
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

171,000 190M

TOP 1%154

6,300



1

Chapter

Phenazines and Photoactive 
Formulations: Promising 
Photodrugs for Photodynamic 
Therapy
Ranulfo Combuca da Silva Junior,  

Katieli da Silva Souza Campanholi,  

Flávia Amanda Pedroso de Morais,  

Laura Adriane de Moraes Pinto, Fabiana dos Santos Rando, 

Magali Soares dos Santos Pozza and Wilker Caetano

Abstract

Photodynamic Therapy (PDT) is a therapeutic modality that can be applied with 
many photosensitizing compounds (PS). Photosensitization has shown promising 
results in damage against abnormal cell growth as cancer and inactivating a broad 
spectrum of microorganisms with no reported microbial resistance. Photodynamic 
processes occur by the light action at the appropriate wavelength in the presence of 
a PS that will be excited by the energy absorbed from the light source, where the 
interaction with the oxygen present in the cell will generate reactive oxygen species 
(ROS). The potential of phenazines as a photosensitizer is reviewed in this chapter as 
a practical guide to the future development of formulations that are effective for can-
cer treatment and microorganism control. Here we mainly summarize articles about 
phenazines from 2005 to 2021 when we performed a systematic search in the Science 
Direct, PubMed, Google Scholar, Web of Science, and Scopus databases. The carrier 
systems formed by micellar copolymers type Pluronic® have demonstrated effective-
ness in incorporating several PS, ensuring its monomeric form for PDT applications. 
The fundamentals of the photosensitization mechanism are discussed. Studies have 
shown the beneficial impact of an appropriate incorporation technique to enhance the 
cellular uptake of phenazines compounds.

Keywords: phenazines, photodynamic therapy, photosensitizing agents, nanoplatform, 
micelles
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1. Introduction

Success in treating diseases such as cancer or microbial diseases directly depends 
on the therapeutic modality applied. Given the side effects presented and the limita-
tion in the efficiency of traditional procedures (surgery, chemotherapy, and radio-
therapy), other alternatives are constantly being proposed in oncology [1]. Among 
the most promising modalities, Photodynamic Therapy (PDT) stands out as it does 
not present serious side effects and does not have limited efficiency [2]. PDT and 
antimicrobial Photodynamic Therapy (aPDT) are medical modality that has high 
specificity and selectivity in the treatment of infections caused by a virus, bacteria, 
protozoa, and fungi, as well as several cardiovascular, dermatological, and other 
diseases related to abnormal cell growth as cancer [2–5].

The PDT efficiency directly depends on a photosensitizing compound (PS) with 
ideal properties for the photophysical and photochemical processes that leads to the 
formation of singlet oxygen (1O2) and/or reactive oxygen species (ROS) that cause 
cell damage [2, 6]. PDT aims at the localized damage of living tissue with abnormal 
cell growth through its necrosis or infeasibility [7]. Likely targets of PDT are mito-
chondria, plasma membrane and other cell organelles, tumor cell nucleus, and blood 
vessels [8, 9]. This selectivity occurs due to the high concentration of lipoprotein 
receptors in neoplastic cells, where PS accumulates preferentially in diseased tissues, 
forming intravascular complexes with low-density proteins (LDL) [10].

The 1O2 is a free radical produced during PDT and other related therapies. It is 
made when light activates the photosensitive compound administered to the patient. 
The 1O2 action mechanism is based on its ability to cause damage to DNA, proteins, 
and other cellular molecules, leading to cell death [2]. Lipid peroxidation occurs when 
1O2 reacts with lipids in cell membranes, causing the formation of secondary free 
radicals and damaging the cell membrane structure. DNA damage can arise when 1O2 
reacts with DNA nucleotides, causing damage and interfering with replication and 
gene expression. The 1O2 stops energy production when reacting with the enzymes of 
the respiratory cell chain and leads to cell death. The 1O2 can react with cellular ribo-
somes and interrupt protein synthesis, causing cell death. The 1O2 is an essential agent 
in photodynamic therapy and other radiation therapies, as these action mechanisms 
lead to the destruction of cancer cells and a reduction in the size of tumors [2].

