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Abstract

Spinal cord injury (SCI) is a debilitating condition that affects millions of people 
worldwide and results in a remarkable health economic burden imposed on patients 
and the healthcare system annually. The most common causes of SCI are the trauma 
caused by falls, traffic accidents, or violence. The course of SCI is associated with 
several complications that severely impair the patient’s quality of life, including 
sensory and motor dysfunction, pain, neurogenic bladder and bowel, autonomic 
dysreflexia, cardiovascular and pulmonary dysfunction, spasticity, urinary tract 
infection, and sexual dysfunction. Despite great strides that have been made in the 
field of regenerative medicine and neural repair, the treatment of SCI still mostly 
revolves around rehabilitative strategies to improve patients’ quality of life and func-
tion. Rehabilitation following the SCI is a multidisciplinary process that requires the 
involvement of multiple disciplines. Moreover, recent advances in the field of neuro-
rehabilitation following SCI, are changing the face of this field. Therefore, we decided 
to review various aspects of rehabilitation following the SCI, including the goals and 
different modalities whereby we could achieve them.

Keywords: spinal cord injury, rehabilitation, paraplegia, restoration of function, 
quality of life

1. Introduction

Spinal cord injury (SCI) results from damage to the spinal cord, which could lead to 
significant temporary or permanent functional impairment. As a debilitating condition, 
SCI affects millions of people worldwide and imposes a considerable economic burden 
on patients and the healthcare system each year [1, 2]. Traumatic etiologies, such as 
traffic accidents, falls, and violence constitute the most common causes of SCI [2]. 
Throughout the course of SCI, various complications could severely impair the patients’ 
quality of life (QoL) and activities of daily living (ADL) over the long term. These 
complications include sensory and motor dysfunction, pain, neurogenic bladder and 
bowel, autonomic dysreflexia, cardiovascular and pulmonary dysfunction, spasticity, 
urinary tract infection, and sexual dysfunction [3].

In recent decades, great strides have been made in the field of neuroregenera-
tion to provide functional recovery through neural repair and axonal regrowth [4]. 
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However, at present, there exists no definitive treatment modality to effectively restore 
spinal cord structural integrity following SCI with subsequent functional recovery. 
Therefore, the treatment of SCI still mostly revolves around rehabilitative strategies 
to improve patients’ QoL and function [5, 6]. Rehabilitation following the SCI is a 
multidisciplinary process that requires the involvement of multiple disciplines, such as 
physiatrists, nurses, psychologists, dieticians, physical therapists, social workers, occu-
pational therapists, orthotists and speech therapists [6, 7]. The rehabilitation process 
in SCI mostly centers around restoring the lost functions or augmenting the remaining 
intact functions while minimizing the associated complications. Holistic approach 
derived from biopsychosociospiritual model of health is essential for rehabilitation 
management of SCI. Functional restoration measures including mobility, strength, 
stretch and coordination training as well as cardiovascular and pulmonary rehabilita-
tion constitute the main aspects of the rehabilitation process following SCI [6, 8].

In addition to current rehabilitation programs, recent advances in the field of neu-
rorehabilitation for functional recovery, are changing the face of this field. Therefore, 
the focus of this chapter is on the goals of rehabilitation in SCI, current rehabilitative 
strategies, and recent advances in neurorehabilitation that have opened new horizons 
for patient management.

2. Goals of rehabilitation in spinal cord injury

The American Spinal Injury Association (ASIA) Impairment Scale (AIS) is a 
standardized tool for the classification of SCI patients based on injury severity and 
the level of sensorimotor impairment [9]. The AIS ranges from A (complete injury 
with no sensorimotor function preserved below the level of injury) to E (a normal 
sensorimotor function without neurological deficit). Table 1 demonstrates details of 
AIS grading. Given its strong correlation with the functional status of the patient, AIS 
grade is one of the major factors in determining the functional goals of SCI patients 
following rehabilitation. In this regard, patients with complete SCI have a poorer 
prognosis for neurological recovery and improvement in functional outcomes com-
pared to those with incomplete injury [10–13].

