45] provides more thorough information on 

this ensemble learning approach. A GLM is a regression strategy that adds response distributions that are not 

normal and modelling functions to regular regression models. Using a link function (logistic model) a GLM 

can model binary datasets dependent on presence or absence data. It is interesting to show the performance of 

“GLMBoost and SMOTE” to validate the influence of SMOTE on the GLMBoost algorithm. However, 

estimating the performance of different classifiers using objective statistical metrics is not always easy, and 

how to solve the evaluation problem [46] is still a hot research topic [47]. The extended binomial distribution 

is applied in this study. The conditional distribution of one of two independent Poisson random variables given 

the sum of these two variables is known to be binomial. It is interesting to find the conditional distribution of 

one of two independent Poisson difference random variables given the sum of these two variables [48]. There 

are four main steps in GLM algorithm which are given below. 

a. Model and parameters estimation 

By minimizing some objective function, fit the model once to all observations in the current node. 

 
∑ 𝜑(𝑌𝑖  , 𝜃)𝑛

𝑖=1     (1) 

 

By solving the first order requirements, the estimation of the vector of parameters can be computed: 

 

∑ 𝜑 (𝑌𝑖  , �̂�) = 0,     𝜑(𝑌, 𝜃) =  
𝜕𝜑 (𝑌,𝜃)

𝜕𝜃

𝑛
𝑖=1    (2) 

 

The score function is then checked for systematic deviations at the estimated parameters �̂�𝑖 =  𝜑 (𝑌𝑖  , �̂�). 

b. Instability tests 

The broad class of score-based fluctuation tests is used to determine whether node splitting is required. 

Depending on whether the partitioning variable is categorical or numerical, the test used varies. For dividing 

the node, Zj with the lowest p-value is picked. 

c. Partitioning 

The model is estimated on the two resulting subsets and the resulting objective functions are summed 

for each conceivable split. The ideal split is the one that optimizes the segmented objective function. 

d. Pruning 

For determine the optimal size of the tree, one can either use a “pre-pruning or post-pruning” strategy. 

Extended Binomial Theorem: 

Euclid, a prominent Greek mathematician, first mentioned the binomial theorem in the 4th century BC. 

The binomial theorem shows how to use individual [49] exponents of variables x and y to expand the algebraic 

statement (𝑥 + 𝑦)𝑛 to a sum of terms. Each word in a binomial expansion is given a numerical [50] value called 

coefficient [51]. A special case of the Binomial Theorem is very useful that is given in (3). 

  

(1 + 𝑥)𝑛 =  ∑ (𝑛
𝑘

)𝑛
𝑘=0  𝑥𝑘     (3) 

 

for any positive integer n, which is the Taylor series for (1 + 𝑥)𝑛. 

This formula can be extended to any number of real powers 𝛼: 

 

(1 + 𝑥)𝛼 =  ∑ (𝛼
𝑘

)∞
𝑘=0  𝑥𝑘  (4) 

 

where, for any real number 𝛼, 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 An advance extended binomial GLMBoost ensemble method with synthetic minority … (Neelam Rout) 

4361 

(𝛼
𝑘

) =  
(𝛼)(𝛼−1)(𝛼−2)…(𝛼−(𝑘−1))

𝑘!
=  

𝛼!

𝑘!(α−k)!
    (5) 

 

Now the formula gives an infinite series: when α=n is a+ve integer, all but the first (n+1) terms are 0 then, n−n 

$=0$ appears in each numerator. This expansion is very useful for approximating (1 + x) 𝛼 for |x|≪1: 

 

(1 + 𝑥)𝛼 = 1 + 𝛼𝑥 +
𝛼(𝛼−1)

2!
𝑥2 +  

𝛼(𝛼−1)(𝛼−2)

3!
𝑥3 + ⋯  (6) 

 

However, because higher powers of x get very small quickly for |x| ≪ 1, (1 + x) 𝛼 can be approximated to 

any accuracy then it is required by truncating the series after a finite number of entries. 

 

3.4.  System configuration 

The entire experiment is carried out on a single-language version of Windows 10 with an Intel® Core 

(TM) i5-7300HQ processor running at 2.50 GHz. The operating system is 64-bit, with an x64-based processor 

and 8.00 GB of installed memory (RAM). The hardware in a computing device called random access memory 

(RAM) stores the operating system (OS), application programs, and data that are currently in use so that the 

processor of the device can access them rapidly. The primary memory of a computer is RAM. 

