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Chapter

Network Powered by Computing:
Next Generation of Computational
Infrastructure
Ruslan Smeliansky

Abstract

This paper is an extended version of my talk on the MoNeTec-2022. It gives a
detailed presentation of the concept Network Powered by Computing. The main
differences from the previously published one are that the functional architecture of
the NPC is presented, the main problems on the way to its implementation are
formulated, the mathematical statements of the problems of control and management
of the resources in the NPC environment by methods of multi-agent optimization are
given, the existence of a solution to these problems is justified, and the relationship
between the problem of control in such an infrastructure and the Barabási-Albert
model is shown. An example of the predicting execution time of services in the NPC
environment is given.

Keywords: cloud computing, edge computing, software-defined network, network
function virtualization, software defined wide area network, green computing, zero
footprint

1. Introduction

MIT professors J.L. Hennessy and D.A. Patterson in their 2018 Turing Award
lecture gave an excellent overview of the history of computer architecture and the
lessons of this history in Ref. [1]. In the conclusion of this paper, they wrote: “The next
decade will see a Cambrian explosion of novel computer architectures, meaning
exciting times for computer architects in academia and in industry.” This “explosion”
brings big opportunities for computational infrastructure. To paraphrase the title of
their paper, we can say that we are going through “A New Golden Age for Computa-
tional Infrastructure.” The term computational infrastructure will be treated here as
the architecture of computational infrastructure.1 Organization of computations is one
of the pillars of human civilization. Therefore, it is important to understand the main
trends and prospects of its development, to understand what problems will need to be
solved.

1 This paper is extended version of my talk on the MoNeTec-2022 published in [2].
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If we have a look at the history of the progress of computing infrastructure
from the individual use of the first computers, the packaged organized computation
on stand-alone computers to the client-server paradigm of computation based on
high-speed data communication networks and large-scale (giant-like) data centers
(DC), then the main lesson of this history is that the main drivers of this progress were
the requirements of applications. Nowadays, the computational infrastructure para-
digm is moving from “build your own” to the new one—“consume as a service “where
a business does not need to buy and develop its own computational infrastructure,
rent channels that connect it to the public network, hire expensive professionals for
system and network administration, and so on. In the new paradigm, one can request
and get the resources and services they need based on the model of “pay as you go.”
Also, computing paradigm based on the giant-like DC is being replaced by a new one
—small cloud edges in [3]. Our applications became more and more real-time appli-
cations. So, the time for communication between user terminal and large scale DC
where our ability to control communication delays became more and more critical for
application operation. The increased restrictions on the interaction time between the
application and the terminal device led to a contradiction with the concept of com-
puting based on large-scale DC. Carbon footprint of such organized computation is a
heavy burden on our ecology.

The necessity of this change has come from the requirements of new
applications with their real-time interactivity, video streaming, and 5G
communication. Over the past 10 years, cloud computing as the computing
paradigm has completely changed the landscape of computational infrastructure;
for example, see [4–7]. In the paper [3], I wrote: “It significantly contributed to
the growth of both the number of data processing centers (DCs) and their size,
the increase in throughput capacity of backbone channels [5], the increase in
equipment density: virtualization of IT equipment in cloud architectures
allowed to fit into one rack what previously required 10 racks improving and
developing the capabilities of personal gadgets, various types and uses of
sensors, the development of data transmission technologies such as OTN, 5G
networks, network convergence, the emergence of SDN and NFV technologies
gave impetus to the development of a large number of real-time applications
(RT applications) in Ref. [8]. Here are just some examples of such applications:
smart city, smart home, healthcare (especially its areas such as surgery,
telemedicine, emergency cardiology), interactive games, training, augmented
reality, agriculture, infrastructure for scientific multidisciplinary research in
[7], social communications, energy management systems (smart grid),
wireless sensors embedded in a variety of robots, monitoring and control of
transportation systems and facilities, assembly lines and production lines, gas
and oil pipelines.

An important aspect of the computing infrastructure is power consumption.
According to 451 Research, a technology research group within S&P Global
Market Intelligence that provides a holistic view of innovation across the entire
enterprise IT landscape, the computing power as well as the engineering equipment
of all DC worldwide is estimated in 2022 about 200 GW in [11. This means that in
2022 the energy consumption of all DC was 200 GW � 24 hours � 365 days =
1,752 1012 Wt hours! Thus, the carbon footprint of the contribution of computational
infrastructure was about 1.8 1015 W/year (53% of the US). This means that the
organization of the computing infrastructure has a significant impact on the ecology
of our environment.
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2. Properties suite of modern applications

In my talk, I emphasized: “the main driving force of the development of infra-
structure for computing, its operating environment, programming languages and
tools have always been the needs of applications” [2]. The suet of these needs can be
summarized as follows: distribution, self-sufficiency, real-time, elasticity, cross-
platform, interaction and synchronization, and update-friendly. The definitions of
these terms can be found in [2]. Nevertheless, for a better understanding of the
further text, it is necessary to explain the term self-sufficiency, which is defined in [2]
as: “application is no longer represented by code and source data only, it is accompa-
nied by a description of the structure of the interconnection of the components
(hereinafter application services) that make up the application, setting the required
level of their productivity, explicitly formulated requirements for computing and
network resources, data storage and access to data resources, intended timeframes for
computing and data transmission in the form of a service level agreement (SLA),
application launching procedures. This description is written in a special language, an
example of which one can be the TOSCA language [6] (hereinafter such a description
will be called Application Operation Specification—AOS)” [2].

3. Computational infrastructure requirements

Here, let me briefly list the requirements for the computational infrastructure
described in [2]: behavior predictability, security, availability, reliability and fault
tolerance, efficiency and fairness, virtualization, scalability, and serverless. The
serverless was defined there [6] as follows: “[T]he infrastructure should
automatically place application components in a way that allows them to interact
according to the application stricture, and in a way that ensures that the SLA
requirements of the application are met, while minimizing infrastructure resources
utilization”.

