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Chapter

IoT on an ESP32: Optimization
Methods Regarding Battery Life
and Write Speed to an SD-Card
Lukas M. Broell, Christian Hanshans and Dominik Kimmerle

Abstract

The ESP32 is a popular microcontroller for IoT use cases. For many IoT applica-
tions (e.g., environmental sensors or wearables), a continuous power supply is either
not possible or too cumbersome, requiring battery operation. However, the ESP32 has
a relatively high power consumption. This chapter focuses on battery life optimization
methods for this family of microcontrollers. For scenarios where data logging is
relevant, methods for increasing communication speed in relation to power con-
sumption are examined in detail. Measurements of seven different commercially
available development boards were evaluated in terms of sleep modes, reduced CPU
frequencies, and serial communications with the goal of better power efficiency.
Therefore, the common scenario of data logging was compared with the performance
and power consumption when communicating with different SD cards and CPU
frequencies via the SPI and SD bus. Our test results showed that peripheral compo-
nents (such as voltage regulators) have a large impact on the power consumption of
the ESP32 microcontrollers, especially in sleep mode. For data logging, higher clock
rates combined with high-quality SD cards and using the SD bus in 4-bit mode
resulted in the lowest battery discharge.

Keywords: ESP32, energy consumption, write speed, performance to energy, SD bus,
SD-MMC, SDIO, CPU frequency, battery life, IoT, wearables

1. Introduction

For various research questions, comprehensive and objective data collection using
appropriate sensor technology is essential. However, for some applications, there are no
(affordable) devices available on the market or do not provide the needed data quality,
form factor, or access to raw data. As a side effect, one might have special requirements
regarding data privacy and protection. As a scientific institution in the biomedical field
that has to deal with specific needs and research questions, financial restrictions,
and sensitive data retrieved from the sensors, the above-mentioned aspects lead to
many software and IoT-related hardware projects [1–4]. One of our medical projects
intends to measure heart rate variability. The sensor has to exceed the precision of a
clinical-grade ECG device, but at the same time has to be wireless, to be worn on
the body, waterproof, heat resistant, and able to resist chemical disinfection [2].
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The ECG-based measurement allows medical grade data quality for examining the
activity or response of the autonomous nervous system, which is involved in many
diseases such as chronic pain, addiction medicine, mental illnesses (e.g. depression) as
well as in sports medicine and performance diagnostics. The device is used in several
clinical trials and connected to an open-source IoT platform, that allows fleet man-
agement of many devices [1]. Another project that uses the same sensor deals with
VR-based addiction diagnostics and treatment. In this use case, the main aspect is
interoperability with the development environment and the flexibility of integrating
further sensors. In both cases, it is particularly important that the battery life is as long
as possible and that the raw data (ECG) is stored locally at the highest possible
resolution, as correct wireless data transfer cannot always be ensured. There are many
more applications in projects, where our custom build sensors came to use, for exam-
ple, in environmental measurements (urban climate and fine dust measurements,
spectro-radiometric measurements, or radiation sensors) or lab sensory, that is used as
part of lab experiments or as a fundamental part of lab automation within microbial or
cellular experiments [1].

Like us, many other research teams want to take data acquisition into their own
hands and develop specially adapted instruments [5, 6]. It is also possible to describe
exactly and transparently which algorithms were used to increase the reproducibility
of the results. The widespread use and rapid development of easy-to-program
microcontrollers such as the Raspberry Pi or microcontrollers based on the Arduino
platform, as well as the many sensor modules, libraries and sample codes and projects
available, make this easier, and once the basic system is developed, it is easy to add
more sensors or adapt the system to different requirements. This allows data to be
collected quickly under laboratory conditions. However, if the prototype is to be used
in real-life scenarios or in field studies, additional obstacles need to be considered.
Haghi et al. list the following points that should be considered when developing
wearable IoT devices [7]:

• Easy and secure connectivity

• Low power consumption

• Wearability with small form factor

• Reduced risk of data loss through buffering

In order to limit the scope of this work, we will mainly focus on the aspects of
reducing power consumption, as this is directly related to wearability and form fac-
tors. In addition, we will also look at data storage, as if large amounts of data are
collected and need to be stored locally, this will also have a significant impact on
battery life. The aim of this work is to list possible approaches for an optimal com-
promise between data write speed and energy efficiency in order to derive a best
practice for custom development.