Among the main characteristics of adequate PS is their low toxicity in the dark, 
light absorption between 400 and 850 nm (therapeutic window), high molar absorp-
tivity values, and considerable formation of ROS inherent in the technique [11].

The development of promising drugs requires science to improve investigations 
based on the action of a compound or the joint effort of two or more drugs, thus 
synergy [12]. The first generation of phototherapeutic agents used in PDT is based 
on mixtures of porphyrin derivatives [7]. The search for PS with better optical and 
pharmacokinetic characteristics gave rise to the second generation of PS, similar to 
porphyrin molecules such as benzoporphyrins, chlorins, texapyrins, phthalocyanines, 
and naphthalocyanines [13]. Some of those PS compounds are already approved by 
the Food and Drug Administration (FDA/USA) for clinical applications using PDT. 
In addition, some countries are already approved, for example, Photofrin®, Levulan 
Kerasticks®, and Visudyne® (Verteporfin) [14].

Due to advances in research, studies, and treatments based on PDT, there is a 
great demand for new naturally occurring or synthetic PS that are biocompatible 
and have adequate properties [15, 16]. Over time, hematoporphyrin derivatives have 
been replaced by various PS compounds [17]. The third generation of PS is based on 
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formulations with different drug delivery systems (DDS) that provide better solubil-
ity in physiological media, more favorable pharmacokinetics, and allow the use of 
light sources with more remarkable penetration power into tissues.

Due to economic and environmental considerations, PS compounds obtained from 
abundant raw materials attract more interest than those prepared by complex chemi-
cal routes [15, 18]. Studies involving naphthodianthrones (hypericin), phenothiazines 
(methylene blue and toluidine blue), phthalocyanines, chlorins (chlorophyll A), 
xanthenes (rose bengal), and curcuminoids (curcumin) stand out in the literature 
[14]. These PS compounds are extensively studied in vitro, in vivo, and in photodiag-
nostic aspects [19–21].

This particular chapter presents explicitly an overview of compounds of the 
phenazine class (Figure 1), in which promising photoactive drugs such as neutral red 
(NR) [22], phenosafranin (PhS) [23], and safranine-O (Sf) [24], still poor explored 
for PDT applications.

2. Search strategy

The strategy we performed a systematic literature search in Science Direct, 
PubMed, Google Scholar, Web of Science, and Scopus databases using the combina-
tions of the term “phenazines” with the following: “photodynamic therapy,” “aPDT 
or antimicrobial Photodynamic Therapy, or PACT or photodynamic inactivation or 
PDI,” “Animal studies or in vitro studies involving phenazines”. Peer-reviewed articles 
published in English from 2005 to 2021 were included to compile this chapter. We 
have also scanned references for relevant articles.

3. Photosensitization mechanism

The combination of a PS compound with molecular oxygen (3O2) and visible light 
of the adequate wavelength generates ROS that causes cell components to oxidize and 

Figure 1. 
Phenazines compounds incorporated into drug delivery system have great potential for photodynamic therapy 
applications.
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lead to death [2, 25]. In addition, PS reacts with neighboring molecules by electron or 
hydrogen transfer leading to the production of free radicals or by energy transfer to 
oxygen, inducing the production of 1O2 [2, 26].

The photochemical processes originate from the interaction of light with matter 
which, by absorbing energy with adequate wavelength, allows the promotion of an 
electron from the ground state, called HOMO (Highest Occupied Molecular Orbital), 
to the excited state LUMO (Lowest Unoccupied Molecular Orbital), of higher 
energy [27]. The excited state is unstable, and in it, the molecule can suffer chemical 
processes (rearrangements or fragmentation of the molecule) or physical processes 
(deexcitation) [27]. According to the Molecular Orbital Theory, oxygen in the ground 
state and excited can assume different forms of occupation of molecular orbitals anti-
binders, as shown in Figure 2.

