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Introduction 
Sebastian, a 30-year-old man, was just diagnosed with depression and is undergoing 

cognitive-behavioral therapy (CBT) sessions on a weekly basis. As he goes about 

his daily routine, he wears a gadget that measures his physiological activity. His 

therapist enters his physiological data for the week into a computer software at the 

start of each CBT session. The computer compiles Sebastian's levels of happy and 

negative affect and pinpoints the times when these reactions peaked. The therapist 

utilizes this information to track Sebastian's development and dynamically 

customize the therapy, for as by asking Sebastian to recollect experiences that 

correlate to some of the emotion peaks. 

Camila is a 3-year-old child who recently had her right shoulder dislocated. She is 

in pain, but she is unable to explain the extent of her discomfort to her doctor. The 

doctor instructs her to keep motionless for 5 seconds before rotating her arm using 

routine range of motion testing (e.g., abduction, flexion). This causes her to wince 

and she lets out a little cry. The doctor films her face both while her arm is motionless 

and during the examinations. The footage is accompanied by an audio recording of 

her sob. Camila's pain intensity is estimated using a computer software that analyzes 

changes in her facial expressions and voice patterns during range of motion tests 

versus when her arm is held motionless. In addition to the X-ray and physical exam, 

he chooses a course of therapy based on the computer-generated assessment of 

Camila's pain severity. 

Lewis just received a diagnosis of attention deficit hyperactivity disorder (ADHD) 

[1], [2]. He just cannot focus on his studies, and his grades are beginning to suffer 



as a result. This makes him unhappy since he believes he is not "clever enough" to 

succeed in college. Lewis' psychiatrist prescribes a typical amphetamine stimulant. 

He also hands Lewis a little gadget that he may attach to his laptop. When Lewis 

uses his laptop to do school assignments, assigned readings, or study for an exam, 

the gadget analyzes his eye stare. A computer software analyzes his eye gazing and 

produces estimations of Lewis's levels of attentiveness during the study session. It 

can tell when Lewis is focused, when he is distracted, and even when he is zoning 

out despite his best efforts. The program gives Lewis feedback on his levels of 

attention as they relate to the various study tasks. Lewis utilizes this knowledge to 

restructure his study technique and re-study specific areas. Furthermore, a new 

software tool he downloaded may use this information in real-time to recommend 

areas for further investigation [3]. Lewis's grades begin to improve, and he begins to 

feel more powerful. 

These hypothetical examples show how technology (devices and computer 

programs) that can identify a person's mental state automatically can give actionable 

information to improve mental health care. As in the situations of Sebastian and 

Camila, these machine-provided mental state assessments can supplement self- or 

observer-reports of the same constructs. They can also allow for introspection and 

dynamic action, as demonstrated by Lewis. These machines may detect 

physiological arousal, emotions (for example, pain), affective dimensions (for 

example, valence and arousal), cognitive states (for example, attention and mental 

effort), emotional states (for example, sad, pleased, furious), and even complex 

cognitive-affective blends (e.g., confusion, frustration). They can target both brief 

occurrences (such as particular attentional lapses) and intermediate mood states 

(such as a poor day) (e.g., stress and depression). Some are ideally suited for usage 

in controlled settings (e.g., a physician's office), others for home and office use, and 

yet others for long-term ambulatory monitoring of mental states. 

The term "AI" refers to the broad objective of producing computers capable of 

perceiving complex mental events, which was previously a uniquely human talent, 

as well as the several subfields of AI engaged in the creation of such machines (e.g., 

computer vision, machine learning). The goal of this research is to debunk the myths 

surrounding these supposedly miraculous technologies that can "read" a person's 

mental state. This is accomplished by first laying the theoretical and technological 

groundwork for the extremely multidisciplinary topic of "automated mental state 

detection" in 118 Artificial Intelligence in Behavioral and Mental Health Care. 

Following that, a few exemplary instances of modern mental state detecting systems 



are shown. The research finishes with a review of the field's outstanding concerns 

and some speculative thoughts on its future. 

Foundations, Theoretical And Technical 
Automated detection of mental states is a growing topic of study within the wider 

discipline of human computer interaction and its sister fields of human factors and 

cognitive ergonomics. It is made up of several subfields, including social signal 

processing, emotional computing, attentionaware computing, and augmented 

cognition, each of which focuses on distinct mental states in various circumstances. 

The topic of automated mental state detection is really multidisciplinary. Its 

psychological foundations are found in cognitive psychology, affective sciences, 

social psychology, nonverbal behavior research, and psychophysiology. Its 

technological origins may be traced back to engineering and computer science, 

notably sensors and wearable devices, digital signal processing, and machine 

learning. 