2. Background

This section provides background information for comparing different approaches
to writing data to an SD card or improving the power efficiency of microcontrollers.
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It also provides an initial comparison of commercially available microcontrollers in
terms of functionality and power consumption.

2.1 Energy consumption of microcontrollers

To get a basic understanding of microcontroller power consumption, the following
formula illustrates the factors that contribute to the microcontroller power consump-
tion [8]:

Pd ¼ fCU2 (1)

Pd—Dnamic part of power consumption
f—CPU Clock-frequency
C—Total capacitance of the field-effect transistors (FETs) in the circuit
U—Operating voltage
This relation shows that power consumption can be reduced by lowering the CPU

clock-frequency f , the capacitance C or by decreasing the operating voltage U [8].
Since the power consumption is proportional to the operating voltage U squared, it
seems to be obvious to initially reduce it as much as possible. Historically, early
microprocessors used to run on a 5 V supply voltage. Since then, the voltage has been
continuously lowered for that reason. In contrast, the maximum clock frequency has
increased over the years to achieve a higher computing performance. However, this
has also led to increased power consumption. Nowadays the strategy is to max out the
clock frequency capability of a microcontroller while running on a significantly lower
clock frequency [8].

The total capacitance is the sum of the capacitances of the individual field-effect
transistors (FETs). Due to miniaturization, the FETs’ individual capacitances have
become smaller, but the number of FETs per processor’s core continues to grow. The
total capacitance of a given system, therefore, can only be reduced by switching off
individual parts of the processor [8].

2.2 General energy saving measures for microcontrollers

Microcontrollers are usually optimized for an energy-efficient operation with a
number of mechanisms to minimize energy consumption available. An energy-
efficient operation of the microcontroller is usually implemented without the need of
an operating system, which means that the programmer has to give appropriate
instructions in the application program. Most microcontrollers offer a flexible adjust-
ment of the clock frequency as well as low-power or sleep modes. Depending on the
architecture of the microcontroller, certain processor parts or peripheral components
are clocked down, the operating voltage is lowered or even disconnected from the
power supply. This results in the following rules for energy-efficient programming
[5, 6]:

• Complete tasks via hardware instead of software

• Use interrupts and low power mode instead of pin or flag polling

• Use precalculated tables instead of on-demand calculations
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• Avoid frequent calls of subroutines, use procedural programming if possible

• Use the fastest possible sampling-rate, transmission-rate, and highest possible
clock frequency for executing tasks [9]

Before describing methods for implementing these rules, it is important to con-
sider the SD card communication options in order to select a microcontroller that
offers a good trade-off between power efficiency and write performance.

2.3 SD-card communication

An SD-Card (Secure Digital Memory Card) is a digital storage medium that works
on the principle of flash storage. This section deals exclusively with standard SD-
Cards with 9 pins. All information in this section is taken from the SD specifications of
the SD-Card technical committee [10].

2.3.1 Communication systems

The host (microcontroller, card reader, laptop, smartphone, etc.) can access the
SD-Card using either the Serial Peripheral Interface (SPI) or the proprietary SD bus
protocol.

SD bus: Communication via the SD bus is based on command and data bit streams
that are initiated by a start bit and terminated by a stop bit. Each message consists of a
command, response, and data block tokens.

• 1-Bit SD bus: Data transfer via a single transmission channel.

• 4-Bit SD bus: Four transmission channels used for higher data transmission rates.

SPI bus: The SPI bus is a bus system consisting of three channels for serial syn-
chronous data transmission. Microcontrollers mostly communicate with SD-Cards via
the SPI bus. The SPI protocol does not allow all functions of SD-Cards, like energy
saving functionality (e.g., low voltage). Additionally, the maximum transfer speed of
the bus speed does not correspond to the maximum read/write speed of the used SD-
Card.

2.3.2 Write speed

The maximum supported clock rate is decisive for the highest data transfer rate
that can be achieved. Clock frequencies available for standard SD-Cards at the
respective communication protocols are listed in Table 1.