In the ground state, molecular oxygen has two unpaired electrons in the doubly 
degenerate antibonding orbitals, π*x, and π*y. These electrons have the same spin, result-
ing in a maximum multiplicity and, thus, the lowest state oxygen energy. Therefore, the 
ground state of molecular oxygen is a triplet, which has the spectroscopic term 3∑g. The 
excited state of oxygen that has all valence electrons paired is singlet oxygen. Singlet oxy-
gen has two forms with distinct symmetries, one of smaller energy 1∆g, doubly degener-
ate (1∆x and 1∆y; 92.4 kJ mol−1), and another one with higher energy (1Σ; 159.6 kJ mol−1). 
The second excited state of oxygen has a short lifetime since the transition to the 1∆g state 
is allowed by spin. The different symmetry of the 1∆g species with respect to the ground 
state and the spin prohibition of the 1∆g – 3∑g transition ensures that the 1∆g species has a 
long enough lifetime to allow oxidation of organic molecules [7].

The photochemical processes that occur in the excited state of photoactive mol-
ecules can be represented by the Jablonski diagram (Figure 3) [27, 28]. Among these 
processes, internal conversion (IC), fluorescence, intersystem crossing (ISC), and 
phosphorescence stand out [27, 29].

Figure 2. 
Electronic distribution in the antibonding molecular orbitals for the oxygen electronic states. It was adapted from 
Lakowicz [27].
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After molecule excitation to the second excited state, the relaxation process for the 
first excited state can occur by IC (where the internal energy is lost by collision) and 
then return to the ground state via fluorescence emission. Deactivation can also arise 
by ISC between vibrational levels of the same energy and electronic states of different 
multiplicities. The decay from the triplet state to the singlet fundamental can then 
occur by phosphorescence emission or collisions [27, 29]. For PDT, it is interest-
ing that the PS is preferably in the excited triplet state, as it will have the same spin 
multiplicity of 3O2 favoring the photochemical processes of producing 1O2 and ROS. 
The interaction with biological substrates in PDT can occur by two mechanisms: Type 
I, where photo-oxidation occurs through the transfer of electrons between the triplet 
state of PS and the substrate forming radical ions that react with oxygen in the ground 
state resulting in ROS. The Type II mechanism involves the energy transfer from the 
triplet excited state of PS to molecular oxygen generating 1O2 [2, 28].

The literature reports the use of PDT in treating primary carcinomas or metasta-
ses in the head and neck regions, such as the oral cavity, pharynx, and larynx [30]. 
However, after tumor recession, secondary diseases such as those caused by bacteria 
may manifest. Photodynamic treatment circumvents this problem as PDT is not 
restricted to microorganisms.

With the increasing cases of acquired resistance by bacteria against antibiotics, the 
search for the control of microorganisms via PDT also attracts interest from the scien-
tific community [31]. As a result, PDT has been widely applied in the microbiological 
area, standing out as a promising technique in microorganism inactivation [32]. 
Furthermore, PDT offers advantages over the usual antimicrobial agents, triggering 
rapid cell death and unlikely development of resistance by the microorganism [33].

4. Photosensitizer formulation

Several PS can be used for different applications because of their particular 
properties. Therefore, it is necessary to know the essential characteristics of each PS 

Figure 3. 
Jablonski diagram: Electron transfer scheme by type I and type II mechanisms with singlet oxygen, superoxide 
anions, and hydroxyls production. It was adapted from Lakowicz [27].
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to use its therapeutic properties better. The most cited PS compounds in the litera-
ture present, for the most part, structures containing aromatic rings or conjugated 
systems, which give them high hydrophobicity. In this sense, efforts in developing 
strategies in the formulation of PS administration stand out. However, even PS with a 
small structure presents a self-aggregation problem, making it challenging to apply in 
aqueous media.