In order for NPC to be able to meet the requirement of efficiency and predictabil-
ity and serve as the computational infrastructure for applications, in the above sense
(everywhere below the app.), its behavior and functioning must meet the require-
ments such as:

• “predictability of time of execution of application components and their
interaction time (data transfer) according to AOS;

• predictability of the characteristics of data transfer between application
components along overlay channels;

• availability of a variety of virtualized network functions (VNF hereinafter) and
other traffic engineering (TE) methods on DTN channels based on machine
learning algorithms for distribution, balancing, shaping, filtering to control, and
manage QoS of an overlay channel (further channel);

• reliable isolation of control plane and data plane in DTN from errors in network
equipment, as well as isolation of different data flows, malicious influences in
these planes” [2].
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For predictability of the characteristics of data transfer between application com-
ponents, it is necessary to:

• “set and guarantee variation ranges of end-to-end delay and jitter in DTN;

• guarantee the probability of packet loss in the DTN at the level corresponding to
the SLA application;

• make the usability of the available bandwidth of DTN channels be maximal (mass
overuse of resources is prohibited, such as flooding, broadcasting);

• exclude the unpredictable transmission delays caused by DTN, such as packet
delays due to failure of order, retransmission, overload feedback, etc.;

• predict how much time will take the execution of certain application service on
some computer installation to meet application SLA requirements” [2].

Techniques and methods for predicting the execution time of services and appli-
cations will be considered later.

4. NPC functional architecture

NPC functional architecture was presented in my talk [2]. Let me briefly repeat the
main statements from there: “The computational infrastructure with properties
above, we will call Network Powered by Computing (NPC)—it is a software-driven
infrastructure, which is a tight software-driven integration of various computer
installations with a high-speed DTN. Such an NPC is a fully manageable, programma-
ble, virtualized infrastructure. In other words, the NPC becomes Computer!

The NPC organization should be based on the federative principle. Each federate
has its own administration and possess an independent authority in whose jurisdiction
there is a certain amount of computing, telecommunication, storage resources. Feder-
ate transfers part of these resources to the Federation authority, which forms and
monitors a unified policy for their use.

Here is a summary of what a functional NPC architecture should look like. The
core layers are the Application, Application Services, and Network Functions (ASNF)
layer, the NPC Infrastructure Control (NPCIC) layer, NPC computational, network-
ing, storage resources (NPCR) layer, and the E2E Orchestration, Administration, and
Management (OAM) layer, responsible for organizing, administering and managing
the NPC infrastructure.

The ASNF layer is responsible for application representation development: it’s code
and it’s data, it’s Application Operation Specification (AOS) representing application
services (AS) and virtualized network functions (VNF) necessary for the operation of
the application, specification of the data transmission network between application
components. Specification of a network should include the topology for data trans-
mission between application components, the requirements to the quality of service of
the channels (QoS) that should include such characteristics as available bandwidth,
admissible delay, admissible probability of packet loss, admissible jitter variation
range. Based on this information and on SLA for the application as a whole ASNF
calculates SLAs for each AS” [2].
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NPCIC functionality provides scheduling and assignment of the application com-
ponents to NPC resources in accordance with AOS and predicted time for computing,
for data transfer, determination, collection, and aggregation of resources as necessary
to comply with QoS resource requirements in accordance with the SLA of the appli-
cation based on the current state of the resources, creating an overlay network
according to AOS (topology, QoS channels, and security management). It is at this
level that it is determined which VNFs will be required and where in the data trans-
mission network.

The NPCR is responsible for a unified representation of the state of heterogeneous
NPC resources, monitoring their current states, and predicting their states for the
nearest future. The last functionality is the cornerstone to make NCP behavior be
predictable.

The OAM layer orchestrates interactions of the application components in accor-
dance with the AOS, collects resources consumption data for every application com-
ponents, and manages the security and administration of NPC.

The basis for building NPC is formed by the technologies of software-defined
networks (SDN) and network functions virtualization (NFV). Taking into account
that the scaling range of network functions is wide and works in real time, the NPC
will require low time complexity algorithms to optimize resource scheduling and
resource allocation. And given the operation speed, as for data transmission networks
and for computer installations, it becomes clear that only suboptimal solutions to the
emerging optimization problems will be available based on ML methods. The func-
tional architecture of the NPC described above is shown in Figure 1 below.

Now, briefly consider the interaction components of NPC functional architecture.
AOS can have two types of components: network functions (VNF) for managing data
flows (traffic engineering) and application services for data processing and computa-
tional services (like modeling, simulation, etc.). The first type of components (net-
work functions) is placed either in the DTN control plane (applications of SDN
controller) or directly in network devices. Examples of VNF are NAT, Firewall,
BRASS, balancers, shapers, and so on. Components of the second type—application

Figure 1.
Functional architecture of network powered by computing [2].
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services—are placed in a virtualized form (on virtual machines or containers) or
directly on computing resources (servers, edges, data centers (DC), and HPC instal-
lations) of federates (in Figure 1 above, they are shown as FCR in the form of racks).

In [2], I emphasize that the application programmer is not required to foresee and
explicitly insert the necessary VNFs or their chains into his application. VNFs can be
automatically integrated into AOS applications by means of NPCIC, just as compilers
or application libraries do: “plug in” the necessary functionality into the application
code. NPCIC can do this based on the monitoring data of available channels QoS
supplied by NPCR. Based on this data, NPCIC has also calculated the routs for the
application with the given AOS.

As it can be seen in Figure 1 that DTN of NPC may consist in the form of several
local DTN of different federates. Each local DTN is SD-WAN overlay with control
plane and data plane. In control plane of every local DTN, it is assumed that there are
controllers with the set of network applications, channels QoS control and monitoring
block, network security center with PKI management, and distributed ledger (DL) of
overlay tunnels (chain of overlay channels).