The neurological level of injury is another factor that affects the prognosis of 
SCI patients [14, 15]. In terms of motor recovery, patients with the cervical level of 
injury generally have a higher potential for functional improvement in comparison 
with those who have thoracic SCI. Moreover, among patients with cervical SCI, 
those who have an injury at lower cervical levels (C6-C8) show the greatest reha-
bilitation potential [6]. This is due mostly to remarkable functional impairment 
in upper cervical injuries and functional independence in many ADLs in thoraco-
lumbar SCI patients, which reduces their potential for recovery. Concerning this, 
a number of patients with a high cervical level of injury (C3-C4) are ventilator-
dependent and almost all of them are dependent to perform their ADLs. Patients 
with a C5 level of injury, although dependent on assistance for transferability, could 
perform ADLs, such as nutrition, dressing, and hygiene with assistance, given the 
preserved strength of elbow flexion in this group. Lower levels of cervical injury 
are generally associated with enough muscle strength for wrist extension, elbow 
extension, or finger flexion, which make patients in this group independent in 
most self-care ADLs and also transferring using assistive devices [6]. Patients with 
thoracic SCI, however, are totally independent in ADLs and transferability using a 
manual wheelchair. Thus, the main aim of rehabilitation in this group of patients 
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is ambulation. Patients with lower levels of injury (L1 or lower) show complete 
independence in ADLs and transferability in addition to an adequate degree of 
ambulation [6].

In addition to neurological recovery, early rehabilitation is necessary to prevent 
potential long-term complications [6]. As mentioned earlier, various complications 
affect the QoL in SCI patients, especially over the long term. Many interventions 
and strategies have been utilized in SCI rehabilitation to reduce the risk of chronic 
complications in patients with SCI. Recent advances in the field of SCI rehabilitation 
with the existing evidence have been discussed in the forthcoming paragraphs of this 
chapter based on different areas of rehabilitation.

3. Rehabilitation interventions

Multidisciplinary team approach is mainstay of SCI rehabilitation. In this model 
of rehabilitation an organized team including physician with expertise in rehabilita-
tion that is usually a physical medicine and rehabilitation specialist (physiatris) as 
the team leader, physical therapist, occupational therapist, rehabilitation nurses, 
social worker, clinical psychologist, orthotists and dietician has the responsibility 
of planning, executing and follow up of rehabilitation measures. The team benefits 
from expertise skills of neurospine surgeon and other medical specialties as needed. 
Followings are more related and mostly used rehabilitation medicine measures that 
are used in management of SCI.

3.1 Sensorimotor dysfunction

3.1.1 Physical therapy

Physical therapy is one of the major measures of the post-SCI rehabilitation 
program and begins early in the course of SCI [6, 8, 16]. By targeting various aspects 
of impairment, such as strength, joint mobility, muscle extensibility, spasticity, 
pain, and cardiovascular fitness, physical therapy could improve patients’ functional 
independence and prevent long-term complications. Range of motion and stretching 
exercises could prevent the development of contractures and protect the unwanted 
tenodesis effect [6]. Moreover, passive muscle stretching exercises could reduce 
muscle tone and help in maintaining the range of motion and joint mobility, which in 
turn decrease spasticity-related side effects.

Grade A No sensorimotor function

Grade B Preserved sensory function with no motor function below the level of injury, which 

includes S4-S5 level

Grade C Preserved motor function in more than half of the key muscles below the level of 

injury with a strength <3/5

Grade D Preserved motor function in at least half of key muscles below the level of injury 

with a strength ≥3/5

Grade E Normal sensorimotor function

Table 1. 
The American spinal injury association (ASIA) impairment scale (AIS).
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3.1.2 Orthoses and assistive devices

Orthoses could also be used to position the joints and prevent contracture forma-
tion [6, 17, 18]. Strengthening exercises for intact regions are of great importance, 
particularly in patients with complete paraplegia during the early period of rehabilita-
tion, to provide adequate strength for independent mobilization and transferability. 
Assistive devices, such as a wheelchair, walker, or crutch might also be utilized 
depending on the functional status of patients for ambulation during the chronic 
rehabilitation period [6].