Incorporating PS compounds into nanostructured systems aims to minimize the 
effects of self-aggregation in aqueous media, protect PS against degradation and elim-
ination by the organism, and facilitate the biotransport. In some cases, the adequately 
incorporated PS assists the vectorization of the nanostructured system, increasing 
the bioavailability of the photoactive drug at the application site (third generation), 
promoting a controlled release in the regions (tissues and organs) to be treated 
[34]. In addition, they decrease side effects (toxicity) and microbial resistance. In 
this sense, several carrier systems are generally constituted by colloidal dispersion 
systems, such as copolymeric micelles [35], liposomal vesicles [36], dendrimers [37], 
cyclodextrins [38, 39], polymer-DNA complexes (polyplexes) [40], nanogels [41], 
nanotubes [42], nanosuspensions [43], nanocrystals [44], solid lipid nanoparticles 
[45], metallic or ceramic nanoparticles [46], among other nanoscale materials for 
medical use are being widely studied [47–49]. Figure 4 illustrates the most commonly 
found nanoparticulate carrier systems in the literature for carrying PS [50].

Figure 4. 
Exemplification of some carrier systems currently used. I was adapted from Senapati et al. [50].
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All these carrier systems have the advantage of protecting PS as a common 
characteristic. In addition, they contribute to keeping the PS monomeric form ideal 
for application in PDT [48, 51]. The leading site of photodynamic action is the cell 
membranes; therefore, it is of great importance that the carrier system is similar or 
presents a specific interaction with it. The PS efficiency in PDT applications depends 
on the microenvironment in which the PS is located so that there are no changes in 
its physicochemical and photophysical properties and in its interaction with living 
biological systems [36]. Parameters such as bioaccessibility, passive transport, and 
permeation of the drug into the membrane are of great importance in developing 
new drugs for PDT applications [11, 52]. Micellar and liposomal environments, for 
example, are reasonable models of cellular environments and provide useful informa-
tion about PS molecules against organized systems and biomimetics [5, 41, 52, 53].

Since the cell membrane is a complex system composed of a lipid bilayer consist-
ing of several types of phospholipids, cholesterol, glycolipids, and proteins, the 
copolymer micelles are good carrier systems for biomimetic the cell membrane [54]. 
Different micellar microdomains, called hydrophobic and hydrophilic, allow for esti-
mating the drug partition tendency according to the region where it was solubilized. 
Compared to membrane models, polymeric micelles have the following advantages: 
minimal toxicity, narrow size distribution, longer residence time in the circulatory 
system, improved bioavailability, and more excellent stability of the incorporated 
photosensitizer [54].

5.  Polymeric nanoparticles: copolymeric micellar systems in drug 
formulation

Most dyes, including phenazines, are characterized by forming aggregates in an 
aqueous solution harming their application. For this case, using DDS systems such as 
copolymeric micelles contributes to stabilization and solubilization, which maintains 
the PS characteristics inherent in PDT application [55]. In addition, these compounds 
are readily adsorbed by anionic micelles due to their distinct and amphiphilic charac-
ter [56]. Therefore, studying the interaction of dyes with micellar systems is essential 
for biological applications since PS-associated biopolymers provide high drug efficacy 
with reduced toxicity [57].

Polymeric nanoparticles have been extensively applied in the pharmaceutical 
industry for drug formulation [58–60]. Currently, research is directed toward study-
ing the association of photoactive molecules with nanostructured systems aiming 
for a specific carrier for controlled release in the regions (tissues and organs) to be 
treated [58]. Colloidal copolymers stand out, forming micelles (triblock systems) 
and effectively stabilizing hydrophobic molecules in aqueous media, such as PS, that 
remain in the form of monomers [16].

Polymeric colloidal systems are excellent for drug delivery and have been widely 
explained in several studies [48, 53]. These carrier systems can be classified as 
anionic, cationic, zwitterionic, and nonionic (according to their state of charge) [6]. 
Micelles are amphiphilic structures composed of a hydrophobic and a hydrophilic 
region (Figure 5A) [52]. In the aqueous phase, the micelles keep the hydrophobic 
portion facing the inside of the structure (lipophilic core) [61].