When AOS application services interact through the DTN, the SDN controller of
the overlay network “catches” the request for data transfer, accessing DL of the
overlay network tunnels to find the proper tunnel. If there is no one there, then the
SD-WAN controllers apply to the control center for application services in the NPCIC
layer. If the DL does not have the required tunnel or its validity period has expired,
then the SD-WAN controllers from the control plane apply to the NPCIC layer that, in
cooperation with E2E OAM Orchestrator (end-to-end orchestrator), forms the data
necessary for SD-WAN controllers to build the desired tunnel.

As mentioned in [2]:“NPC can run applications in three modes—pro-active, active,
and mixed. In pro-active mode, application services are loaded in advance on the
federate resources in passive state (in the form of code and data on external or internal
memory). In this case, when running the application, it is only necessary to activate
the required application services according to AOS on those computing resources that
will ensure SLA compliance with the specific call to a specific application. It should be
clear from the above that different references to the same application may have
different SLAs. Same application but with different SLA is treated as different one.

The active mode involves loading the code and data of the necessary application/
computing services in accordance with the AOS on the computing resources of the
federates on demand in such a way as to ensure compliance with the SLA of the
application. Mixed mode involves a combination of proactive and active modes, i.e.
some of the application services and network functions are already pre-installed and
are only being activated, the rest ones are loaded and activated upon request”.

5. The main problem statements

In [2], there is a list of problems that NPC infrastructure should provide solutions
to like the method of distribution (distributed vs. centralized) of computing resources
between flows of computing/application services and request to them in a given NPC
mode of operation (proactive, active, or mixed), method for optimal control of data
flows in the interaction of computing/application services, and method for managing
resource monitoring, prediction of the state of overlay network channels, selection of
the optimal overlay network channel with the best QoS to meet the requirements of
the SLA of the application, congestion control management, minimization of end-to-
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end delay, bandwidth monitoring, scheduling flows in queues and so on, scaling the
NPC control plane and the data plane when changing the NPC scale, optimal channel
routing of the overlay DTN, fair distribution of channel bandwidth, balancing data
flow between computing/application services, and allocation of channel bandwidth on
demand [8]. In the NPCR layer, it is necessary to choose the resource state scan
frequency, data presentation format, and so on.

Here, the statements for the most important problems are considered:

1.Optimal distribution of the given set of application services on the NPC
resources;

2.Distribution of a given set of services for proactive mode of operation of the
NPC.

First of all, let us define the formal model of NPC.
Denote:
NPC as Γ = (V, А), where
V = CN∪SN∪P, where
CN—set of NPC computational nodes,
SN—set of NPC VPN gateways,
Р—set of Г poles.
A = {(vi,vj) | vi,vj ϵ V}—multiple channels of overlay network.
Q (lvi,vj,Δt) | = (B, D, L, J) is the function defined on A, where.
Δt — interval of time;

B = b̂, bÞ � b̂, b
�

band width of lvi,vj in terms: b̂—average and b—maximum on Δt;

D = d, d̂, d
� �

—delay on Δt in terms: d� minimum, d̂—average, d—maximum

RTT;
L—percentage of lost packets;

J = ĵ, j—jitter Δt in terms: ĵ—average, j—maximum.
CN = {cni = <cr, m, h>}, where cr, m, h ϵ N—set of integers.
cr—number of cores (possible with characteristics);
m—amount of RAM;
h—storage size.
P = {pi}, where pi—source of requests/applications flows, which is characterized by

the function of distributing the probability of requests/applications each with its SLA.
Consider that the same request/application but with different SLAs are different
requests/applications. The same pi can be a source of requests for different applica-
tions. Each request is characterized by an application ID and a specific SLA—execu-
tion time plus result delivery time.

AS—set of application services, each characterized by the required computing
resources, memory resources, and storage resources (сr, m, h).

VNF—set of virtual network functions with required resources (computing,
memory, and storage)—(cr, m, and h) presented in AOS.

Here, for simplicity, we suppose that one application service/network function is
always allocated per one cni and will consider an application as a chain of application
services from AS. However, in general, it could be a directed acyclic graph (DAG). So,
chain of application services (ASC) is W = {wk = (sk1, … … , skl)}, where sij ϵ AS ^
VNF, sij = <cr, m, h>.

7

Network Powered by Computing: Next Generation of Computational Infrastructure
DOI: http://dx.doi.org/10.5772/intechopen.110178



Denote the function ET: (AS ∪ VNF) x СN ! R, where R – set of rational
numbers. We will interpret ET as the estimation of execution time element from
AS ∪ VNF on the certain cni ϵ CN. This function can be represented as a matrix,
where columns correspond to elements from AS ∪ VNF and rows correspond to
elements from CN; entries are execution times + data transfer time to the next sij
along the chosen channel. We will consider how to build this function in the next
section.

In these terms, the problem of the optimal distribution of SFC on NPC can be
formulated as follows:

Construct the mapping F: W ! Γ for a given set P in such a way that

1.Meets the SLA requirements for all wi from W;

2.Under the condition of minimizing the objective function, for example, in the
following form:

F ¼ min
X

CNj j

1
α
�ci
ci
þ β

�hi
hi
þ γ

�ci
ci
� Θ

� �2

þ
�hi
hi

� Δ

� �2:
 !" #

(1)

where
α, β, γ—constant values;
ci, hi—cni resources are used;

�ci, �hi—cni resources and queue length averaged over usage time;
Θ,Δ—the entire NPC resource usage averaged over time.
The α, β, γ values are the subject of adjustment of the application services allocation

control. It is required to find the distribution of the AOS component wk ϵW in such a
way as to minimize the objective function F from Eq. (1), that is, in the table
representing the ET function, one needs to add the application service ID in those
positions that correspond to the appropriate resources. F from Eq. (1) gives us the set
cnif gw of which it is necessary to select only those that are connected by channels that

form a path in NPC corresponding to SLA (wk).
The problem of distribution of application services over the resources of the NPC

in proactive mode can be stated as: for given Γ, AS, W, and P, it is required to build a
matrix Х with dimension |Х| = |AS|�|CN| where xij = 1; if si can be located on cnj, it is
subject to the following conditions:

1.The constraints of none cnj and none of (vi,vj) ϵA, incident to cnj, from Γ are
violated;

2.∀ wi ϵW, SLA applications always be met for any pj ϵ P.