3.1.3 Transcranial direct current stimulation

Transcranial direct current stimulation (tDCS) is a noninvasive modality that is 
used to modify cortical excitability by delivering weak electrical currents (1–2 mA). 
The tDCS consists of anodal and cathodal electrodes, which following their applica-
tion, could increase and suppress cortical excitability [19, 20]. The main concept 
behind the use of tDCS in SCI is modulation of the excitability of residual cortical 
motor pathways to enhance functional recovery. Previous individual studies have 
demonstrated promising potential for tDCS combined with various rehabilitative 
strategies in improving motor cortex excitability and muscle power [21–24]. However, 
a meta-analysis including six studies and 78 patients with SCI found no significant 
efficacy for tDCS in increasing muscle strength in comparison with sham tDCS [25]. 
Moreover, based on their findings, the effect of tDCS on motor functional improve-
ment was marginally significant with a small effect size. In addition, their subgroup 
analyses failed to demonstrate any significant association between cortical area (hand 
or leg motor cortex), additional interventions (tDCS alone or tDCS combined with 
other interventions), or tDCS intensity (1 or 2 mA) the impact of tDCS on outcomes 
observed in patients. Nevertheless, the limited number of studies, as well as the 
heterogeneity in methods and protocols among existing investigations have mostly 
resulted in inconclusive results regarding the efficacy of tDCS in SCI. Therefore, 
future high-quality studies are highly demanded to show the potential effectiveness 
of tDCS in improving motor outcomes in SCI patients. Further, some of character-
istics, such as non-invasiveness and cost-effectiveness, make tDCS a great potential 
therapeutic option for SCI.

3.1.4 Repetitive transcranial magnetic stimulation

Transcranial magnetic stimulation (TMS) is another safe and non-invasive 
cortical stimulation method for modulating neuronal excitability. In this technique, 
following the passage of the electrical current through a coil, which is placed on the 
scalp, short magnetic fields are generated. These magnetic fields subsequently induce 
electrical pulses in neurons, which act as secondary coils [26]. One single TMS pulse 
over the primary motor cortex elicits action potentials in a group of neurons, which 
induce motor evoked potential (MEP) in the corresponding muscle group, depend-
ing on the topographic area stimulated [26]. Considering this effect, the delivery 
of several pulses using TMS in a sequential order could exert long-term changes in 
neuroplasticity-related mechanisms, such as long-term potentiation or depression 
[27, 28]. This specific TMS modality is known as repetitive TMS (rTMS). Based on 
stimulation parameters, rTMS could either increase (facilitatory) or decrease (inhibi-
tory) cortical excitability [26]. The therapeutic efficacy of rTMS is well-established in 
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some psychological disorders, such as depression. Moreover, a huge body of evidence 
has demonstrated significant effects of rTMS on motor recovery following stroke 
[29]. With respect to SCI, however, limited evidence exists especially on the effects 
of rTMS on sensorimotor recovery [30]. Previous investigations have demonstrated 
significant improvements in lower extremities motor scores following the use of high-
frequency rTMS compared with the sham stimulation in patients with SCI [31–35]. 
One study also demonstrated an average increase of 40–50% in the amplitude of 
corticospinal responses and magnitude of maximal voluntary contractions in targeted 
muscles after paired stimulation using both rTMS and peripheral nerve stimulation 
in patients with SCI [36]. In addition to sensorimotor recovery, the effects of rTMS 
on SCI-induced spasticity and neuropathic pain have also been evaluated. Two recent 
meta-analyses and systematic reviews, one including 10 randomized controlled 
trials (RCTs) and one evaluating 6 RCTs, demonstrated a significant reduction in 
SCI-induced neuropathic pain intensity in patients who received rTMS compared 
with the control group [37, 38]. Some prior studies have also reported significant 
improvements in spasticity following the SCI in patients receiving rTMS [31, 33, 34]. 
However, as mentioned earlier, given the existing heterogeneity among these studies 
regarding the rTMS parameters, further evidence is highly demanded.

3.1.5 Deep brain stimulation

Deep brain stimulation (DBS) is a minimally invasive neurosurgical procedure, 
which includes adjustable stimulation of specific target parts of the brain through 
implanted electrodes, and is widely implemented for the treatment of movement 
disorders [39]. Recently, however, DBS has received attention as a potential option for 
motor functional recovery in SCI. The electrical activation of preserved sublesional 
descending motor pathways such as the reticulospinal tract forms the rationale behind 
the potential use of DBS in SCI. In this regard, previous preclinical investigations have 
demonstrated significant improvement in deficient gait due to SCI and stroke follow-
ing the stimulation of the mesencephalic locomotor region (MLR) in animal models 
[40–42]. In a previous study, acute excitatory DBS of the MLR resulted in remarkably 
improved motor function of the paretic hindlimb in a rat model of chronic incom-
plete SCI [40]. Moreover, significant improvements in dynamic gait parameters and 
walking speed have also been reported with high-frequency DBS of the MLR in the 
rat stroke model [41]. An ongoing clinical trial (NCT03053791) is currently recruiting 
patients to evaluate the potential effects of MLR-DBS in SCI patients for the first time 
[43]. This therapeutic modality with its application in SCI is still at its initial stages, 
and further research is required to elucidate various aspects of it, especially underly-
ing mechanisms, and translate it to the clinical setting.