Unfortunately, most microcontrollers only support the SPI bus for storing data on
an SD card. However, the ESP32, which is widely used for IoT applications, supports
both SPI and SD bus. For this reason, the features and power saving options of the
ESP32 will now be examined in more detail.

2.4 ESP32: Energy options

Like many other microcontrollers, the ESP32 offers a wide range of power saving
options. Its processor core is divided into different modules (radio module, main
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processor core, and memory, cryptographic hardware acceleration, ultra-low-power
co-processor with real-time clock and recovery memory), which can be switched off
individually to save energy. Table 2 lists the different power options of the ESP32
with the power consumption in the corresponding mode, according to the manufac-
turer’s specifications.

2.5 Comparison of ESP32 development modules

Not only the processor contributes to the total energy consumption of a microcon-
troller but also all the peripheral modules like voltage regulators, sensors or external
flash memory do so as well. Therefore, different developer modules using the ESP32
should be considered with regard to the total energy consumption in the respective
power modes. Table 3 shows the results of the measurements at the different power
options.

The differences in power consumption between the different developer boards are
considerable, as shown in Table 3. As a possible reason for the distinct deviation in
power consumption, the built-in voltage regulators come into consideration since the

Communication protocol Supported clock rates Max. write speed

SPI ½ of CPU Clock 1.6 MB/s

SD bus 1-bit mode Default Speed (25 MHz)

High Speed (50 MHz)

UHS-I (208 MHz)

3.125 MB/s

6.25 MB/s

26 MB/s

SD bus 4-bit mode Default Speed (25 MHz)

High Speed (50 MHz)

UHS-I (208 MHz)

12.5 MB/s

25 MB/s

104 MB/s

Table 1.
SD-card communication protocols and respective max write speeds [10].

Power Modi Description Current draw

Modem-sleep CPU is active 240 MHz Dual-core 30 mA � 68 mA

Single-core n.a.

160 MHz Dual-core 27 mA � 44 mA

Single-core 27 mA � 34 mA

80 MHz Dual-core 20 mA � 31 mA

Single-core 20 mA � 25 mA

Light-sleep — 0.8 mA

Deep-sleep ULP active 150 μA

ULP sensor-monitored pattern 100 μA at 1% load

RTC timer + RTC memory 10 μA

Hibernation RTC timer only 5 μA

Power off CHIP_PU is set to low level, CPU switched off 1 μA

Table 2.
Power mode and energy consumption of the ESP32 [11].
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measured energy consumption exceeds the specifications from the data sheet by far.
Voltage regulators are known to contribute significantly to the overall consumption of
the system due to their quiescent current, which is especially noticeable in sleep states
[13]. The voltage regulator of the FireBeetle ESP32, for example, has a maximum
voltage drop of 0.31 V at 600 mA and a quiescent current of 4 μA, while the voltage
regulator of the Adafruit HUZZAH32 has a voltage drop of 0.4 V at 600 mA and a
quiescent current of 80 μA.

Nevertheless, the ESP32 itself is rather an energy-consuming. In consequence, the
ESP32 family expanded by some more energy-efficient versions with the ESP32-S2 being
the most interesting one for IoT applications. It provides almost all the known function-
alities but comes as a single-core processor for less power consumption. The comparison
of the ESP32 to the ESP32-S2 and its power consumption is summarized in Table 4.

The ESP32-S2 is an excellent choice for a variety of IoT applications, but the lack of
an SD bus is a limiting factor in achieving an optimal combination of SD card write
speed and power efficiency.

Now that the various options for writing to the SD card have been presented, as
well as general and specific methods for reducing microcontroller power consump-
tion, the next step is to review related work to evaluate the current best practice for
power optimization in combination with high-resolution data acquisition.

cDeveloper Modules Reference

(mA)

Light-Sleep

(mA)

Deep-Sleep

(mA)

Hibernation

(mA)

Adafruit HUZZAH32 47 8.43 6.81 6.80

ESP32—DevKitC 51 10 9 9

Ai-Thinker NodeMCU 32S 55 15.05 6.18 6.18

Sparkfun ESP32 Thing 41 5.67 4.43 4.43

FireBeetle ESP32 39 1.94 0.011 0.008

WiPy 3.0 192 — 0.015 —

Table 3.
Comparison of the energy consumption of different ESP32 developer modules [12].