 

3.5.  Performance metrics 

The confusion matrix [52] is used for evaluation process and many metrics are based on this for 

effectiveness evaluation on classification problem. The matrix overall accuracy does not work on imbalanced 

datasets. Different metrics are given below. Sensitivity (7) is known as true positive rate and specificity (8) is 

known as true negative rate, G–mean (9) is the geometric mean of sensitivity and specificity. F-measure (12) 

is used to integrate precision (10) and recall (11) into a single metric for the support of the modelling and 𝛽 is 

a coefficient to manage the relative importance of precision vs. recall [53], [54]. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁 
                                                               (7) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                            (8) 

 

𝐺 − 𝑀𝑒𝑎𝑛 =  √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦                          (9) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                               (10) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                     (11) 

 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  
(1+ 𝛽2) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 × 𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
, where, 𝛽 = 1 (12) 

 

 

4. RESULTS AND DISCUSSION 

Indeed, total classification accuracy is typically not a significant measure of performance for the 

imbalanced classification problem, because in extremely skewed domains, a simple classifier that assigns every 

sample to the majority class can achieve exceptionally high accuracy. Instead of sophisticated metrics, six 

simple and useful measurements (sensitivity, specificity, G-mean, recall, and precision) are utilized in this 

study [55]. MATLAB and Keel [56] are used to perform the calculations. Table 2 has been created using the 

confusion matrix to display the results of the training datasets for the SVM algorithm using pre-processed 

SMOTE. The average percentages for sensitivity, specificity, G-mean, precision, recall, and F-measure are 

99.26%, 32.46%, 47.09%, 85.59%, 99.26%, and 91.40%, respectively. The results of the testing datasets for the 

SVM with SMOTE method are displayed in Table 3. 98.84%, 31.08%, 43.12%, 79.26%, 98.84%, and 86.96% 

are the average values for sensitivity, specificity, G-mean, precision, recall, and F-measure, respectively. 

The training datasets for the Nu-SVM method with pre-processed SMOTE have results, which are 

shown in Table 4. 98.84%, 52.73%, 68.52%, 95.19%, 98.84%, and 96.38% are the average values for 

sensitivity, specificity, G-mean, precision, recall, and F-measure, respectively. The results of the testing 

datasets for the Nu-SVM with SMOTE method are displayed in Table 5. 98.75%, 22.94%, 43.88%, 93.73%, 

98.74%, and 95.94% are the average values for sensitivity, specificity, G-mean, precision, recall, and 

F-measure, respectively. 
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Table 2. Results of the training datasets for SVM with SMOTE method 
Datasets Sensitivity Specificity G-mean Precision Recall F-measure 

Kr_vs_k_three_vs_eleven 99.06 72.09 84.51 99.26 99.06 99.16 
winequality_red_8_vs_6 99.24 05.54 23.45 86.23 99.24 92.28 

abalone_17_vs_7_8_9_10 99.31 07.35 27.01 74.42 99.31 85.08 

abalone_21_vs_8 98.66 03.74 19.22 74.14 98.66 84.66 
winequality_white_3_vs_7 98.68 08.87 29.59 82.29 98.68 89.74 

winequality_red_8_vs_6_7 98.44 04.37 20.73 81.03 98.44 88.89 

kddcup_land_vs_portsweep 99.90 57.14 75.56 98.58 99.90 99.24 
abalone_19_vs_10_11_12_13 99.36 03.55 18.79 75.95 99.36 86.09 

kr_vs_k_zero_vs_eight 99.27 89.19 94.10 99.86 99.27 99.57 

Winequality_white_3_9_vs_5 98.90 06.27 24.91 79.20 98.90 87.96 
poker_8_9_vs_6 99.03 01.44 11.95 61.39 99.03 75.79 

shuttle_2_vs_5 99.95 73.64 85.80 99.48 99.95 99.72 

winequality_red_3_vs_5 98.70 03.18 17.71 79.62 98.70 88.14 
abalone_20_vs_8_9_10 99.36 07.39 27.10 75.13 99.36 85.56 