3.1.6 Epidural spinal cord stimulation

One form of spinal cord stimulation (SCS) is epidural SCS (eSCS), which includes 
surgical implantation of an array of electrodes over the dorsal surface of the spinal 
cord in the epidural space with direct stimulation of dorsal nerve roots. Initially, eSCS 
was evaluated for its impact on chronic pain due to its neuromodulatory effects on 
nociceptive afferent. Subsequent investigations showed that eSCS could also improve 
motor functional independence in chronic SCI patients through stimulating dorsal 
nerve roots and activating interneuronal pathways associated with locomotion [44]. 
Initial reports demonstrated that eSCS could restore independent standing with 
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volitional control of lower limb activity and independent stepping in patients with 
complete SCI [45–47]. In another report including four patients, following multiple 
sessions of eSCS with gait training, all patients achieved independent standing and 
trunk stability, and two could walk on the ground [48]. Wagner et al. showed that 
spatiotemporal stimulation of the lumbosacral spinal cord using an implanted pulse 
generator in patients with chronic SCI could restore adaptive control of muscles and 
improve locomotion following rehabilitation [49]. In a recent study, the same research 
group demonstrated the restoration of a number of activities, including standing, 
walking, cycling, swimming, and trunk control, in three patients with complete 
sensorimotor paralysis using eSCS, as part of a clinical trial (NCT02936453) [50]. In 
this study, the optimal position of the paddle lead was determined using a computa-
tional framework to allow for the restoration of various motor activities using differ-
ent activity-specific programs. In addition, there is preclinical evidence regarding the 
improvements in upper limb function, such as reaching and grasping following the 
use of cervical eSCS in cervical SCI [51]. A prior study, including two patients with 
chronic cervical SCI, also demonstrated improved hand strength and volitional hand 
control using cervical eSCS [52].

3.1.7 Transcutaneous spinal cord stimulation

Similar to eSCS, transcutaneous spinal cord stimulation (tcSCS) activates spinal 
motor pathways through stimulating dorsal root afferents, yet in a non-invasive man-
ner [53]. In tcSCS, electrodes are generally placed on the skin overlying lower thoracic 
or lumbar vertebrae. The increase in excitability of local interneuronal pathways 
following the use of tcSCS facilitates the activity of previously spared nonfunctional 
supraspinal pathways [54]. This could lead to significant functional improvement, 
particularly in combination with other conventional rehabilitation strategies. Some 
previous reports have indicated improved postural control and ankle motility in 
patients with complete or incomplete SCI [55, 56]. A previous study showed improve-
ments in weight loading capacity and reduced gait asymmetry in 19 patients who 
received exoskeleton-based training with tcSCS [57]. There are other studies reporting 
significantly enhanced volitional lower extremity movement, walking speed, endur-
ance, and symmetry using tcSCS combined with walking and locomotion training 
[58–60]. In regard to the upper limb, similarly, a number of studies have demonstrated 
significant durable improvements in upper extremity function, such as grip force and 
dexterity following tcSCS with training [61, 62]. Based on prior findings, tcSCS results 
in a functional recovery sustained over periods without stimulation. Therefore, given 
the speed of acquisition, it has been proposed that tcSCS might be associated with a 
broader modulatory effect on neuronal pathways compared with eSCS, which merely 
causes a transient increase in excitability [53]. Despite being non-invasive and inex-
pensive, tcSCS has a remarkably lower spatiotemporal precision than eSCS. Current 
literature on the utility of tcSCS in SCI is heterogeneous, especially in terms of stimu-
lation parameters, study design, and outcome measures. Hence, future high-quality 
clinical trials with larger sample sizes are highly needed in this regard.