Power Mode Description ESP 32 nominal current ESP32-S2 nominal current

Active transmit 802.11b 240 mA 190 mA

receive 802.11b 100 mA 68 mA

Modem-Sleep 240 MHz 30 mA � 68 mA 19 mA

160 MHz 27 mA � 44 mA 16 mA

80 MHz 20 mA � 31 mA 12 mA

Light-Sleep — 0.8 mA 450 μA

Deep-Sleep ULP active 150 μA 235 μA

ULP sensor-monitored 100 μA at 1% load 22 μA at 1% load

RTC timer + memory 10 μA 25 μA

Hibernation RTC timer only 5 μA 20 μA

Table 4.
Comparison of power consumption between ESP32 and ESP32-S2 [11, 14].
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3. Related work

One work that optimizes the energy consumption when writing data to an SD card
was done by Bradley and Wright in which the energy consumption of the Arduino
Atmega328P was determined at 5 V and 16 MHz and 3.3 V and 8 MHz [15]. In each
case, the SD card communication was implemented via SPI. It was found that the
lower clock rate resulted in a lower discharge. At 16 MHz the transmission time was
9–10 ms, while at 8 MHz, 15 ms was measured. Also, at 8 MHz, a slight delay in SD
card response was observed. In deep sleep, the microSD card adapter used for SPI
communication contributed significantly to the total power consumption. Without
the SD card, 120 and 96 μA were measured, while 800 and 750 μA were measured
with the SD card connected. To reduce power consumption, a BS170 power control
N-channel MOSFET was used. This reduced the current consumption during
deep sleep to 21.1 and 18.6 μA, respectively, which is a reduction factor of 40.
However, this MOSFET also led to a reduction in the transmission speed for SD
communication from 20 to 150 ms. Further work with higher clock speed and larger
SRAM is announced [15]. This work demonstrated a good option to minimize power
consumption when using SD cards but only if a low sampling or transmission rate is
required.

Regarding optimizing the write speed to an SD card, we could not find any com-
parable work in the scientific literature, but a blog post has been written demonstrat-
ing the performance increase when using the SD bus on the ESP32 compared to the
SPI and how this was achieved [16]. A difference of about 230% for write operations
and about 400% for read operations was shown using the SD bus in 4-bit mode
compared to SPI.

Similarly, only one paper was found that addressed the energy-efficient operation
of an ESP32 [17]. This paper gives a best practice for using an ESP32 in an industrial
wireless sensor network. The different operating modes of the ESP32, as mentioned
above, are listed with a recommendation to switch between operation modes over
time to perform tasks with the suitable operation mode. It is also noted that in active
mode, energy efficiency can be further improved by adjusting the processor clock
speed.

As shown in the introduction and related work, there has been scarce work
addressing the requirements of microcontrollers for wearable IoT applications and
optimizing communication to a local storage medium. This is certainly a niche area,
but the steady growth, ease of access, and the resulting variety of use cases have
shown that the evaluation of further optimization methods is nevertheless useful and
relevant.

Therefore, in the following, possible approaches to optimize the speed of writing
data to an SD card while taking power consumption into account will be investigated.
In addition, possible methods for further reducing power consumption by making
various adjustments to the ESP32’s operating modes will be investigated and different
microcontrollers will be compared.

4. Material and methods

This section lists all the microcontrollers used, the different operating states,
power-saving measures, and SD communication methods, as well as the measurement
methods and evaluation methods of each test.
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4.1 Optimization of the SD-card communication speed

The ESP32 features an SD bus interface that allows communication to SD-Cards in
1-bit and 4-bit modes. Read and write speed was compared in both modes with the
performance of the SPI bus. In addition, a SanDisk Extreme 32GB (Speedclass 10,
UHS Speed Class 3, max. Transfer speed 160 MB/s) was compared with a SanDisk
Ultra 32GB (Speedclass 10, UHS Speed Class 1, max. Transfer speed 98 MB/s) during
the three different communication scenarios. The Arduino sample programs
“SD_Test” [18] for SPI and “SDMMC_Test” [19] for 1-bit and 4-bit data transfer were
used to control the SD-Card, transferring data and measuring the transfer time. The
sample programs are included when installing the ESP32 board manager into the
Arduino IDE. All codes were executed on a DFRobot FireBeetle ESP32. Table 5 shows
the GPIO-Pin connections of the setup, respectively.