Kddcup_buffer_overflow_vs_back 99.85 13.04 36.09 90.91 99.85 95.17 

kddcup_land_vs_satan 99.08 21.88 46.55 95.24 99.08 97.12 
Kr_vs_k_zero_vs_fifteen 99.91 94.34 97.08 99.93 99.91 99.92 

poker_8_9_vs_5 99.91 86.96 93.21 99.86 99.91 99.89 

poker_8_vs_6 98.78 02.35 15.23 59.42 98.78 74.20 
kddcup_rootkit_imap_vs_back 99.91 86.96 93.21 99.86 99.91 99.89 

Averages 99.26 32.46 47.09 85.59 99.26 91.40 
 

 

Table 3. Results of the testing datasets for SVM with SMOTE method 
Datasets Sensitivity Specificity G-mean Precision Recall F-measure 

Kr_vs_k_three_vs_eleven 98.74 98.95 98.84 98.95 98.74 98.84 

winequality_red_8_vs_6 99.46 05.04 22.38 80.62 99.46 89.05 

abalone_17_vs_7_8_9_10 99.11 13.25 36.24 73.29 99.11 84.27 
abalone_21_vs_8 98.60 03.40 18.30 71.20 98.60 82.69 

winequality_white_3_vs_7 97.97 04.91 21.93 75.71 97.97 85.41 

winequality_red_8_vs_6_7 98.45 03.81 19.37 75.87 98.45 85.70 
kddcup_land_vs_portsweep 96.25 95.45 95.85 99.90 96.25 98.04 

abalone_19_vs_10_11_12_13 99.16 02.86 16.83 74.81 99.16 85.28 

kr_vs_k_zero_vs_eight 98.74 32.14 56.34 98.67 98.74 98.71 
Winequality_white_3_9_vs_5 98.48 04.13 20.17 73.64 98.48 84.27 

poker_8_9_vs_6 99.12 01.47 12.08 54.18 99.12 70.06 

shuttle_2_vs_5 99.73 93.88 96.76 99.91 99.73 99.82 
winequality_red_3_vs_5 98.48 02.21 14.75 75.70 98.48 85.60 

abalone_20_vs_8_9_10 98.81 05.59 23.50 73.19 98.81 84.09 

Kddcup_buffer_overflow_vs_back 99.95 90.63 95.18 99.86 99.95 99.91 
kddcup_land_vs_satan 99.94 90.00 94.84 99.87 99.94 99.91 

Kr_vs_k_zero_vs_fifteen 99.81 69.70 83.41 99.54 99.81 99.68 

poker_8_9_vs_5 98.82 01.23 11.03 53.07 98.82 69.06 
poker_8_vs_6 98.13 01.49 12.10 50.27 98.13 66.49 

kddcup_rootkit_imap_vs_back 99.09 01.59 12.56 57.02 99.09 72.38 

Averages 98.84 31.08 43.12 79.26 98.84 86.96 

 
 

Table 4. Results of the training datasets for Nu-SVM with SMOTE method 
Datasets Sensitivity Specificity G-mean Precision Recall F-measure 

Kr_vs_k_three_vs_eleven 99.45 38.73 62.06 96.36 99.45 97.88 

winequality_red_8_vs_6 99.08 41.03 63.76 99.16 99.08 99.12 
abalone_17_vs_7_8_9_10 98.61 91.78 95.13 98.44 98.61 98.52 

abalone_21_vs_8 99.37 72.73 85.01 99.86 99.37 99.62 

winequality_white_3_vs_7 97.66 18.75 42.79 97.96 97.66 97.81 
winequality_red_8_vs_6_7 98.19 18.64 42.79 98.57 98.19 98.38 

kddcup_land_vs_portsweep 99.51 51.61 71.67 98.56 99.51 99.03 

abalone_19_vs_10_11_12_13 99.43 54.62 73.70 98.11 99.43 98.77 
kr_vs_k_zero_vs_eight 99.05 98.15 98.60 99.98 99.05 99.51 