3.1.8 Functional electrical stimulation

Functional electrical stimulation (FES) is a widely used neurorehabilitation modal-
ity in which electrical stimulation of the paralyzed muscles is performed to achieve 
functional improvement. During FES sessions, generally, neuromuscular stimulation 
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is contemporaneous with specific tasks, such as cycling [63]. Previous studies have 
demonstrated that FES is associated with improved circulation, muscle strength, 
range of motion, and reduced spasticity [64]. Various activities have been evaluated 
in previous studies on FES, including cycling, walking, grasping, reaching, and stair 
climbing [63]. FES-evoked cycling is one of the most frequently used FES training 
modalities in the clinical setting [64, 65]. In this rehabilitation method, patients with 
no or reduced volitional lower extremity control can perform cycling using an exercise 
bicycle. The pedaling motion is produced by computer-generated electrical pulses that 
are transmitted to leg muscles through surface electrodes. Several benefits have been 
previously reported for FES cycling, including significant improvements in motor 
scores, functional independence, spasticity, and cardiopulmonary function in SCI 
patients [63, 64, 66, 67]. A recent systematic review evaluated 99 studies, including 
999 SCI patients, and suggested that FES cycling exercise could improve lower-body 
muscle health, power output, and aerobic fitness in SCI patients [64]. With respect 
to the upper limb, prior studies have also reported better recovery in hand function 
in cervical SCI patients receiving FES, especially when combined with conventional 
occupational therapy [68, 69]. Electrical pulses in FES are defined mainly based on 
three parameters, including pulse frequency (typical values, 20–50 Hz), amplitude 
(typical values, 0–100 mA), and width (typical values, 300–600 μs) [63]. Differences 
in parameter adjustments significantly change the effects of FES on muscle contrac-
tion and fatigue. Therefore, depending on the rehabilitation goals and the patient’s 
functional status, parameters could be individualized.

3.1.9 Transcutaneous electrical nerve stimulation

Transcutaneous electrical nerve stimulation (TENS) is a non-invasive and safe 
rehabilitation modality whereby electrical pulses are delivered to the skin to stimulate 
nerves and reduce pain subsequently. Based on prior findings, a remarkable increase in 
blood circulation following TENS results in pain improvement [70–73]. Various clinical 
conditions could be targeted through differences in electrode placement and stimula-
tion parameters, including frequency and intensity [73, 74]. The frequency of stimula-
tion could be high (>50 Hz) or low (<10 Hz). The stimulation intensity is also classified 
based on the response achieved, which could be sensory or motor. The use of TENS in 
pain treatment is well-studied and mostly consists of delivering low-frequency electri-
cal pulses to the affected area. A recent meta-analysis, including six RCTs with 165 
patients, indicated that visual analog scale (VAS) for pain and short-form McGill pain 
questionnaire scores were significantly reduced in SCI patients who received TENS 
compared with the control group [75]. In addition to pain, prior evidence supports the 
use of TENS in improving spasticity [76]. Regarding this, a previous systematic review 
and meta-analysis demonstrated a significant association between the TENS applied 
for more than 30 minutes and reduction in lower limb spasticity in patients with 
chronic stroke [77]. Similarly, a number of previous studies have reported significant 
improvements in SCI-induced spasticity using TENS [78–80]. Given its safety profile 
and low cost as well as effects on pain and spasticity, TENS is regarded as a great 
adjunct to physical therapy and conventional SCI rehabilitation program.

3.1.10 Robotic-assisted gait training

In addition to reduced functional independence, immobility due to SCI could 
lead to a variety of secondary problems, including cardiopulmonary complications, 
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bowel and bladder dysfunction, osteoporosis, pressure ulcers, and obesity [81–83]. 
Accordingly, recovery of ambulation is of crucial importance in the rehabilitation 
program of patients with SCI [84]. Locomotor rehabilitation training following the 
SCI is performed either in a conventional manner, in which the therapist assists 
manually, or by using rehabilitation robots, which are also known as exoskeletons. 
In comparison with the former, robotic-assisted gait training is associated with a less 
physical burden for the therapist while also allowing for quantitative evaluation of the 
patient’s progression [85–92]. Since the introduction of Lokomat, as the first exoskel-
eton, different types of gait rehabilitation robots have been developed [92, 93]. Many 
prior studies have evaluated the effects of robotic-assisted gait training in SCI reha-
bilitation. Several beneficial impacts for this modality have been reported previously, 
including improvements in musculoskeletal, urinary, cardiopulmonary, somatosen-
sory, and neural plasticity [87, 89, 94, 95]. Based on a previous systematic review, 
including 13 RCTs, body weight-supported treadmill training and robotic-assisted 
gait training increase the walking speed no more than overground gait training and 
other forms of physical therapy in patients with SCI [90]. However, the results were 
not clear regarding the changes in walking distance. Another systematic review and 
meta-analysis, including 10 RCTs, found that robotic-assisted gait training results in 
significantly greater improvement in mobility-related outcomes, such as gait distance, 
functional level of mobility and independence, and leg strength compared with con-
ventional overground training in incomplete SCI patients [87]. Nevertheless, poten-
tial differences in response to therapy between different individuals with SCI should 
also be considered. Concerning this, patients with incomplete lesions or a recent 
injury might show a better response to therapy with robotic-assisted gait training 
than those with complete or chronic injuries [90]. Thus, future trials are warranted to 
allow for further subgroups analyses in this regard. Furthermore, recently, wearable 
exoskeletons, as emerging therapeutic devices are receiving much attention since they 
require active participation from the patient and could also be utilized as assistive 
devices in the community [92]. Additionally, wearable exoskeletons seem to address 
limitations associated with grounded exoskeletons by providing more freedom during 
gait and the ability to perform complex motions and more activities of daily living. 
However, since there is a paucity of data regarding various aspects of wearable exo-
skeletons and their effectiveness in patients with SCI, future clinical trials are highly 
warranted to evaluate the utility of different robots and also compare them with other 
types of gait therapy in this population [92].