The psychological component of automated mental state detection is based on ideas 

that emphasize the embodied aspect of mental processes. According to embodied 

theories of cognition and emotion, mental states are expressed in the body rather 

than the mind. The heightened activation of the sympathetic nervous system during 

fight-or-flight reactions is one of the most direct examples of a mind-body 

interaction. There are also well-known associations between facial expressions and 

affective states, such as the wrinkled brow during perplexity. There is also a long 

history of investigating cognitive processes such as attention and cognitive load 

utilizing bodily/ physiological responses. For example, the study of eye movements 

(oculesics) has emerged as a significant technique for investigating visual attention, 

but electroencephalography has long been employed as a mental strain metric. This 

intimate mind-body interaction is understandable when one considers that cognition 

and affect are used to facilitate action. Simply put, we act on what we believe and 

feel. Because bodies are the actors of action, tracking observable physiological 

changes can reveal vital insights into unobservable mental states. This central 

concept underpins the automated detection technique, which aims to deduce mental 

states from body reactions.[4]–[8] 

Figure 1 summarizes the fundamental concepts of automated mental state detection. 

The main assumption is that a person's interactions with the world (situational 

context) produce latent (or hidden) mental states that cannot be assessed directly. 

Circular causation describes how mental states are related with changes at several 



levels (neurobiological, physiological, physical expressions, overt behaviors, and 

subjective/metacognitive feelings/reflections), which in turn impact the mental 

states themselves. Some of these changes are implicit (for example, neurological and 

physiological changes), occurring outside of conscious awareness, whilst others are 

more clear (e.g., overt actions, metacognitive reflections). Some of these implicit 

and explicit changes are visible to machine sensors and human observers, while 

others are solely visible to the self (dotted lines in Figure 1). The computational 

challenge is to infer (or estimate) hidden mental states from machine-readable data 

captured by sensors. 

To solve the aforementioned inference problem, two interconnected computational 

problems must be overcome. The initial difficulty is to extract diagnostic 

information (called features) from sensor inputs. Because the method utilized 

changes depending on the sensor and related signal, this is a sensor-specific 

component of mental state detection. For instance, if the sensor is a camera, the 

signal is video (presumably of the face). The characteristics in this situation might 

be the activation of certain facial muscles or Action Units (AUs) (Ekman & Friesen, 

1978), such as the inner brow lift (AU 1) or the lip pucker (AU 18). To automatically 

calculate these face traits from video, computer vision-based algorithms are 

required. Similarly, pitch and amplitude are frequent paralinguistic (acoustic-

prosodic) variables retrieved from a microphone-recorded audio signal (the sensor). 

Digital signal processing technologies applied to the speech domain are required in 

this case. If the content of the spoken signal is to be studied, automated speech 

recognition must be used, followed by natural language processing techniques to 

find relevant aspects. 

The second problem entails inferring a person's mental state based on the properties 

collected from the signals. This is classified as machine learning and is partially, but 

not fully, signal-independent. To overcome this challenge, most (but not all) 

researchers use supervised learning approaches. In its most basic form, supervised 

learning attempts to learn a program automatically from training data. In general, 

supervised learning proceeds as follows. Annotated data in the form of features 

(extracted from signals recorded by sensors, as previously mentioned) with 

temporally synchronized annotations of mental states (usually provided by humans) 

is collected as  a large number of people are experiencing the mental states. The 

relationship between the features and their corresponding annotations is then 

automatically modelled (learned) using supervised learning methods (dashed lines 

in Figure 1). Aspects of the situational context are occasionally used as extra input 



to provide context to the learning process. When presented with new Automated 

Mental State Detection for Mental Health Care 121 data without correlating 

annotations (e.g., collected at a later time and/or from a person not in the training 

data solid lines in Figure 1), the resulting model created during supervised learning 

is then used to produce computer-generated estimates of mental states. The two most 

immediate performance metrics are accuracy and generalizability. Accuracy is 

defined as the degree to which automated mental state estimations match some 

objective benchmark, often self- or observer-reported mental states, while, 

generalizability is concerned with the detectors' resilience when used to data other 

than that used to train the supervised classifiers [9], [10]. 

 

Figure 1.  