Winequality_white_3_9_vs_5 98.95 68.25 82.18 99.43 98.95 99.19 

poker_8_9_vs_6 93.98 04.11 19.65 37.31 93.98 53.42 
shuttle_2_vs_5 99.44 64.40 80.02 99.48 99.44 99.46 

winequality_red_3_vs_5 98.76 49.09 69.63 99.52 98.76 99.14 

abalone_20_vs_8_9_10 98.69 80.77 89.28 99.78 98.69 99.23 
Kddcup_buffer_overflow_vs_back 99.77 89.29 94.38 99.86 99.77 99.82 

kddcup_land_vs_satan 99.68 53.33 72.91 99.12 99.68 99.40 

Kr_vs_k_zero_vs_fifteen 99.91 60.98 78.05 99.26 99.91 99.58 
poker_8_9_vs_5 99.34 19.03 43.48 97.56 99.34 98.44 

poker_8_vs_6 98.62 03.45 18.44 85.62 98.62 91.66 

kddcup_rootkit_imap_vs_back 99.44 76.00 86.93 99.86 99.44 99.65 

Averages 98.84 52.73 68.52 95.19 98.84 96.38 
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Table 5. Results of the testing datasets for Nu-SVM with SMOTE method 
Datasets Sensitivity Specificity G-mean Precision Recall F-measure 

Kr_vs_k_three_vs_eleven 99.32 13.13 36.11 95.17 99.32 97.20 
winequality_red_8_vs_6 98.98 60.00 77.06 99.71 98.98 99.34 

abalone_17_vs_7_8_9_10 98.41 07.01 26.27 84.30 98.41 90.81 

abalone_21_vs_8 98.41 01.98 13.96 68.93 98.21 81.01 
winequality_white_3_vs_7 97.70 60.00 76.56 99.69 97.70 98.68 

winequality_red_8_vs_6_7 98.23 33.33 57.22 99.52 98.23 98.87 

kddcup_land_vs_portsweep 99.50 28.57 53.32 96.15 99.50 97.80 
abalone_19_vs_10_11_12_13 99.17 10.78 32.70 95.19 99.17 97.14 

kr_vs_k_zero_vs_eight 98.94 26.67 51.37 97.70 98.94 98.31 

Winequality_white_3_9_vs_5 97.99 33.33 57.15 99.77 97.99 98.88 
poker_8_9_vs_6 99.29 10.45 32.21 95.89 99.29 97.56 

shuttle_2_vs_5 99.16 24.72 49.51 97.95 99.16 98.55 

winequality_red_3_vs_5 98.44 33.33 57.28 99.86 98.44 99.15 
abalone_20_vs_8_9_10 98.23 06.94 26.12 88.18 98.23 92.94 

Kddcup_buffer_overflow_vs_back 98.88 40.00 62.89 99.86 98.88 99.37 

kddcup_land_vs_satan 99.67 15.24 38.97 94.40 99.67 96.96 

Kr_vs_k_zero_vs_fifteen 99.67 23.26 48.14 96.95 99.67 98.29 

poker_8_9_vs_5 98.84 25.00 49.71 99.85 98.84 99.34 

poker_8_vs_6 98.38 03.23 17.81 95.89 98.38 97.12 
kddcup_rootkit_imap_vs_back 97.97 01.84 13.43 69.81 97.97 81.53 

Averages 98.75 22.94 43.88 93.73 98.74 95.94 

 

 

The training datasets for the bagging method with pre-processed SMOTE have results, which are 

shown in Table 6. 98.26%, 23.08%, 40.27%, 91.74%, 98.26%, and 92.66% are the average values for 

sensitivity, specificity, G-mean, precision, recall, and F-measure, respectively. The results of the testing 

datasets for the bagging using SMOTE method are displayed in Table 7. The average values of the sensitivity, 

specificity, G-mean, precision, recall, and F-measure are respectively 97.76%, 20.58%, 33.89%, 88.81%, 

97.76%, and 90.92%.  

The results of the training datasets for the AdaBoost algorithm using pre-processed SMOTE have 

been prepared in Table 8. The average percentages for the following metrics are 99.44%, 62.02%, 74.02%, 

97.99%, 99.44%, and 98.68%, respectively. The results of the testing datasets for the AdaBoost with SMOTE 

approach are displayed in Table 9. 96.61%, 47.90%, 65.43%, 98.10%, 96.61%, and 97.22% are the average 

values for sensitivity, specificity, G-mean, precision, recall, and F-measure, respectively. 