3.1.11 Occupational therapy

One of the important disciplines in rehabilitation team of SCI is occupational 
therapy.

A person’s functional independence has a major impact on their quality of life, and 
consequential social participation. Some people with a spinal cord injury (SCI) will 
have the ability to achieve a high level of independence while others, limited by their 
physical ability, will be able to achieve a level of independence through directing their 
care and by using technology options. Whilst it is reasonable to expect that the degree 
of functional independence achievable is dependent on a person’s level of injury, a per-
son’s neurological level should not be viewed as strictly predictive but rather as indica-
tive of potential function. Adjustment of SCI with post injury functional limitation 
and activity of daily living (ADL) copping is very essential for victims of SCI. Transfer 
activities, transportation from and to different environments, home adjustments and 
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copping to new adjusted work are among professional activities of occupational thera-
pist in rehabilitation team. In addition, neurorehabilitation facilitations techniques 
such as anti-spasticity manures are carried out by occupational therapists.

3.2 Cardiopulmonary dysfunction

Recent advances in the care and rehabilitation of SCI patients have changed the 
pattern of SCI morbidity and mortality with a shift from septicemia, pneumonia, and 
renal failure to cardiovascular complications as one of the major causes of death in 
this group of patients [96, 97]. Many risk factors for cardiovascular disease are associ-
ated with SCI, including physical inactivity due to the non-ambulatory state, extreme 
fluctuations in blood pressure, dyslipidemia, abnormal glycemic control, and chronic 
inflammation [98, 99]. With respect to this, a previous survey with a large sample of 
60,000 SCI patients showed a significant association between SCI and increased odds 
of heart disease and stroke [96].

In addition, numerous previous investigations have reported a high prevalence 
of orthostatic hypotension in SCI [100, 101]. Similar to acute injury, orthostatic 
hypotension could be persistent throughout the course of chronic SCI and remarkably 
interfere with the rehabilitation process and patient’s QoL [100]. Improvements in 
orthostatic hypotension have been reported previously through a variety of measures, 
including pressure interventions (e.g., pressure stockings and abdominal binders), 
increasing fluid and salt intake (volume augmentation), lower limb FES, exercise, and 
pharmacotherapy using different agents, such as midodrine, fludrocortisone,  
ephedrine, dihydroergotamine, and droxidopa [100].

Autonomic dysreflexia is also an urgent cardiovascular condition associated with 
SCI, which is characterized by acute episodes of hypertension with either bradycardia 
or tachycardia [102, 103]. Most patients with a T6 level of injury or higher are at risk 
of autonomic dysreflexia. Various noxious and non-noxious stimuli below the level of 
injury, such as pressure sores, and bladder or bowel irritation, could lead to autonomic 
dysreflexia mainly by triggering massive sympathetic discharge. The clinical manifes-
tation of autonomic dysreflexia is variable and ranges from mild discomfort to severe 
acute hypertension with ominous consequences [102, 103]. Prior reports have shown 
a significant correlation between the severity of autonomic dysreflexia and the level 
of injury, as well as the completeness of the SCI with higher and complete injuries are 
associated with more severe manifestations [102, 104]. Prevention plays a crucial role 
in the management of autonomic dysreflexia and mainly aims at resolving the underly-
ing triggers through several non-pharmacologic measures, such as regular bladder 
and bowel care. Depending on the severity, pharmacologic therapy with rapid-onset 
antihypertensive drugs is also used in acute cases of autonomic dysreflexia [102].