Micelles simulate the interface of a biomembrane and provide a biomimetic 
environment for the study of specific interactions, as well as the penetration and loca-
tion of PS in the intracellular domain [4, 5]. Furthermore, studies have shown that PS 
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incorporation into micellar systems can reduce toxicity, target PS to specific sites and 
improve permeation and bioavailability in topical applications [11, 41]. Given these 
particularities, the biotransport and delivery of the drug in the target tissue become a 
particular challenge in PDT [4].

Several studies point to the use of surfactants of the Pluronic® class (or Poloxamers) 
[62]. The copolymer unimers (Figure 5B) consist of triblock molecules of repeating 
units of oxyethylene (EO – hydrophilic) and oxypropylene (PO – hydrophobic) with the 
following configuration: (EO)X(PO)Y(EO)X [63]. This group of copolymers is non-toxic, 
biocompatible, and has binding sites suitable for the solubilization of hydrophobic drugs 
[63]. In addition, triblock copolymers have a low critical micellar concentration (CMC, 
10−6 – 10−7 mol L−1) and the micelles formed to have high thermodynamic and kinetic 
stability, which guarantees a slow destructuring for unimers when they are exposed to an 
environment where the concentration is below the CMC [64, 65]. Another factor to be 
considered for studies with polymeric surfactants is the temperature. The micellization 
process will only occur above a specific critical micellar temperature (CMT), which, in 
turn, is a function of the surfactant concentration [64, 65]. In addition, there is evidence 
that temperature increases also cause an increase in the aggregation number (Nag) of the 
copolymers [64]. Therefore, to be effective, the polymer used to obtain the micelle must 
present CMT compatible with the conditions necessary for the application [65].

Due to their favorable properties, the triblock copolymers of the Pluronic® 
class are potentially useful for drug delivery and controlled release systems [4, 53]. 
Furthermore, compared to other membrane models, copolymeric micelles have the 
following advantages: minimal toxicity, narrow size distribution, longer residence 
time at the application site, improved bioavailability, and more excellent stability 
of the incorporated PS [54]. These characteristics allow us to describe the micellar 
copolymer system as promising for clinical applications [66, 67].

6. Phenazines compound as photosensitizers or photoactive drugs

Phenazines (C12H8N2) are heterocyclic aromatic nitrogenous compounds and the 
most important backbone is a pyrazine ring (1,4-diazobenzene) with two annulated 
benzenes (Figure 6) [68].

Figure 5. 
(A) General monomer structure of polymeric micelle, and (B) general structure of the copolymeric monomer 
(Pluronic® class).
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This compound class is classified as redox-active secondary metabolites and pig-
mented. They are produced by fluorescent Pseudomonas species and have antimicro-
bial, antiparasitic, neuroprotective, insecticidal, anti-inflammatory, and anticancer 
activity [69].

Phenazines can undergo redox cycling in the presence of various reducing agents 
and molecular oxygen, which leads to the accumulation of superoxide (O2

−) and 
hydrogen peroxide (H2O2), causing oxidative cell injury or death [68]. This property 
can be better explored considering the photochemical/photophysical potential of 
phenazines in PDT applications.

Natural phenazines are isolated from marine and terrestrial microorganisms, 
including (Pseudomonas ssp., Streptomyces ssp., and Actinomycete ssp.), which generates 
an infinity of synthetic derivatives [69]. Pseudomonas aeruginosa is a Gram-negative 
bacterium most studied for its ability to produce phenazine-active pigments, such as 
pyocyanin, phenazine-1 carboxyamide, and pyorubrins [68]. Furthermore, P. aerugi-
nosa can survive in varied environments such as soil and water and colonize plant and 
animal tissues [70].