4.2 Optimization of power consumption

For power consumption measurements, the developer boards were operated with a
3.7 V LiPo battery. The following subsections describe the individual energy-saving
options and experimental setups in more detail, measured with a digital multimeter
(Testboy 313).

4.2.1 Determination of the most energy-efficient SD communication method

In all above-listed communication methods, the same Arduino sample programs
for SD-Card communication were used. The current was measured during read and
write operations. Over the elapsed time, the actual discharge was calculated according
to the following formula, where C is the discharge in coulombs, A is the measured
current in ampere, and t is the elapsed time in seconds.

C ¼ A ∗ t (2)

Name Pin FireBeetle Pins SD bus FireBeetle Pins SPI

SD bus SPI SD Micro-SD

DAT1 — 8 8 D0/IO4 —

DAT0 DO 7 7 D9/IO2 MISO/IO19

VSS VSS 6 6 GND GND

CLK SCLK 5 5 BCLK/IO14 CLK/IO18

VCC VCC 4 4 V3.3 V3.3

VSS2 VSS2 3 — GND GND

CMD DI 2 3 A4/IO15 MOSI/IO23

DAT3 CS 1 2 D7/IO13 D8/IO5

DAT2 — 9 1 MCLK/IO12 —

Table 5.
SD-card connection to a DFRobot FireBeetle ESP32 in SD and SPI bus.
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4.2.2 Comparison of different developer boards

Three frequently used ESP32 developer modules, one ESP32-S2 module, and also
non-ESP boards were compared (see Table 6). Developer boards without an inte-
grated battery voltage regulator were operated via an external battery voltage regula-
tor (Adafruit Micro-Lipo Charger) and the same LiPo battery.

For a comparison between the developer boards, the current consumption was
measured during two different operating states:

• Normal mode + LED blink

• deep sleep

4.2.3 CPU clock frequency reduction

To evaluate the impact of reduced CPU clock frequency on power consumption,
the system was put into different operating states (see Table 7).

Wi-Fi network scan and modem sleep were run on all three developer boards. The
effects of different CPU clock frequencies on SD communication speed were run
exclusively on the FireBeetle ESP32 as it has the lowest energy consumption among
the ESP32 boards with little quiescent current (according to Table 2). Hence, it
reflects the actual power consumption of the processor best, and the Adafruit Feather
S2 has no built-in SD bus interface. The same “SDMMC_Test” sample program was
used as before. For a more accurate current measurement on read and write

Development module CPU CPU-Clock

(MHz)

Nominal

current

Voltage

regulator

Quiescent

current

ESP32-DevKitC-32D ESP 32 240 40 mA AMS1117 5 mA

Adafruit HUZZAH32 ESP 32 240 40 mA AP2112–3.3 80 μA

FireBeetle ESP32 ESP 32 240 40 mA RT9080-33GJ5 4 μA

Adafruit Feather S2 ESP32-S2 240 19 mA NCP167BMX3

0TBG

18 μA

Arduino Nano 33 BLE Cortex M4F 64 6.4 mA MP2322GQH-Z 5 μA

Feather M0 Bluefruit Cortex M0+ 48 5.0 mA AP2112–3.3 80 μA

nRF52840 MDK Cortex M4F 64 6.4 mA n.a. n.a

Table 6.
Development modules' specifications for energy efficiency comparison.

Operation state Development modules CPU-Clock rates

(MHz)

Wi-Fi-Scan HUZZAH32, FireBeetle ESP32, Feather S2 240, 160, 80

Modem sleep + LED blink HUZZAH32, FireBeetle ESP32, Feather S2 240, 160, 80, 40, 20

Modem sleep + SD

communication

FireBeetle ESP32 240, 160, 80, 60

Table 7.
Tested operating states and clock frequencies of different ESP32 boards for energy efficiency comparison.
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operations, a data transfer of 8 MB was set instead of the default 1 MB. The Wi-Fi
network scan was only performed up to a minimum clock frequency of 80 MHz as
Wi-Fi connectivity is only guaranteed by the ESP32 up to this clock frequency [3].