Pulmonary dysfunction also noticeably complicates the course of SCI, particularly 
in patients with cervical and upper thoracic injuries. Functional impairments in 
respiratory muscles, including the diaphragm, intercostal, and accessory respira-
tory muscles, substantially reduce lung capacity and increase respiratory demand. 
Moreover, atelectasis ensues when the dysfunction of respiratory muscles leads to 
reduced compliance of the lung and chest wall. Impaired function of expiratory 
muscles also causes ineffective cough, which in turn negatively affects airway clear-
ance. Consequently, many severe complications could occur as a result of pulmonary 
dysfunction, such as mucus retention, pleural effusion, pneumonia, and respiratory 
failure [105, 106]. Therefore, pulmonary rehabilitation is a vital part of the SCI 
rehabilitation program to prevent respiratory complications in patients [106]. Prior 
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investigations have shown that respiratory muscle training effectively improves 
respiratory muscle strength and subsequently reduces respiratory complications in 
SCI patients [107–113]. Among subgroups of SCI patients, greater improvement in 
respiratory function following the rehabilitation has been reported in patients with 
tetraplegia and subacute injury [109]. Respiratory muscle training involves increasing 
the load on respiratory muscles, and different types of it have been reported previ-
ously, such as the use of resistive and threshold trainers, singing training, and normo-
capnic hyperpnoea [107].

3.3 Bladder and bowel dysfunction

Bladder and bowel dysfunction involves a significant proportion of patients 
following SCI and remarkably impairs their QoL. Genitourinary infections constitute 
the most common cause of re-hospitalization in SCI patients with about 30% of them 
being hospitalized annually. Moreover, the fifth most common cause of mortality in 
SCI patients, is genitourinary infection. Bowel dysfunction is the fourth leading cause 
of re-hospitalization and the second most common complication according to SCI 
patients [114–116]. Therefore, bladder and bowel care comprise a notable part of the 
SCI rehabilitation program.

Based on a prior report, about 77% of SCI patients lack the ability to void volun-
tarily, which makes them dependent on assistance [117]. The most common bladder 
drainage method for neurogenic bladder management with the lowest risk of compli-
cations and urinary tract infection in SCI patients is clean intermittent catheteriza-
tion [114, 118]. Tetraplegic patients, however, might use indwelling or suprapubic 
catheters, which could increase the risk of complications, such as infection. Other 
techniques, such as Credé and Valsalva maneuvers might also be helpful in addition to 
primary drainage methods. Pharmacological therapy using anticholinergics or beta-
3-agonists is also effective in reducing the intravesical pressure in cases with hyper-
reflexic detrusor. In refractory cases or patients with renal impairment, a number of 
procedures, such as intravesical botulinum-A toxin injection, surgical interventions 
(e.g., bladder reconstruction and diversion procedures), and sacral neuromodulation, 
might also help in improving the symptoms [114].

According to SCI patients, about 95% of them have chronic constipation, and 
75% have experienced fecal incontinence, which could significantly affect various 
aspects of QoL and the social life of patients. Further, several complications might 
occur as a result of chronic constipation, including anal fissures, rectal bleed-
ing, hemorrhoids, autonomic dysreflexia, and urinary tract infection [114, 119]. 
Therefore, SCI rehabilitation should include an individualized bowel management 
program aimed at regular bowel emptying, maintaining functional continence, 
and preventing potential complications [114, 119]. Conservative management in 
neurogenic bowel includes diet, abdominal massage, drinking a warm liquid before 
bowel care, digital rectal stimulation, and using stimulant suppositories. Further, 
there might be an additional need for pharmacological therapy using oral or rectal 
laxatives, especially in older patients or those with longstanding SCI [114, 120, 121]. 
For maintenance of stool consistency, bulking agents and stool softeners might also 
be used regularly. In addition, prucalopride is a prokinetic agent, which is used for 
chronic constipation due to neurogenic bowel [114]. In case of inadequate response 
to conservative therapy, invasive procedures, such as intestinal diversion (e.g., 
ileostomy or colostomy), Malone anterograde continence enema could significantly 
improve the patients’ QoL [114, 122].
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3.4 Neuropathic pain