It is clear that for both problems, we have first of all proof for the existence of the
solutions. Consider solving the problem of placing a chain of services in a NPC. It is
divided into three subtasks:

1.Construct a set of all possible placements skj for a given wk on cn nodes from CN;

2.Select only those placements that meet the requirements of the SLA of the
application and the limits on the resources of the cn nodes;
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3.Among cn nodes selected at step 2, choose only those for which the NPC topology
contains a route on which the selected cn nodes are ordered according to the
order on wk, that is, if s

k
j was assigned to cni and skj + 1 to cnr, then (cni, cnr) ϵ A,

which provides the necessary parameters for data transfer between cni, cnr.

Since the length wi, the number of computational nodes in CN, is limited, the
problem certainly has a solution. You just need to go through a finite number of
combinations. Let us estimate the space of possible solutions for some chain w
fromW. Let the length of any wk ϵW not exceed N, where N = |CN| and |wk| = k ≤ N.

Then, the number of application service locations for wk equals
Pkþ1

i¼0C
i
k ¼ 2k. The

number of possible placements of these 2k substrings over NPC can be estimated

by the following expression:
Pkþ1

i¼0C
i
NC

i
k. This expression can be evaluated under

the condition that the lengths wk ϵ W are uniformly distributed on [1, N],
as follows:

X

lþ1

i¼0

Ci
NC

i
l <

X

lþ1

i¼0

2lCi
l ¼ 2l2N≈2

3N
2 : (2)

Even Nffi100 gives us the estimation of this expression 2150> 10100 (googol)
options. This estimation must also be multiplied by |W|. The problem under
consideration has a solution due to the finiteness of the number of options. If we recall
that we are considering the simplest case, when the application is a chain of services,
then it should be clear that the space of possible options in the case when the applica-
tion is a directed acyclic graph (DAG) will be multiply increase: in this case, the
estimation of (Eq. (2)) will need to be multiplied by the number of paths in this DAG.
It is clear that classical mathematical optimization methods will not meet time restric-
tions to solve the problems. It is natural to consider the solution in the direction of
splitting the solution space on domains and searching the solution in parallel in every
domain based on ML technics.

The urgency to use ML methods is also argued by the following reasons. The NPC
model described above is actually two random graphs. One is formed by data flows
between the chain of application services that arise as a result of the action of poles
from the set P. The vertices of this graph, let us call it an information flow graph (IFG)
—application services, arcs—data flows between them. Both the first and second are
of a stochastic nature and are determined by random processes initiated by poles. The
second graph is the topology of the NPC network. This is also a random graph. Its
dynamics are determined by the availability of resources of NPC, the failure dynamic
of which is a set of random processes. The control in this model is the mapping of IFG
graph to NPC graph. The optimality of control in this model is such a mapping of the
IFG graph to the NPC graph, in which the lifetime of the information chain is mini-
mal, subject to all restrictions on NPC resources.

Please pay attention that in the IFG graph, the number of the nodes is not fixed. It
is a scale-free graph in terms of the Albert-Laslo Barabashi model from [10]. If NPC
accepts the mobile edges, then NPC graph is also a scale-free graph. In this case, it
seems that this model is very similar to the Barabási-Albert model described in [11].
Here and there, we have random scale-free graphs’ interaction. However, the proper-
ties of such models in a computer world have never been investigated. The applica-
bility and adequacy of such models in relation to computer networks require
awareness and research.
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The most appropriate mathematical technique for optimal control seems to be
suitable for that is the multi-agent optimization (MA) technique. There are several
approaches to MA optimization. Centralized approach assumes the presence of a
control center and that agents are deployed one per node. Each agent forms local
state-status of its node. The control center collects the status of each agent, makes a
decision based on the optimization policy, and sends each agent a management
impact. Another possible MA optimization approach induced by the NPC graph
structure. The structure (topology) is divided into domains and agents that exchange
information about their state only within the domain. The agents belong to the same
domain called neighboring (interconnected) agents. In this case, each agent knows
its local state and states of its neighbors. Information exchange is limited by neigh-
boring agents only. Based on local and neighbor-based information, each agent
decides on the optimal strategy. The way of topology dividing into domains has great
importance when using the MA approach in control. Experiments with the usage of
MA optimization for the routing have shown that by adjusting the domain size, it is
possible to achieve the optimal combination of convergence and quality optimum
solution of the routing problem.

The third option—independent agents. Each agent knows its local state. Each
agent judges the control strategy and actions of other agents based on its experience.
The agent implements control decisions in accordance with its local optimization
strategy and based on its observations.

Thus, the choice of approach to MA optimization is another challenge for the
problem under consideration. At the same time, it is important to bear in mind that:

a. there are no mathematical models that guarantee convergence to the optimal
solution;

b. the constraint of the deviation from the optimal solution is not guaranteed.