The literature describes the antioxidant, anti-inflammatory, and non-cytotoxic 
properties of the red and yellow phenazynic pigments produced by P. aeruginosa. These 
pigments confer great potential for application in the pharmaceutical and cosmetic 
industry [71, 72]. Phenazine derivatives differ in their chemical and physical properties 
based on the type of functional group position present, and they can also be used against 
the proliferation of various cancer cell lines [73–76]. There are more than 100 different 
compounds of natural origin and over 6000 synthetic compounds. Many of these com-
pounds have been investigated as potential anticancer agents and microorganism control 
[77]. Some in vitro studies using phenazine derivatives are shown in Table 1.

Most studies involving compounds of the phenazines class have been reported 
promisingly in the dark [23]; however, the photodynamic potential cannot be disre-
garded. The literature presents scattered articles concerning different studies of phen-
azines derivative compounds performed in vitro, but without continuity or emphasis 
on the photophysical potential of phenazines, as well as in vitro and in vivo studies. 
Further, this group of compounds has also been used to develop color-emitting 
materials [91] or fluorescent biosensors [92].

Figure 6. 
General chemical structure of phenazines compounds.
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Phenazines derivatives Obtaining Applications Reference

2-chloroacetylamino-7(8)-nitrophenazine 
N5,N10-dioxide
2-amino-7(8)-(1,3-dioxol-2-yl)phenazine
N5,N10-dioxide(2),2-chloroacetylamino-7(8)-(1,3-
dioxol-2-yl)phenazine N5,N10-dioxide
2-amino-7(8)-methoxyphenazine N5,N10-dioxide

Cytotoxins of 2- 
amino-or2-hydroxy 
phenazine5,10-dioxide 
derivatives

in vitro antitumoral 
effect against Caco-2 
cells

[78]

phenazine 5,10-dioxide derivatives Derivative from 
N-oxides containing 
heterocycles

in vitro growth 
inhibitors of T. cruzi

[79]

phenazine-1-carboxamide Obtained from the 
Pseudomona aeruginosa

antibacterial activity 
of a Pseudomonas 

aeruginosa-derived 
compound against 
methicillin-resistant S. 

aureus (MRSA) strains

[80]

phenazin-1-ol
phenazine-1-carboxylic acid
2-heptyl-3-hydroxyl-4(1H)-quinolone
phenazine-1-carboxamide

Producing from 
Pseudomona aeruginosa 
fluorescent

Medically important 
fungi: Aspergillus 

flavus MTCC 183, 
Candida albicans 
MTCC 277, Candida 

tropicalis MTCC 184, 
Cryptococcus gastricus 
MTCC 1715, and 
Trichophyton rubrum 
MTCC 296.
Agriculturally 
important fungi: 
Fusarium oxysporum 
MTCC 284, 
Rhizoctonia solani 
MTCC 4634, and 
Penicillium expansum 
MTCC 2006

[81]

phenazine 1-carboxamide Produced by 
Pseudomonas strain 
MCC2142

fungi such as Candida 

albicans, Candida 

glabrata, Cryptococcus 

neoformans, 
Fusarium oxysporum, 
Aspergillus fumigatus, 
Aspergillus niger and 
Benjaminiella poitrasii

[82]

Pontemazines A and B Isolated from the 
culture broth of 
Streptomyces sp. 
UT1123

neuronal cell 
protective effect on
glutamate-induced 
mouse hippocampal 
HT-22 cell damage

[83]

A series of 2,3,7-trisubstituted phenazines Introduction of 
carboxylic or 
carboxamide group in 
2,3-dialkoxy-phenazine

in vitro on human 
pancreatic 
(MiaPaCa-2) cell 
lines

[74]

imidazo[4,5-b]phenazine-2-thione
methylthio
ethyl 1-aryl-3H-[1, 2, 4]triazolo[2,3-a]imidazo[4,5-b]
phenazines
ethyl (2Z)-3-aminophenazin-2-yl)amino]
(phenylhydrazono) ethanoate
pyrazino[2,3-b]phenazine
[1, 4]diazepino[2,3-b]phenazine
2,3-dibenzoylaminophenazine
1H-Imidazo[4,5-b]phenazine
4-[(E)-(3-amino phenazin-2-yl)diazenyl]