It should be emphasized that the preceding article purposefully glosses over many 

of the complexity required in the various phases of developing an automated mental 

state detector. There are numerous intricacies to data gathering and annotation that 

must be learned. Computing diagnostic characteristics necessitates the resolution of 

several outstanding problems in the relevant disciplines. Then there's the problem of 

picking a subset of diagnostic features, modeling feature connections, and lowering 

the dimensionality of the feature subspace. Before supervised learning can begin, 

the training data must often be collected and altered in a variety of ways. The choice 



of supervised learning technique is next made, followed by ways to parameterize the 

model. When various modalities (e.g., auditory and visual) are employed, the extra 

difficulty of selecting how to blend modalities arises. Finally, adequate validation 

techniques and measurements must be chosen, which is not an easy task. These 

difficulties, when taken together, have encouraged rich and productive 

multidisciplinary research agendas and will continue to do so for many years to 

come.[6], [11] 

Emotional States 

Because affect is involved in a variety of mental diseases, automated affect detection 

might be a potential technique to acquire an indirect evaluation of a person's 

underlying mental health. Affect is a broad term that encompasses both moods and 

emotions, which may be classified along a variety of aspects. Emotions are short, 

intense experiences that dominate the forefront of awareness, have major 

physiological and behavioral expressions, and swiftly prepare the physical systems 

for action, whereas moods are more ephemeral and have a background impact on 

consciousness. The vast bulk of studies on affect detection has concentrated on 

identifying emotions rather than moods, with an emphasis on the so-called "basic 

emotions," which commonly include anger, surprise, pleasure, disgust, sorrow, and 

fear. Nonbasic emotions, such as boredom, perplexity, annoyance, engagement, and 

curiosity, have some of the characteristics associated with basic emotions but have 

gotten significantly less attention. Some studies prefer to define degrees of intensity 

on one or more fundamental affect dimensions, with a particular emphasis on 

valence and arousal, rather than discrete affect representations (e.g., sad versus 

furious) (sleepy to active). [12]–[14] 

Numerous recent studies show that affect detection is one of the most frequently 

investigated mental state detection challenges. Affect detection systems range 

substantially in terms of sensors/signals employed, affect representation, particular 

affective states observed, whether the states occur naturally or are produced 

experimentally, and the circumstances in which affect detection occurs. Three affect 

detection projects are examined to provide background for the work in this field, 

each stressing a distinct mix of sensor/signal, affecting representation, affecting 

state, and situational context. [15], [16] 

Fundamental Emotions 

The first study looked at was a lab study that focused on detecting fundamental 

emotions evoked by an affect elicitation process. Janssen et al. (2013) compared 



automatic detection to human perception of three primary emotions (happy, sad, 

furious), calm, and neutral caused by an autobiographical recall process in 
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required 17 participants to write about two occurrences in their lives that were related 

with feelings of happiness, anger, sadness, or neutrality. Participants were then asked 

to recollect a subset of those incidents in such a way that they relived the feelings 

they had felt, as well as to vocally describe each occurrence (in Dutch). While 

participants recalled and reported the events, audio, video, and physiological data 

(electrodermal activity, skin temperature, breathing, and electrocardiography) were 

captured. Each tape was labeled with the name of the feeling that the subject was 

asked to recollect. [17]–[19] 

A number of standard characteristics were automatically calculated, including 

specified face landmarks, head position, basic frequency of speech, and overall level 

and variation in each physiological signal. When just facial and physiological 

features were included, a support vector machine classifier (supervised learning 

approach) generated the best results. It properly identified the emotion label of each 

recording 82% of the time. Furthermore, the authors directly compared machine 

identification of emotion to human detection of emotion. This was accomplished by 

asking a group of human judges (both American and Dutch) to determine the moods 

of the participants based on various stimulation combinations (audio-only, video-

only, audio-video). The Dutch judges were the most correct (63%) when only given 

the audio (which was also in Dutch), whereas the US judges were the most accurate 

(31%), when both audio and video were offered. However, human accuracy (63% 

and 31%) was significantly lower than automated detection accuracy (82%), a result 

with far-reaching ramifications.[20], [21] 

Nonstandard Emotions 

The second research used a very different strategy from Janssen's, focusing on 

multimodal detection of (mainly) fundamental emotions induced experimentally in 

controlled laboratory conditions. Bosch investigated unimodal detection of nonbasic 

emotions in a noisy real-world scenario of a computer-enabled classroom. As part 

of their usual physics/physical science lessons, 137 middle and high school students 

participated in this study by playing a conceptual physics instructional game in small 

groups for 2.5 hours over three days. Trained observers performed live affect 

annotations by monitoring students one at a time using a round-robin approach 

(observing one student until observable effect was identified or 20 seconds had 



passed and then moved on to the next student in a preplanned order). Boredom, 

perplexity, joy, engagement, and frustration were the feelings of interest. During 

game play, videos of students' faces and upper bodies were captured and synced with 

the impact annotations. The FACET computer-vision tool was used to analyse the 

movies, which offers estimations of the probability of 19 facial AUs, head attitude 