6. Application services execution time prediction

6.1 Problem statement

The application services execution time prediction problem can be described in the
following way. Let we know ID(cn)—ID for every computational node cn, for every
wk and every skj it is known the set of cn computing installations identifiers (IDs), a set
of variants of the skj parameters (for more details see below), the amount of resources
requested for known executions of the skj with its parameter variants on certain cn
node, and the execution time of this skj with its input data variant and on some of cn ϵ

N. Neither the source code of the program nor its binary code or the architecture of
computer installations are unknown. We emphasize that only the skj execution time is
known on some cn nodes but not for each. Further, the application service will be
treated simply as a program; for the sake of simplicity of terminology, we will use the
term program and denote Pi. Because the set of s

k
j is limited (|W| is finite, any |wk | is

finite), there is a numeration that for every skj defines the unique index i.
We will use the following notations for the problem statement:

1.Pi—unique program ID;
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2.{P1, P2, … , PN} = {Pi}—the set of IDs of programs under consideration;

3.{Arg(i)1, Arg
(i)

2, … , Arg(i)Ai} = {Arg(i)j}j = 1
Ai
—the set where each Arg(i)j is a set of

the values of input parameters program Pi: amount of input data and program
environment parameters (number of processes and number of threads). We will
call this set as arguments of Pi.

4.[(Pi, Arg
(i)

1), (Pi, Arg
(i)

2), (Pi, Arg
(i)

2)… , (Pi, Arg
(i)

Ai), (Pi, Arg
(i)

1)]—a history
of Pi;

5.cni—unique computational node ID;

6.{cn1, cn2, … , cnN} = {cni} i = 1
N
—a set of M unique IDs of computer installations;

By the notions above, the problem statement can be specified as following:

• Given

{Pi}i = 1
N
—N program IDs;

{Arg(i)j}j = 1
Ai
—the set of arguments Pi program;

{cni}i = 1
N
—computational node IDs;

V = {[(Pi, Arg
(i)

j), cnk]}, where i = 1,M, j = 1,Ai, k = 1,N and |V| = (
PM

i¼1Ai) • N;
T(v) where v is the partial defined function on V. The values of T(v) is the

execution time the program Pi with arguments Arg(i)j on computational node cnk.

• Required

Redefine the values of the function T(v) at the undefined points of V.
The problem of estimating the execution time of a program on a computer is a

classic problem that has been known since the 1960s. The problem still exists in many
forms, for example, for worst-case execution time estimation and for different com-
puter architectures [12–15]. Different ways for this problem were proposed as analyt-
ical [16] and statistical [17], based on program behavior analysis [18], time series
prediction [19], and neural networks [20]. Execution time can be predicted from test
runs [21]. All algorithms predicting program execution time mentioned above use the
history of program executions. Their main drawback is that all of them are applicable
only when the histories of program execution are known for the certain computer
installation; that is, to predict the execution time on a certain computer installation,
there is the need to know the whole history of the program executions on this com-
puter installation.

As we will demonstrate below, to predict the program execution time on some
computer nodes, just some running histories of this program on them are sufficient.
There is no need to know each program run on each computational node. The accu-
racy of the prediction depends on the number of program running histories on com-
puter installations from a certain set. To solve the execution time prediction problem,
the following technique was used:

1.Let us represent the information about V set and function T (v) as a matrix
where each row corresponds to pair (Pi, Arg

(i)
j) and each column to the

computational node cnk. The intersection of row and column is the execution
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time of the corresponding program Pi with parameters Arg(i)j on cnk. We will
denote such matrix as PC;

2.Form PC*matrix (matrix closure) by the information about representative set of
computer installations and the histories of execution of various programs on
these computer installations. By this way, we will get everywhere defined
function T*(v) on V = {[(Pi, Arg

(i)
j), cnk]}, where i = 1, M, j = 1, Ai, k = 1, N;

3.Delete an arbitrary number of entries from PC∗ to get partially defined T (v) on
the set V. Obtain thinned matrix—PC matrix.

4.Apply the developed prediction algorithm to redefine the values of the function
T (v) at uncertain points. This algorithm defines function Or(v) in each point of
the set V. Or(v) coincides with the function T (v) where it is defined and at other
points, defines the predicted execution time.

5.Estimate the quality of the results of the developed prediction algorithm by the
following metric:

PredictionError Pi,Arg
ið Þ
j,Ck

� �

¼ jpredict� targetj=targetð Þ (3)

where predict is predicted time if program Pi with parameters Arg(i)j on cnk, target
is a true execution time of program Pi with the same parameters. The total prediction
error is calculated as an average of the errors calculated using the Eq. (3) for all
programs.

To form the PC∗ matrix, the datasets from the website [22] dated 8 June 2021 (the
datasets on this website are periodically updated) was used. These datasets contain the
description of total amount of resources of numerous computer installations and the
results of executions of programs with various input parameters. From this site, we
took three datasets with execution results of programs as MPI as OpenMP on a wide
range of computers. These programs cover numerous application areas [23].

Naturally, the question arises: why, when developing the method for estimating
the execution time, MPI programs were taken? The fact is that this class of programs is
used primarily on supercomputers. It is well known that the execution time of a
supercomputer program is very dependent on its architecture. Therefore, if we man-
age to develop a time estimation method for this case, then for calculators used in
traditional servers, it will certainly be no worse.

The brief description of the selected datasets are presented in Table 1.
The used data was uploaded on github in [24] along with the developed algorithm.

Name Number of computer installations Number of prоgrams Type

MPIL2007 180 12 MPI

MPIM2007 437 13 MPI

ACCEL OMP 30 15 OpenMP

Table 1.
Datasets of MPI and OpenMP programs executions on various computer installations from [22].
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It has been recognized that the considered problem is very similar to the
problems solved in recommender systems, in which matrix decomposition
algorithms as in [25] are very widely used in various combinations. The proposed
solutions were developed as a combination of several algorithms. They are run in
parallel with the same PC matrix, each of which makes its own prediction. At the end,
all predictions are averaged. The resulting value is considered the expected execution
time of the program. This technique is called ensemble averaging in [26]. Three
algorithms were chosen: ridge regression, Pearson correlation, and matrix
decomposing.