Pain is one of the most common disabling complications following the SCI, which 
could significantly impair the patient’s QoL [123–125]. According to prior informa-
tion, the prevalence of pain among patients with SCI is about 65 to 85%, and approxi-
mately one-third of them report severe pain [126]. Based on International Spinal Cord 
Injury Pain (ISCIP) classification and underlying mechanisms, SCI-related pain is 
classically divided into nociceptive and neuropathic categories [127]. Nociceptive pain 
originates from nociceptors with preserved sensory innervation and could be either 
musculoskeletal or visceral. Analgesics, such as nonsteroidal anti-inflammatory drugs 
(NSAIDs) or opioids, could significantly improve nociceptive pain [127]. Neuropathic 
pain, however, is the most common type of pain in SCI patients with no definitive 
therapy due to its more complex etiology, which is still not well understood [128]. 
Neuropathic pain mainly arises from the disease of the somatosensory system and 
could occur either at the level of injury or below it. Relative to the neurological level 
of injury, the former type is defined as the pain within the distribution of one rostral 
and three caudal dermatomes. The below-level pain, however, is localized below the 
three dermatomes caudal to the neurological level of injury. Neuropathic pain might 
also be associated with sensory phenomena in the painful area, such as allodynia, 
which is defined as pain triggered by non-noxious stimuli (e.g., light touch), espe-
cially in the at-level pain category [127]. Given the complexity of neuropathic pain, 
many pharmacological and non-pharmacological therapeutic interventions have been 
utilized previously with variable efficacy and safety profiles. Pharmacological therapy 
using antiepileptics, tricyclic antidepressants, opioids, and cannabinoids has been 
reported. In refractory cases, non-pharmacological interventions, such as intrathe-
cal drug administration, nerve blocks, dorsal root entry zone (DREZ) ablation 
procedures, SCS, tDCS, transcranial electrical stimulation (TES), and TMS might be 
beneficial [129].

3.5 Spasticity

Spasticity is one of the most common complications following injuries to upper 
motor neurons, such as SCI. Approximately 65% of SCI patients show symptoms of 
spasticity following their discharge from the acute rehabilitation program, and about 
93% of those in the community are affected [130, 131]. As a sensorimotor control 
disorder due to upper motor neuron lesion, spasticity is presented as a velocity-
dependent increase in tonic stretch reflex with clonus, spasms, and hyperreflexia 
[18]. About 35% of chronic SCI patients have problematic spasticity, which is defined 
as spasticity leading to functional limitation or requires antispasticity treatment 
[131, 132]. SCI-related spasticity shows a gradual course, which begins following 
the areflexia associated with the spinal shock period. Incomplete SCI and preserved 
sensorimotor function below the level of injury are associated with severe spasticity. 
SCI-related spasticity could significantly affect the patient’s QoL and limit ADLs. 
Moreover, poorly treated spasticity results in pain, contractures, and skin breakdown, 
which interferes with the rehabilitation process and could also prevent neurologi-
cal recovery [18, 130, 131]. Due mainly to the more diffuse pattern of SCI-induced 
spasticity in comparison with other pathologies, such as stroke or traumatic brain 
injury, regional or systemic therapies are preferred in SCI [18, 130]. Initial therapy for 
SCI-induced spasticity consists of physical therapy and pharmacological treatment. 
However, often the approaches fail to manage spasticity in SCI patients, or intolerable 
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side effects due to pharmacological therapy occur, and further treatment modali-
ties might be required. Intrathecal administration of baclofen using an implantable 
pump has been significantly effective in reducing intractable SCI-induced spasticity. 
However, this method is associated with some limitations, such as surgical com-
plications, pump failure, and infections [133, 134]. Depending on the status of the 
patient, other modalities might also be used, such as local chemodenervation using 
phenol, ethanol, or botulinum toxin. Surgical interventions, such as selective dorsal 
rhizotomy, tenotomy, tendon lengthening and transfers might also be used in selected 
severe cases [18, 130].

4. Conclusions

This chapter reviewed different modalities and strategies used in the field of 
neurorehabilitation for SCI and various aspects of it, specifically. The process of 
rehabilitation is time-consuming and requires the participation of multiple disciplines 
as well as the patients and their family. In addition, in many cases, the use of each 
modality individually might not result in a discernible improvement. Therefore, it is 
of paramount importance to consider a combinatorial approach to SCI rehabilitation 
with the aim of improvement in patients’ function and QoL using all the available 
options. Moreover, a notable number of strategies for neurological recovery in SCI 
were not covered, mainly because they were beyond the scope of this chapter. Recent 
advances in different fields, such as brain-machine interface, stem cell therapy, tissue 
engineering, gene therapy, exosomes, and optogenetics, have shown promising results 
in various aspects of SCI, both preclinically and clinically. However, still, further 
research is needed to translate these potentially effective modalities into the clinical 
arena and use them as part of the rehabilitation plan.

© 2023 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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