Table 10 has been created to display the training dataset’s results for the suggested method 

(EBGLMBoost ensemble method with SMOTE). The average percentages for the following metrics are 

99.37%, 66.95%, 80.81%, 99.21%, 99.37%, and 99.29%, respectively. Table 11 displays the findings from the 

datasets used to test the suggested strategy (EBGLMBoost ensemble method with SMOTE). 98.61%, 54.78%, 

69.88%, 98.77%, 96.61%, and 98.68% are the average values for sensitivity, specificity, G-mean, precision, 

recall, and F-measure, respectively. Finally, the suggested technique demonstrated the highest G-mean and 

F-measure accuracy for the training datasets, respectively, of 80.8% and 99.29%. 

 

 

Table 6. Results of the training datasets for bagging with SMOTE method 
Datasets Sensitivity Specificity G-mean Precision Recall F-measure 

Kr_vs_k_three_vs_eleven 97.35 05.45 23.04 96.36 97.35 96.85 

winequality_red_8_vs_6 98.58 04.00 19.86 99.12 98.58 98.85 

abalone_17_vs_7_8_9_10 97.69 45.95 67.00 99.78 97.69 98.73 

abalone_21_vs_8 99.10 40.00 62.96 99.86 99.10 99.48 
winequality_white_3_vs_7 97.31 05.45 23.04 97.96 97.31 97.64 

winequality_red_8_vs_6_7 98.04 03.33 18.08 89.61 98.04 93.63 

kddcup_land_vs_portsweep 98.88 62.50 78.61 99.86 98.88 99.37 
abalone_19_vs_10_11_12_13 99.36 03.55 18.79 75.95 99.36 86.09 

kr_vs_k_zero_vs_eight 98.04 01.08 10.30 87.23 98.04 92.32 

Winequality_white_3_9_vs_5 97.59 23.08 47.46 99.34 97.59 98.46 
poker_8_9_vs_6 98.96 15.22 38.81 99.33 98.96 99.15 

shuttle_2_vs_5 99.57 95.24 97.38 99.95 99.57 99.76 

winequality_red_3_vs_5 98.32 03.45 18.41 99.52 98.32 98.92 
abalone_20_vs_8_9_10 98.61 26.88 51.49 97.00 98.61 97.8 

Kddcup_buffer_overflow_vs_back 98.75 07.41 27.05 99.21 98.75 98.98 

kddcup_land_vs_satan 93.75 01.91 13.39 01.44 93.75 02.84 
Kr_vs_k_zero_vs_fifteen 98.86 66.67 81.18 99.95 98.86 99.40 

poker_8_9_vs_5 98.91 05.77 23.89 97.61 98.91 98.26 

poker_8_vs_6 98.52 04.84 21.83 95.96 98.52 97.22 
kddcup_rootkit_imap_vs_back 99.10 40.00 62.96 99.86 99.10 99.48 

Averages 98.26 23.08 40.27 91.74 98.26 92.66 
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Table 7. Results of the testing datasets for bagging with SMOTE method 
Datasets Sensitivity Specificity G-mean Precision Recall F-measure 

Kr_vs_k_three_vs_eleven 97.22 01.82 13.30 98.11 97.22 97.66 
winequality_red_8_vs_6 98.52 01.22 10.96 88.11 98.52 93.02 

abalone_17_vs_7_8_9_10 97.65 05.88 23.97 96.49 97.65 97.07 

abalone_21_vs_8 97.98 94.34 96.14 94.34 97.98 96.12 
winequality_white_3_vs_7 97.56 07.32 26.72 94.04 97.56 95.77 

winequality_red_8_vs_6_7 98.77 17.78 41.90 95.58 98.77 97.15 

kddcup_land_vs_portsweep 98.74 66.67 81.13 99.95 98.74 99.35 
abalone_19_vs_10_11_12_13 99.16 02.86 16.83 74.81 99.16 85.28 

kr_vs_k_zero_vs_eight 98.59 17.50 41.54 97.70 98.59 98.14 

Winequality_white_3_9_vs_5 97.68 01.25 11.05 91.02 97.68 94.24 
poker_8_9_vs_6 98.94 03.23 17.87 95.89 98.94 97.39 

shuttle_2_vs_5 99.57 85.37 92.20 99.82 99.57 99.69 

winequality_red_3_vs_5 98.38 05.00 22.18 96.09 98.38 97.22 
abalone_20_vs_8_9_10 98.61 85.71 91.93 99.82 98.61 99.21 