5. Results

In this section, the results of the compared optimization methods for the commu-
nication speed to the SD-Card as well as for the energy efficiency of the ESP32 in
different operating states are given.

5.1 SD-card communication speed

Figure 1 shows the comparison of transfer speed between SD bus in 1-bit and 4-bit
mode as well as communication via SPI bus on a SanDisk Ultra 32 GB and a SanDisk
Extreme 32 GB in milliseconds.

The SD bus is clearly superior to the SPI bus, but there is only a little difference
between the 1-bit and 4-bit modes. In 4-bit mode, the write processes are about 10% and
read processes are about 25% faster in comparison to the 1-bit mode. The differences in
reading operations between SanDisk Ultra and SanDisk Extreme are neglectable, how-
ever, while writing, the SanDisk Extreme 32GB performed the task 20% faster.

5.2 Energy consumption

5.2.1 Comparison of SD communication methods

To further evaluate the best SD-Card communication method for mobile devices,
the results of the current measurements during read and write operations are listed

Figure 1.
Read and write speeds of different SD-cards in SD bus 1-bit mode, SD bus 4-bit mode, and SPI bus.
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below. Table 8 shows the durations and measured currents of the SPI bus with three
different commercially available SD-Card modules as well as SD bus communication
(1- and 4-Bit mode) using a wired SD-adapter.

No great difference was observed between the various SD-Card modules in the SPI
bus mode, neither in read or write speed nor in current consumption. However, there
is a considerable difference among both SD bus protocols: comparing SD bus to SPI
during reading, the current consumption is increased by around 13% in 1-bit SD bus
mode and by around 15% in 4-bit mode, however, while writing, the current draw is
only increased by around 5% in 1-bit mode and by around 8% in 4-bit mode. Gener-
ally, reading processes showed a higher power consumption than slower writing
processes.

To evaluate whether a faster write speed via the SD bus results in a less overall
discharge of the battery (despite its higher current draw) each actual discharge was
calculated and is shown in Figure 2.

As can be seen, the higher write speed causes less discharge of the battery despite a
higher current flow during the operation. Therefore, the SD bus in the 4-bit mode has
the lowest overall energy consumption in this scenario.

5.2.2 Comparison of various developer boards

The first comparison of the developer boards was carried out during a standard test
program, the flashing of the built-in LED. Figure 3 shows the current consumption of
the various developer boards during this test program.

In this comparison, the ESP32 modules show the highest power consumption
during the LED blink program, with the DFRobot FireBeetle ESP32 performing best
among them. As expected, the newer single-core ESP32-S2 of the Adafruit Feather S2
shows a lower power consumption. The lowest power consumption is shown by the
non-ESP32 boards, of which the Arduino Nano 33 BLE has the highest power con-
sumption among the non-ESP32 boards. Even though having the same CPU as the
Arduino, the nRF52840 MDK had the lowest power consumption. The Adafruit
Feather M0 Bluefruit shows a slightly higher power consumption than the nRF52840
MDK despite the efficient ARM Cortex M0+ CPU. The comparison of the developer
boards in deep sleep mode is shown in Figure 4.

SD-Card modules & communication

methods

read write

Current draw

(mA)

Time

(ms)

Current draw

(mA)

Time

(ms)

Standard SD-SPI 100 2851 86 3886

Adafruit μSD-Module 102 1738 89 2768

NoName SPI SD-Module 100 1736 86 2791

SD-Adapter SPI 103 1779 90 2766

SD bus 1-Bit mode 115 913 92 1902

SD bus 4-Bit mode 117 761 95 1744

Table 8.
Comparison of current consumption during read and write operations on the SD-card of different modules and
communication methods.
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The Adafruit HUZZAH32 (according to Figure 4) has the highest power con-
sumption in the sleep state. This is consistent with Table 2. Correspondingly, the
FireBeetle ESP32 shows a low power usage in the sleep state, only beaten by the
Adafruit Feather S2, although the ESP32-S2 processor itself has a higher current
requirement in deep sleep (see Table 3) and uses a less economical voltage regulator
(see Table 6).

Figure 2.
Calculated battery discharge when reading and writing from and to an SD-card with different methods and
modules.

Figure 3.
Current measurement of different developer boards during a specific program sequence (LED blink).