1.Ridge regression: An unknown execution time of program Pi with parameters
Arg(i)j on computer installation cnk is redefined by ridge regression in [27] based
on known execution times of the program Pi with the same parameters on all
other computer nodes;

2.Cliques: Firstly, group computer installations using the Pearson correlation
coefficient. Secondly, redefine unknown execution time of program Pi with
parameters Arg(i)j on computer installation cnk based on execution times of the
group of computer nodes where cnk belongs.

3.Matrix decomposition: Apply matrix decomposition in [28] of the PC matrix in
order to fill in empty entries of the PC matrix;

4. It has to be noted that if the program was executed with different sets of input
parameters, this program is represented by multiple rows in the PC matrix.

Ridge regression algorithm is used as is. It is only worth to mention that ridge
regression is used to predict the value in empty entries in a row of PC matrix. If there
is an empty value in a row of the PC matrix, this value is prediction using all known
values. In fact, the problem of interpolation is solved. If the columns corresponding to
the computer installations in the PC matrix are ordered by performance (this data can
be taken from the description of the computer installations), then this type of regres-
sion can get quite well prediction. Ridge regression works well on dense matrices with
a small number of empty entries in PC matrix.

Pearson correlation is proposed to estimate the proximity of the set of vectors
of program execution times. Since the algorithm is used as is and no novelty was
introduced into it is just recalled below. The columns of the PC matrix are
considered as such sets in other words. The correlation between the columns cni and
cnj shows how close in performance different computational nodes running these
programs are. If the Pearson correlation between these columns is close to 1, then cni
and cnj are close to each other from the point of view of performance on the given
set of the program executions. In this case, the estimate of the program execution
time for cnj can be obtained by multiplying by the constant of the time estimate on
the cnj node.

The procedure for distributing computing nodes into groups consists of the fol-
lowing steps:

1.Calculate Pearson correlation for each pair of columns of the PC matrix � N*
(N-1)/2 pairs, where N is the number of computational nodes;
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2.Build the graph of cliques:

a. Each vertex represents cn;

b. An edge between the cni and cnj exists if the Pearson correlation between
the corresponding columns in the PC matrix is modulo greater than some
threshold. The value of threshold is an algorithm parameter; this way
brings us a graph where nodes are cni, and arcs are correlated pairs of
computational nodes.

3.Find all groups such that any two vertices in the group are connected by an edge.
To do this, we use the algorithms from [29, 30].

4.Each group contains computing nodes cn such that the program execution times
on different nodes have a linear dependence, that is, one can be obtained from
the other by multiplying by some coefficient. It should be borne in mind that the
same calculator can be included in different groups.

5.The resulting cliques are groups of computational nodes.

To search for groups, a special algorithm was developed, presented in [24], whose
complexity does not exceed H3, the size of groups is less than 3HH/3. This algorithm
was described with detail in [31].

However, if threshold for the value of Pearson correlation is close to 1, then further
prediction algorithm described in [32] is pretty good even if some vertexes in the
cliques would be missed.

If it is not possible to calculate Pearson correlation (e.g., the considered program P
has not been run on any of the computer installations from clique) but corresponding
row in PC matrix for P program is non-empty, then one needs to use ridge regression
for the prediction. See step 4 above.

The error of prediction for the algorithm presented above can be estimated by
Eq. (3).

Matrix decomposition: Because this stage in the proposed algorithms ensemble we
consider as our main contribution to the considered problem, we will spend more
space on it description. As mentioned above, the problem of programs execution time
prediction is very similar to the problem solved in the recommender systems. In these
systems, there are usually two types of objects, the relationships between which are
measured. For example, such objects can be users and movies, users and books, users
and goods, and so on. The relationship between them is often a measure to what
extent the user prefers some movies, books, or goods. It is called goods rating. One can
build a rating matrix where the rows (or columns) correspond to movies, books, or
goods, and the columns (or rows) correspond to users. This matrix is often sparse,
since there are a lot of users and objects, and users cannot physically rate all the
objects. The problem that solve the recommender systems, is to determine the ratings
of all users for all objects; in other words, the system has to fill in the empty entries in
the rating matrix.

Let us consider the following analogy: users are computer installations, the goods
are programs, and the ratings are execution times. Thus, the computer installations
“rate” the programs, and the smaller rating (execution time), the better the computer
installation meets the program.
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The problem of filling empty entries in recommender systems is solved by matrix
decomposition method in [23]. We propose to use this technique to solve the problem
under consideration.

The application matrix decomposition techniques to some matrix result in two or
more matrices, the product of which gives the approximation of the original one. For
empty entries of the original matrix, that is, for unknown values, the product of the
matrices gives values that estimate the unknown values.

PC matrix decomposition allows one to get a vector representation of programs and
computational nodes, which have a remarkable property: the scalar product of the vector
representation of the program and the vector representation of the nodes is the program
execution time on the node. The vector representations of programs and computational
nodes are called as embeddings of programs and computational nodes, respectively.
Embedding techniques and methods of applying embeddings are very well-known in
such areas as NLP in [33], topic modeling in [34], and recommender systems in [25].

Figure 2 demonstrates matrix decomposition. The rows are programs, and col-
umns are computers that should be rated. The matrix entries are execution times
corresponded to the pairs (program, computer). Some entry could be empty. K is a
parameter of the decomposition and is a subject of tuning to get the admittable
accuracy. The result of the decomposition procedure of rating matrix of size NxM is
program matrix of size NxK and computer matrix of size KxM. The rows in program
matrix are vectors represented execution times for the program on the corresponded
computers. The columns are vector representations of the “computational power” the
corresponded computer for the programs under consideration.