Kddcup_buffer_overflow_vs_back 98.68 01.11 10.47 94.40 98.68 96.49 

kddcup_land_vs_satan 97.56 01.96 13.83 03.85 97.56 07.40 
Kr_vs_k_zero_vs_fifteen 98.82 02.94 17.05 96.95 98.82 97.88 

poker_8_9_vs_5 98.79 01.00 09.91 97.57 98.79 98.18 

poker_8_vs_6 98.32 02.50 15.68 99.33 98.32 98.82 
kddcup_rootkit_imap_vs_back 85.84 06.25 23.16 62.50 85.84 72.33 

Averages 97.76 20.58 33.89 88.81 97.76 90.92 
 

 

Table 8. Results of the training datasets for AdaBoost with SMOTE method 
Datasets Sensitivity Specificity G-mean Precision Recall F-measure 

Kr_vs_k_three_vs_eleven 99.82 42.22 64.92 96.36 99.82 98.06 

winequality_red_8_vs_6 99.26 45.45 67.17 99.12 99.26 99.19 

abalone_17_vs_7_8_9_10 99.91 99.55 99.73 99.99 99.91 99.95 
abalone_21_vs_8 99.83 99.15 99.49 99.98 99.83 99.91 

winequality_white_3_vs_7 98.58 40.91 63.50 97.96 98.58 98.27 

winequality_red_8_vs_6_7 98.74 38.46 61.63 98.57 98.74 98.65 
kddcup_land_vs_portsweep 99.92 96.00 97.94 99.94 99.92 99.93 

abalone_19_vs_10_11_12_13 99.97 99.02 99.50 99.99 99.97 99.98 

kr_vs_k_zero_vs_eight 98.04 01.08 10.30 87.23 98.04 92.32 
Winequality_white_3_9_vs_5 99.74 78.02 88.22 99.43 99.74 99.59 

poker_8_9_vs_6 99.50 49.37 70.09 99.32 99.50 99.41 

shuttle_2_vs_5 99.95 99.49 99.72 100.0 99.95 99.97 
winequality_red_3_vs_5 99.37 98.44 98.9 99.98 99.37 99.67 

abalone_20_vs_8_9_10 99.91 65.85 81.11 98.77 99.91 99.33 

Kddcup_buffer_overflow_vs_back 99.95 59.15 76.89 98.61 99.95 99.27 
kddcup_land_vs_satan 99.05 66.67 81.26 99.93 99.05 99.49 

Kr_vs_k_zero_vs_fifteen 99.72 56.76 75.23 99.26 99.72 99.49 

poker_8_9_vs_5 99.26 16.67 40.67 97.56 99.26 98.4 
poker_8_vs_6 98.52 01.22 10.96 88.11 98.52 93.02 

kddcup_rootkit_imap_vs_back 99.91 86.96 93.21 99.86 99.91 99.89 

Averages 99.44 62.02 74.02 97.99 99.44 98.68 

 
 

Table 9. Results of the testing datasets for AdaBoost with SMOTE method 
Datasets Sensitivity Specificity G-mean Precision Recall F-measure 

Kr_vs_k_three_vs_eleven 99.82 58.46 76.39 98.11 99.82 98.96 

winequality_red_8_vs_6 99.21 06.67 25.72 85.62 99.21 91.91 
abalone_17_vs_7_8_9_10 98.22 47.22 68.10 99.17 98.22 98.69 

abalone_21_vs_8 98.14 33.33 57.20 99.75 98.14 98.94 

winequality_white_3_vs_7 97.39 25.00 49.34 99.53 97.39 98.45 
winequality_red_8_vs_6_7 98.00 25.00 49.50 99.64 98.00 98.82 

kddcup_land_vs_portsweep 90.91 48.39 66.32 98.43 90.91 94.52 

abalone_19_vs_10_11_12_13 98.85 40.00 62.88 99.68 98.85 99.26 
kr_vs_k_zero_vs_eight 98.59 17.50 41.54 97.70 98.59 98.14 