(orientation), and location. Using motion-filtering techniques, body movement was 

also inferred from the videos. To automatically distinguish each emotional state from 

the others, a machine learning technique was used, which was verified in a way that 

generalizes to new pupils. Individual automatic detection accuracy rates ranged from 

62% (frustrated vs. other states) to 83% (delighted vs. other states), which is 

noteworthy given the noisy nature of the environment, with students constantly 

fidgeting, talking to one another, asking questions, leaving to use the restroom, and 

even occasionally using cellphones (against classroom policy).[22]–[24] 

Influence Dimensions 

The third research examined is not actually a study, but rather a collection of many 

initiatives targeted at solving a specific affect detection problem. The concept is that 

when different researchers apply their own methodologies to their own data sets and 

use their own criteria to evaluate performance, it is impossible to determine progress 

in any particular study topic (in this example, effect detection). Direct comparisons 

of results from several research groups are muddled since any discernible difference 

can be attributed to the technique, the data, or the performance indicator. One 

solution to this problem is challenge contests, which are a recurrent subject in 

computer science and AI research. In this case, researchers are requested to apply 

their methods to a given dataset, and the results are assessed using a fixed metric(s), 

allowing for direct comparisons across approaches created by various research 

groups.[21], [25] 

 

The Audio-Video Emotion Detection Challenge (AVEC) is an annual affect 

detection competition that began in 2011 as part of the Affective Computing and 

Intelligent Interaction (ACII) conference series. The 2012 AVEC challenge, which 

explored automated identification of affect dimensions during Automated Mental 
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subject here. The SEMAINE corpus was utilized in the AVEC 2012 competition to 

capture naturalistic data of humans interacting with artificial agents. The artificial 

agents play distinct emotionally stereotypical roles (for example, Spike is furious 



and combative, whereas Prudence is even-tempered and rational), which biases the 

affective tone of the discourse. Researchers were given videos of individuals' 

expressions and audio of their words taken during these emotionally heated 

conversations. Each film was analyzed by two to six human raters along four affect 

dimensions: valence (negative to positive), arousal , power (low control to high 

control), and expectancy (unexpected to expected). Because the affect annotations 

were continually scaled from 21 to 1, the aim was to anticipate the strength of each 

affect dimension using automated audio-visual affect detection algorithms. This 

emphasis on dimensional representations of affect (e.g., valence, arousal, power, 

expectancy) is a more relevant distinguishing factor than the category or discrete 

representations used in the prior two research evaluated. [26], [27] 

The researchers were given two subsets of the annotated data to create their models 

(training and development subsets), which were then applied to a second subset for 

which the annotations were not accessible (test subset). Each research group 

individually provided influence predictions for each dimension using their 

methodologies on the test subset. The findings of ten study groups were provided. 

When the winning team's correlation across the four dimensions was averaged, it 

was 0.45, a significant accomplishment given the task's complexity. 

Pain 

Pain has been linked to a variety of mental illnesses. After controlling for age and 

gender, a large research of 85,088 persons from 17 countries found that persistent 

back/neck pain over a 12-month period was a positive predictor of mood disorders, 

anxiety disorders, and alcohol abuse/dependence. Pain measurement, which mostly 

depends on self-report questionnaires, has well-known drawbacks in terms of 

subjectivity, interpretability, and administration practicality in specific groups. 

Automatic pain detectors can help to reduce some of these issues by providing 

accurate pain monitoring. The number of automated pain detection systems is small, 

owing to the difficulties in gathering adequate datasets for detector construction. The 

recent publication of the UNBC-McMaster shoulder pain expression archive 

database, on the other hand, is intended to jumpstart research in this field. The 

database contains 129 people who self-identified as having shoulder discomfort. The 

data set includes films of individuals conducting eight range-of-motion tests (e.g., 

abduction, internal and external arm rotation) as well as self-reports of pain level 

after each test. A subset of the data (200 video sequences from 25 people) has been 

made accessible to the scientific community in order to aid in the development of 



automatic pain detection systems.[28], [29] UNBC-McMaster database to 

demonstrate one such automated pain detection method. Their method involved 

obtaining appearance-based characteristics from each frame of the video and 

filtering them using a set of log-normal filters. To create detectors of four degrees of 

pain, a support vector machine classifier was utilized (no pain, trace pain, weak pain, 

strong pain). When the validation approach assured generalizability to additional 

participants, they attained an average classification accuracy of 0.56 (F1 metric), a 

promising result given the complexity of the challenge and the early phases of 

research in this field. [30], [31] 

Depression 

Depression is one of the most frequent and significant mental health problems. 