12

Edge Computing - Technology, Management and Integration



5.2.3 CPU clock frequency reduction

Since only the Adafruit Feather S2 among the non-ESP32 developer boards has
Wi-Fi connectivity, for the comparison of current consumption at different CPU
clock frequencies and operating states, it was compared with the two ESP32 boards.
Figure 5 visualizes the results of the current measurements. The Wi-Fi scan was
performed up to a minimum clock frequency of 80 MHz, since the Wi-Fi module of
the ESP32 is not supported at a lower clock frequency [3].

Figure 5 shows that the Adafruit HUZZAH32 consistently has the highest power
consumption in different operating states and at reduced CPU clock frequencies,
whereas the Adafruit FeatherS2 consistently shows the lowest power consumption in
this comparison. It is noticeable that the DFRobot FireBeetle ESP32 only has a slightly
higher power requirement than the FeatherS2 in Wi-Fi Scan and at a clock frequency

Figure 4.
Current measurement of different ESP32 developer boards in deep sleep. The ESP32 and ESP32-S2 boards were
used due to their similar deep sleep functionality.

Figure 5.
Measurement of current at different CPU clock frequencies during Wi-Fi network scan and modem sleep of
different ESP32 developer board.
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of 80 MHz, as well as a constant approximation of current draw to the Feather S2 in
modem sleep with reduced clock frequency.

To evaluate the functionality at reduced CPU clock frequencies in modem sleep,
Table 9 lists the performance when reading from and writing to the SD-Card at
different clock frequencies as well as the simultaneously measured current flow. As
with the Wi-Fi module, the ESP32 does not seem to support the SD bus protocol at
clock frequencies lower than 80 MHz. 60 MHz could still be executed, but lower clock
frequencies generated error messages and the data transfer was not executed.

Table 9 also shows that the current decreases with lower clock frequencies and a
lower current requirement in 1-bit mode, the communication speed is also reduced in
both manners. At 60 MHz in 4-bit mode, the measurement is comparable to 240 MHz,
which indicates that the reduction of the clock frequency below 80 MHz leads to
malfunctions. As before, the calculation of the actual battery discharge should provide
information about which mode at which clock frequency means the lowest power

CPU-Clock (MHz) read write

Time (ms) Current (mA) Time (ms) Current (mA)

M SD M SD

4-Bit 240 1221.3 16.95 120.3 3163.8 5.82 98.8

160 1421.8 12.69 98.7 3622 3.74 78.5

80 1842.5 20.27 80.7 4729 3.32 63.8

60 1210.3 6.83 120.2 3330.3 276.9 99.9

1-Bit 240 2563.7 28.06 102.3 4376 4.08 92.8

160 2762.8 12.65 86.2 4807.5 5.22 75.3

Table 9.
Comparison of current consumption and process duration during read and write operations at different CPU clock
frequencies in 4-bit and 1-bit SD bus protocol.

Figure 6.
Calculated actual battery discharge when reading and writing the SD-card at different CPU clock frequencies.
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consumption and therefore longest battery lifetime. Figure 6 shows the discharge
calculated from Table 9 during the read and write operations of the two modes at the
different clock frequencies.

The direct comparison shows that despite the higher current requirement, the 4-
bit mode causes less battery discharge than the 1-bit mode due to the faster commu-
nication speed. The comparison of the power consumption of the 4-bit mode at
different clock frequencies shows only minor differences, of which the best efficiency
was observed at a clock frequency of 160 MHz in 4-bit mode.

6. Discussion

In this section, the results presented above are discussed and possible reasons for
controversial results are mentioned.

6.1 SD-card communication speed

As assumed, the SD bus showed higher data rates than SPI, but the difference was
much smaller than expected. Data rates of only 1.45 MB/s in 4-bit mode while reading
and 0.59 MB/s while writing were shown, even though the ESP32 supports the high
frequency (50 MHz) 4-bit SD bus mode, which according to the datasheet should
allow a transfer rate of up to 25 MB/s. Additionally, the 1-bit mode was not 4 times
slower than the 4-bit mode. Only a 25% slower transfer rate for reading and 11%
slower for writing data was measured. Lower transfer rates than those reported by the
data sheets were also measured for the SPI bus, with 0.35 MB/s achieved while reading
and 0.26 MB/s while writing, they are slightly less than a quarter of the nominal value
of up to 1.6 MB/s. Possible causes for the deviations could be explained by inefficient
register allocation of the libraries provided for the ESP32 SD bus interface, which is
also shown by the fact that other colleagues could also not achieve higher transfer
rates when using the ESP32 [16].