Winequality_white_3_9_vs_5 98.43 66.67 81.01 99.66 98.43 99.04 

poker_8_9_vs_6 66.67 60.00 63.25 91.46 66.67 77.12 
shuttle_2_vs_5 99.72 37.38 61.06 97.95 99.72 98.83 

winequality_red_3_vs_5 98.58 50.00 70.21 99.73 98.58 99.15 

abalone_20_vs_8_9_10 98.77 63.64 79.28 99.29 98.77 99.03 
Kddcup_buffer_overflow_vs_back 99.01 41.18 63.85 97.09 99.01 98.04 

kddcup_land_vs_satan 94.70 95.24 94.97 99.94 94.70 97.25 

Kr_vs_k_zero_vs_fifteen 99.72 95.45 97.57 99.95 99.72 99.84 
poker_8_9_vs_5 99.03 20.00 44.50 99.81 99.03 99.42 

poker_8_vs_6 98.65 40.00 62.82 99.79 98.65 99.22 

kddcup_rootkit_imap_vs_back 99.91 86.96 93.21 99.86 99.91 99.89 

Averages 96.61 47.90 65.43 98.10 96.61 97.22 
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Table 10. Results of the training datasets for the EBGLMBoost ensemble method with SMOTE 
Datasets Sensitivity Specificity G-mean Precision Recall F-measure 

Kr_vs_k_three_vs_eleven 99.78 41.90 64.66 96.36 99.78 98.04 
winequality_red_8_vs_6 99.48 52.00 71.92 99.12 99.48 99.30 

abalone_17_vs_7_8_9_10 97.53 50.00 69.83 99.99 97.53 98.74 

abalone_21_vs_8 98.33 95.24 96.77 99.98 98.33 99.15 
winequality_white_3_vs_7 98.66 42.22 64.54 97.96 98.66 98.31 

winequality_red_8_vs_6_7 98.92 42.86 65.11 98.57 98.92 98.74 

kddcup_land_vs_portsweep 99.90 57.14 75.56 98.56 99.90 99.23 
abalone_19_vs_10_11_12_13 98.59 99.29 98.94 99.94 98.59 99.26 

kr_vs_k_zero_vs_eight 99.84 98.02 98.93 99.97 99.84 99.90 

Winequality_white_3_9_vs_5 99.97 79.80 89.32 99.44 99.97 99.70 
poker_8_9_vs_6 99.78 57.89 76.00 99.32 99.78 99.55 

shuttle_2_vs_5 99.98 74.05 86.04 99.48 99.98 99.73 

winequality_red_3_vs_5 99.98 77.95 88.28 99.52 99.98 99.75 
abalone_20_vs_8_9_10 97.72 66.67 80.71 99.96 97.72 98.82 

Kddcup_buffer_overflow_vs_back 99.99 90.84 95.30 99.86 99.99 99.93 

kddcup_land_vs_satan 99.98 58.82 76.69 99.12 99.98 99.55 

Kr_vs_k_zero_vs_fifteen 99.90 61.11 78.13 99.27 99.90 99.58 

poker_8_9_vs_5 99.96 49.24 70.16 98.78 99.96 99.37 

poker_8_vs_6 99.69 67.21 81.86 99.32 99.69 99.50 
kddcup_rootkit_imap_vs_back 99.46 76.92 87.47 99.86 99.46 99.66 

Averages 99.37 66.95 80.81 99.21 99.37 99.29 

 

 

Table 11. Results of the testing datasets for the EBGLMBoost ensemble method with SMOTE 
Datasets Sensitivity Specificity G-mean Precision Recall F-measure 

Kr_vs_k_three_vs_eleven 99.96 97.56 98.76 99.93 99.96 99.95 

winequality_red_8_vs_6 98.69 25.00 49.67 99.56 98.69 99.12 
abalone_17_vs_7_8_9_10 97.78 90.91 94.28 99.64 97.78 98.70 

abalone_21_vs_8 97.09 84.80 90.73 91.74 97.09 94.34 

winequality_white_3_vs_7 97.67 27.27 51.61 98.75 97.67 98.21 
winequality_red_8_vs_6_7 97.99 12.50 35.00 99.16 97.99 98.57 