In our study, ALS algorithm [35] was selected.
As mentioned above, three algorithms were chosen: ridge regression, Pearson cor-

relation, and matrix decomposition for the program execution time prediction. As it
was said previously, the averaging ensemble in [26] of them to improve the accuracy of
the predicted execution time was developed. These algorithms can be combined into an
ensemble of algorithms to improve the accuracy of the prediction in [26].

6.2 Experimental study

Here, the results of experimental studies of the algorithms compassion are
presented.

Figure 2.
Matrix decomposition.
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The purposes of the experiments are analysis of the quality of prediction results:

1.based on grouping computational nodes by the Pearson correlation;

2.based on ALS matrix decomposition algorithm. Selecting the parameter K—the
number of components in the vector representation of programs and computer
installations;

3.by the ensemble of algorithms.

4.the data for experimental study were used from the website https://spec.org. The
quality of the proposed solution is estimated by the prediction error and
prediction accuracy is calculated according to Eq. (3).

6.2.1 Analysis of the quality of prediction based on grouping computer installations by
Pearson correlation

Dataset MPIM2007 with 13 programs and 437 computer installations from [22]
was used for the experiments. The algorithm based on grouping computer installa-
tions by Pearson correlation is very sensitive to the presence of outliers in the data, as
well as to what extent the PC matrix is low-density. In order to analyze the quality of
prediction by this algorithm, three experiments were conducted. As a basic algorithm,
the ridge regression algorithm was used. Each experiment was conducted according to
the following methodology. In each row, only one value was removed, and then, the
prediction was made based on the remaining values in this row of the matrix
according to the algorithm above.

In the first experiment, the execution time is predicted by the ridge regression
algorithm; as a result, the prediction error was 0.25 or 25%. In the second and third
experiments, grouping algorithms based on Pearson correlation were used; threshold
for correlation value was 0.97; the grouping resulted in 46 groups with two and more
computer installations and 27 groups with only one computer installation. In the
second experiment, execution time was predicted only for groups with size greater
than or equal to 2; groups with size 1 were ignored. As a result, the prediction error
was 0.068 or 6.8%. In the third experiment, execution time was predicted by Pearson
correlation algorithm for groups with size greater than or equal to 2, but for groups
with size 1, ridge regression algorithm was used. As a result, the prediction error was
0.115 or 11.5%. Thus, the accuracy of prediction on dense matrices is 88.5%.

6.2.2 Analysis of the quality of prediction based on ALS matrix decomposition algorithm

Dataset MPIM2007 with 13 programs and 437 computer installations from [22]
was used for the experiments. Experiments were conducted according to the method-
ology described in Section 4. To study the quality of the predictions based on ALS
matrix decomposition algorithm, 4 experiments were made with K = 1, 2, 3, 4. The
results of the matrix decomposition were compared with each other, as well as with
ridge regression algorithm that was chosen as the basic prediction algorithm. In
Figure 2, X-axis is the percentage of empty entries in the PC matrix (which randomly
was removed from it); Y-axis is the prediction error. Also, for comparison, the result
of predictions by the Pearson correlation algorithm was added to Figure 2. According
to the plots in Figure 2, the conclusion can be made that the ridge and cliques
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algorithms work well on dense matrices (up to 1% percentage of empty entries). The
matrix decomposition technique with K = 1 gives the best results for sparse matrices in
which the number of empty entries is more than 15%. Even if 80% of the entries are
removed from the PC matrix, they can be predicted with an accuracy of 60%.

Thus, as a result of experiments, we can conclude that the matrix decomposition
technique with K = 1 gives the best solutions when the percentage of empty entries in
the PC matrix is more than 15%.

An important advantage of using the matrix decomposition technique is the vector
representations (embeddings) of programs, and computer installations in case K = 1
are the points in a space of dimension 1. So, the total ordering on the set of computer
installations could be defined, and one can work with them as scalars. Figure 3 shows
the less embedding of computational node, the less execution time of the
corresponded program.

6.2.3 Analysis of the prediction quality of an ensemble of algorithms

The ensemble averaging described by (Eq. (3)) was used. The prediction result was
compared with the following algorithms: ridge regression, Cliques, and ALS with K = 1.
All three datasets—MPIL2007, MPIM2007, and ACCEL OMP from [22] were used for
the experiments. Experiments were conducted according to the methodology
described in Section 4. As we can see in Figure 3, the best estimations give us the ALS
algorithm when the matrix sparsity is at least 14%. According to Figure 4, the
ensemble averaging is better when the matrix sparsity is over 14% up to 94%. One
more testing of the proposed method was done of the dataset ACCEL OMP that covers
15 programs and 30 computers. The results of this experiment are shown in Figure 5.

7. Organization of NPC computing resources

As I presented in [2], the computing node (CN) could be as Edges in [36] as
supercomputer or HPC installation. Existing data center construction approaches
demand high quality of communication channels service, to ensure availability of
service, and very high capital construction costs of a centralized data center. Signifi-
cant problems of traditional DС are scaling and low level of resource utilization due to
the lack of a centralized management system and orchestration system [37].

Figure 3.
Ridge regression and ALS matrix decomposition with K = 1, 2, 3, 4.
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The advantages of building a NPC based on edges over the traditional approach
have been discussed in detail in [38] and characterized by: reduction of transport
requirements by proximity of the service copy to the final consumer, reducing the
cost of organizing a data center due to the absence of the need to build a centralized
data center, efficient scaling through the use of a centralized cloud platform, increas-
ing the efficiency of the network due to a centralized management and orchestration
system, and the proximity of the service to the client. The problems of organizing the
control plane and the data plane in edges are in many ways similar to those that were
already listed above for the NPC Federate DTN control layer (see Figure 1). The main
difference—the decision-making speed should be much higher.

Figure 4.
Results of ridge, cliques, matrix decomposition, and an ensemble of algorithms on MPIM2007 (1–94%).