Nevertheless, Figure 2 shows that the method with the highest transfer rate and
thus a shorter transfer duration also causes the lowest battery discharge, which is why
the SD-bus in 4-bit mode on the ESP32 is recommended even if its performance
potential cannot be achieved. Likewise, the usage of a high-quality SD-Card is also
recommended. The data can be transferred at three different CPU clock rates,
whereby the differences in discharge turned out to be comparatively small, in this
case, the rule faster data transfer equals lower discharge does not seem to apply. In our
test, the clock rate of 160 MHz showed the lowest discharge.

6.2 Power consumption

Measuring the current with a multimeter while operating the microcontroller on a
battery is not the most precise method, but sufficient for the extent of the differences
between the respective compared developer boards and processes. In terms of energy
consumption, it was basically found that the ESP32 has the highest energy consump-
tion consistent with the data sheets, followed by the ESP32-S2, then the Cortex M0+
of the Adafruit Bluefruit M0, and with slightly less consumption of the nRF52840.
Although the ESP32 has the highest power consumption, this processor also offers
some advantages such as SD bus connectivity and high processor clock frequency for
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more computational performance and faster data rates, so further research was done
with the ESP32.

Consistent with Table 2, in our series of measurements the FireBeetle ESP32 also
showed the lowest quiescent current and power consumption in deep sleep among the
ESP32 boards. However, the Adafruit Feather ESP32-S2 had an even lower power
consumption, although the ESP32-S2 itself has a higher power consumption in deep
sleep and a less efficient voltage regulator. The lower power consumption that we
observed can be explained by the intelligent circuit layout: all peripheral modules are
connected in a second circuit, which is switched off in deep sleep.

The reduction of the clock frequency showed a large effect up to a clock rate of
40 MHz. Below that, only a small reduction in energy consumption was detectable. At
20 MHz the ESP32 had a similar power consumption as the Arduino Nano 33 BLE at
64 MHz. But the Arduino Nano 33 BLE has several peripheral modules like the NINA
Bluetooth module and a 9-axis IMU which is responsible for the higher power con-
sumption compared to the nRF52840 MDK which uses the same CPU. Without the
peripheral consumers, the Cortex M0+ as well as the nRF52840 showed a significantly
lower power requirement than the throttled ESP32.

It could be demonstrated that the choice of a low-power developer board has a
great impact on the overall power consumption of the system. If an economical
module with low quiescent current is used, the power requirements can be throttled
down to almost the level of the more economical microcontrollers such as the Adafruit
Feather S2 or the Arduino Nano 33 BLE with still sufficient performance reserve. But
if less performance is sufficient and small amounts of data have to be transferred, the
Cortex M0+ or the nRF52840 are clearly recommended. As long as fast Wi-Fi data
transfer and better performance are required but no fast data storage on SD-Cards is
necessary, the ESP32-S2 would be the best choice.

7. Conclusion

In summary, the combination of high write speed and low power consumption is
difficult to reconcile. It is recommended to write to the SD-Card as infrequently as
possible and at 160 MHz using an ESP32 in SD bus 4-bit mode. In ordinary program
cycles, the ESP32 should be operated in the state with the lowest power consumption.
If a Wi-Fi connection is not necessary at any time or there is no stable Wi-Fi connec-
tion, the ESP32 should be operated in modem sleep mode and the clock rate should be
reduced to the minimum necessary to function, although a reduction below 40 MHz
has little effect. Tasks with high computational effort should be performed at the
highest possible clock rate to reduce the duration of the increased power consumption.
For our application, the FireBeetle ESP32 is best suited and is recommended for
comparable applications. If similar computational performance but no high-speed
data logging is required, we suggest using the ESP32-S2 instead. If less processing
power is sufficient, either the ARM Cortex M0+ with an additional Wi-Fi module for
Wi-Fi applications or the nRF52840 for Bluetooth Low Energy applications are the
best choices.
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