kddcup_land_vs_portsweep 99.81 65.52 80.86 99.04 99.81 99.42 

abalone_19_vs_10_11_12_13 97.56 99.89 98.72 99.90 97.56 98.72 

kr_vs_k_zero_vs_eight 99.79 96.00 97.88 99.93 99.79 99.86 

Winequality_white_3_9_vs_5 97.98 22.22 46.66 99.20 97.98 98.59 

poker_8_9_vs_6 98.92 50.00 70.33 99.93 98.92 99.42 
shuttle_2_vs_5 99.79 93.33 96.51 99.91 99.79 99.85 

winequality_red_3_vs_5 98.43 11.76 34.03 98.97 98.43 98.70 

abalone_20_vs_8_9_10 97.75 50.00 69.91 99.82 97.75 98.78 
Kddcup_buffer_overflow_vs_back 98.74 40.00 62.85 99.86 98.74 99.30 

kddcup_land_vs_satan 99.87 17.89 41.92 94.40 99.87 97.06 

Kr_vs_k_zero_vs_fifteen 97.00 74.07 84.77 99.67 97.00 98.32 
poker_8_9_vs_5 98.98 33.33 57.44 99.61 98.98 99.29 

poker_8_vs_6 98.65 83.33 90.67 99.93 98.65 99.29 

kddcup_rootkit_imap_vs_back 99.91 20.41 45.15 96.46 99.91 98.15 
Averages 98.61 54.78 69.88 98.77 98.61 98.68 

 

 

4.1.  Statistical test 

The nonparametric (Wilcoxon signed rank) test is utilized in this research to compare two paired or 

related samples [57]. When the samples are not in normal distributions and are small, this method is applied. 

This approach is used when the samples are small and do not have normal distributions. The results are sorted 

by leaving out the zero values after first calculating the differences between the two techniques (with n objects) 

[58], followed by calculating the absolute values. The values of R+ and R- are computed where R+ is the sum 

of ranks of positive differences and R- is the sum of ranks of negative differences. The classifier's significant 

differences are also usefully revealed by the p-value, which is set at 0.05 along with the significance value “α”. 

Table 12 summarizes all of the calculations. The selection column displays the techniques that were chosen 

based on whether the hypothesis is rejected or not. Among the techniques tested, the proposed method 

"EBGLMBoost with pre-processed SMOTE" is selected as the best. 
 

 

Table 12. Test Wilcoxon (for pair wise comparison) 
Comparison R+ R- p-value Hypothesis (α = 0.05) Selection 

SVM vs. EBGLMBoost 52 158 0.0489 Rejected EBGLMBoost 
Nu-SVM vs. EBGLMBoost 57.5 426.5 0.0142 Rejected EBGLMBoost 

EBGLMBoost vs. Bagging 157.5 457.5 0.0778 Not Rejected EBGLMBoost 

EBGLMBoost vs. AdaBoost 168 212 0.6653 Not Rejection EBGLMBoost 
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5. CONCLUSION 

In many different industries, such as fraud detection, video surveillance, genetic data analysis, and 

many others, data imbalance is a critical issue. It could be caused by a particularly expensive or challenging 

data collection method, a rare natural occurrence, insufficient and/or skewed data sources, mistakes, or an 

uneven sensor placement. Because the typical accuracy metric assumes that real positives and true negatives 

are of equal importance, it is erroneous in these situations because the cost of misclassification is never 

equalized for positive and negative instances. Twenty unbalanced datasets are used in this experiment, with 

'SMOTE' as the pre-processing approach. SVM, Nu-SVM, bagging, Boosting, and EBGLMBoost are the five 

classification methods are employed after then. The classification of imbalanced datasets is proposed using a 

SMOTE combined with the EBGLMBoost ensemble method algorithm in this paper. Using different metrics, 

the proposed method has shown the best result for G-mean and F-measure, among others. Furthermore, the 

statistical test shows that the EBGLMBoost Ensemble approach is the most effective. 

Other sampling approaches, as well as various ensemble methods, may be explored in future study to 

handle imbalanced datasets. Future research will focus on developing a more efficient parameter, other 

statistical and ensemble techniques. This proposed method has a lot of interesting potential study areas. The 

categorization of imbalanced data with multiple class labels is another intriguing research topic that will be 

investigated further in the future. Due to the complex issues and numerous possible applications, the 

classification of unbalanced data will continue to garner interest in both the "science and industrial" sectors. 
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