Figure 5.
Results of Ridge, Cliques, Matrix decomposition and an ensemble of algorithms on ACCEL OMP (1–92%).
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Another important point is the following. Managing and optimizing power has
been a long-standing challenge in computer systems, with many fundamental tech-
niques, and has been increasingly receiving attention. Today, a wide range of applica-
tions such as IoT services, ML inference, data analytics, and scientific computing now
use Functions as a Service (FaaS) offerings of cloud platforms such as Amazon
Lambda, Azure and Google Functions, and so on. Widespread application deployment
model has nowadays become serverless computing, where applications are partitioned
into small, fine-grained “functions”, whose execution is managed by the cloud plat-
form as in [39]. However, the constant evolution of cloud abstractions and usage
models poses new energy efficiency challenges.

Serverless features can provide unique opportunities to reduce cloud heat genera-
tion by reducing the level of concentration of computing power in a relatively small
location and programming model. Many power-saving techniques, such as workload
migration and on-demand scaling, that are difficult for regular VMs and containers,
can be significantly easier to develop and optimize for serverless functions that can
“run anywhere”[40]. In this way, FaaS can provide new power tools for cloud plat-
forms to quickly and finely move applications to environmentally friendly locations,
which will be especially useful for distributed cloud edges powered by renewable
energy such as solar and wind, as in [41]. The FaaS programming model also allows
power management at the functional level. A function can have multiple
implementations that differ in power consumption and performance. This may allow
the cloud provider to use the appropriate feature implementation based on power
availability and application performance constraints. Finally, features are reused,
enabling data-driven and machine learning methods such as transfer learning that can
be used for general and practical energy management.

One possible approach to energy management is a computing infrastructure model
based on the concept of a cloud data center network and cloud edges where comput-
ing can be scheduled based on energy consumption. In the FaaS model, functions are
not tied to any specific servers or locations and can potentially “run anywhere” as long
as the runtime platform has access to the function’s code dependencies and the con-
tainer/VM “image”. By separating computing from its location, serverless computing
allows us to run functions in the most power-efficient location. This location inde-
pendence can be an extremely efficient technique for resilient computing but is often
challenging for other workloads. Because renewable energy sources (such as solar and
wind) can be fickle, the availability of servers powered by them is temporary [42].

AI routing in distributed edge clouds can offer different trade-offs between energy
and carbon emissions depending on location, time, and availability of resources and
hardware. Functions can be run on the edge to ensure low latency. The trade-off
between power consumption and performance adds a new dimension to the discus-
sion of future cloud architectures. While edge clouds may have performance and
security/privacy benefits, their energy benefits require further analysis.

As you know, for maximum efficiency of program execution, a certain set of
hardware and their configuration is required. Several attempts have already been
made to implement the approach of dynamically adapting the architecture to the
application, that is, see [32]. Currently, to meet this need, it is proposed to use the
resource disaggregation approach in [27]. Its essence is as follows. Data centers have
been using the monolithic server model for over 20 years, where each server has a
motherboard that houses all types of hardware resources, typically including the
processor, memory chips, storage devices, and network cards. Resource disaggrega-
tion involves dividing the server’s hardware resources into standalone network-
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connected devices that applications can access remotely. Applications must be given
virtualized and secure access to hardware resources, and data centers must support
these applications with tools that ensure their good performance.

One of the possible approaches to manage energy consumption and carbon foot-
print is the computational infrastructure model based on the concept network of cloud
DС and cloud edges, where computation can be organized by energy and carbon-
based scheduling. In FaaS model, functions are not tied to any specific servers or
locations and can potentially be “run anywhere”, as long as the execution platform has
access to the function’s code dependencies and the container/VM “image”. By
decoupling computation from its location, serverless computing allows us to run
functions at the most energy-suitable location. Thus, even though individual functions
may not be energy efficient, they can be run in carbon-friendly locations to achieve
better carbon efficiency. This location independence can be an extremely potent
technique for sustainable computing, but is often challenging for other workloads.
Since renewable energy (such as solar and wind) can be intermittent, the availability
of servers powered by them is only transient [42].

AI routing in distributed edge clouds can offer different energy/carbon trade-offs
depending on location, time, and resource and hardware availability. Functions can be
run on the edge to provide low latency. The energy versus performance trade-off adds
a new dimension to the discussion on future cloud architectures. While edge clouds
may have performance and security/privacy advantages, their energy benefits need
additional analysis.

In the history of computer architecture, there have been many attempts to make
the architecture of computers dynamically adoptable to the structure of the algorithm
of the program that it executes [32]. However, all of them were not very successful.
Currently, a new direction is gaining momentum—resource disaggregation. This
direction does not use the monolithic model of server that hosts all types of hardware
resources like CPU cores, memory chips, storages, and NCIs. In resource disaggrega-
tion, server is split on individual devices connected by a high-speed network. The user
can choose the architecture for the virtual machine and the configuration of individual
devices to ensure the most efficient execution of his applications. Application has
virtualized and reliable access to all devices. This approach to computer architecture
requires a rethinking of the concept of the operating system. The traditional view of it
has already become obsolete. But this is a topic for a separate post.

8. Conclusion

The Network Powered by Computing (NPC) concept of next generation compu-
tational infrastructure was presented. This concept based on the convergence of data
communication networks with computing facilities like DC, edge, and HPC centers
united by the functional architecture is presented in the article. The NPC concept is
the incarnation of the slogan I got from Jhon Gadge from Sun Microsystems: “Net-
work is a computer”. Here, we considered the functional architecture of NPC, and the
main problems on the way of its implementation are described. The presented concept
allows to achieve deep automation in the management of resources of this infrastruc-
ture, load distribution, and energy consumption through the use of methods based on
machine learning algorithms.

The issue of organizing the ASNF layer, which, together with the OAM and the
NPCIC layers, is essentially new generation of the operating environment—an
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analogue of the traditional operating system. But this is an independent, large topic
that requires a separate publication.
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