Automatic depression detection systems have the ability to significantly reduce the 

harmful impacts of depression by giving early warning indications of depression and 

serving as an objective evaluation of the success of depression therapies. The 

inclusion of the Depression Detection Sub-challenge (DSC) as part of the 2013 and 

2014 AVEC series appears to have advanced research in depression identification. 

The challenge challenges researchers to create and test their own depression 

detectors on the same dataset, allowing for valid comparisons of each technique 

because data and assessment criteria remain consistent. 

The dataset utilized in the DSC challenge included 240 hours of video (with audio) 

of 84 individuals performing simple activities directed by a computer interface 

across numerous sessions. Participants differed in the number of tasks, sessions, and 

session length. The Beck Depression Inventory-II was used to assess participants' 

degrees of depression. The data were also tagged for fundamental affect dimensions, 

which are not included in this paper. For the 2013 and 2014 challenges, a portion of 

this data was used. This comprised 300 films of participants reading aloud in German 

extracts from a German fable (northwind task) and answering to basic questions in 

German (e.g., "what is your favorite meal" freeform task) in the most current 2014 

challenge. During these exercises, videos of participants' faces and audio of their 

utterances were captured. Researchers were given access to a portion of this data, as 

well as the depression levels of each participant (training and development 

partitions). The test partition was utilized to analyze the results, and the depression 

levels of these people were suppressed.[27], [28], [32] 

In answer to this difficulty, researchers took a wide range of tactics. The results were 

measured using the root mean square error (RMSE) between anticipated and actual 



depression levels for test partition individuals, which varied from 8 to 12. The 

winning system attained an RMSE of 8.12 by emphasizing simulating the timing and 

coordination of voice output and facial expression. This result was a little increase 

above the top result of the 2013 challenge (RMSE of 8.50), which was achieved by 

the same research team on a comparable but unrelated dataset. [23], [33]–[36] 

Conclusion 
Measurement is the first step toward genuine change. Fully automated systems that 

give fine-grained evaluations of a person's mental state over lengthy periods of time 

and in a variety of circumstances have much to offer the science and practice of 

mental health treatment. These mental state detection systems may be incorporated 

at numerous levels within the broader mental healthcare system, such as clinical 

decision-making, ambulatory monitoring, and technology-supported therapy. This 

research discussed some of the theoretical and technical issues underlying such 

systems, as well as grounding the key problems in the context of a few case studies 

focused on automatically detecting mental states relevant to mental health care pain, 

depression, and stress). Unfortunately, the highly selective nature of this review 

precluded a conversation of many other excellent system was developed by 

dedicated groups of international researchers in a variety of fields who are constantly 

making theoretical, technical, and practical innovations to tackle the challenge of 

automatic mental state detection. 

Automatic mental state detection is a difficult problem to solve. Despite significant 

improvements over the years, modern technologies are not yet suitable for practical 

usage. Many early years in the discipline were spent exhibiting research prototypes 

as proof-of-concepts for the feasibility of automatic mental state detection. This was 

important to persuade the early skeptics and detractors who mocked the field's 

pioneers. These early (generation 1) systems concentrated on a restricted subset of 

mental states that were acted (or generated) by a small group of persons in the 

laboratory. Generation 1 was further distinguished by the employment of costly and 

intrusive sensing equipment that were intrinsically nonscalable, as well as the 

application of less technically proficient computing approaches and less strict 

validation processes. We are currently in generation 2, where the emphasis is on 

identifying realistic experiences of a wider range of mental states in more real-world 

scenarios, employing more scalable, wearable, and unobtrusive sensing systems, as 

well as more complex approaches and demanding validation processes. Although 

these generation 2 systems are expected to make significant progress, they may yet 

fall short in several areas. There must be a focus on improving detection accuracies, 



demonstrating applicability across a variety of real-world contexts, achieving 

generalizability across different populations, and adequately attempting to address 

thorny Automated Mental State Detection for Mental Health Care 131 ethical 

concerns. It is not a question of "will" but of "when" these challenges will be 

addressed, after which automatic mental state detection systems will make a 

meaningful and measurable difference in people's lives by improving their mental 

health. 
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