2,3-Diaminophenazine 
was used as a precursor

all compounds were 
tested as inhibitors 
of the proliferation 
of human lung 
carcinoma and 
colorectal cancer 
cell lines through 
inhibition of Tyrosine 
Kinases

[73]
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Phenazines derivatives Obtaining Applications Reference

benzo[a]phenazin derivatives Treatment of 
2-fluoro-nitrobenzene 
or 2-chloro-3-
nitropyridine

four human cancer 
cell lines (HL-60, 
K-562, HeLa, and 
A549)

[84]

16-(4-ethoxyphenyl)-3,3-dimethyl-2,3,4,16-tetrahydro-
1H-benzo[a]chromeno[2,3-c]phenazin-1-one
16-(4-Ethoxyphenyl)-3,3-dimethyl-2,3,4,16-tetrahydro-
1H-benzo[a]chromeno[2,3-c]phenazin-1-one
16-(2,5-Dimethylphenyl)-3,3-dimethyl-2,3,4,16-
tetrahydro-1H-benzo[a]chromeno[2,3-c]phenazin-1-one
16-(Benzo[d][1, 3]dioxol-5-yl)-3,3-dimethyl-
2,3,4,16-tetrahydro-1H-benzo[a]chromeno[2,3-c]
phenazin-1-one
3,3-Dimethyl-16-(o-tolyl)-2,3,4,16-tetrahydro-1H-
benzo-[a]chromeno[2,3-c]phenazin-1-one
16-(3-Bromophenyl)-3,3-dimethyl-2,3,4,16-tetrahydro-
1H-benzo[a]chromeno[2,3-c]phenazin-1-one
16-(2-Bromophenyl)-3,3-dimethyl-2,3,4,16-tetrahydro-
1H-benzo[a]chromeno[2,3-c]phenazin-1-one
16-(3-Hydroxyphenyl)-3,3-dimethyl-2,3,4,16-
tetrahydro-1H-benzo[a]chromeno[2,3-]phenazin-1-one
16-(3-Methoxyphenyl)-3,3-dimethyl-2,3,4,16-
tetrahydro-1H-benzo[a]chromeno[2,3-]phenazin-1-one
4-(3,3-Dimethyl-1-oxo-2,3,4,16-tetrahydro-1H-
benzo-[a]chromeno[2,3-c]phenazin-16-yl)benzonitrile
16-(4-Fluorophenyl)-3,3-dimethyl-2,3,4,16-tetrahydro-
1H-benzo[a]chromeno[2,3-c]phenazin-1-one
16-(2-Methoxyphenyl)-3,3-dimethyl-2,3,4,16-
tetrahydro-1H-benzo[a]chromeno[2,3-]phenazin-1-one
16-(1H-Indol-3-yl)-3,3-dimethyl-2,3,4,16-tetrahydro-
1H-benzo[a]chromeno[2,3-c]phenazin-1-one
3,3-Dimethyl-16-(3,4,5-trimethoxyphenyl)-
2,3,4,16-tetrahydro-1H-benzo[a]chromeno[2,3-c]
phenazin-1-one
3,3-Dimethyl-16-(thiophen-2-yl)-2,3,4,16-tetrahydro-
1H-benzo[a]chromeno[2,3-c]phenazin-1-one
3,3-Dimethyl-16-(3-nitrophenyl)-2,3,4,16-tetrahydro-
1H-benzo[a]chromeno[2,3-c]phenazin-1-one
16-(3-Fluorophenyl)-3,3-dimethyl-2,3,4,16-tetrahydro-
1H-benzo[a]chromeno[2,3-c]phenazin-1-one
3,3-Dimethyl-16-(4-nitrophenyl)-2,3,4,16-tetrahydro-
1Hbenzo[a]chromeno[2,3-c]phenazin-1-one
16-(4-(Dimethylamino)phenyl)-3,3-dimethyl-2,3,4,16-
tetrahydro-1H-benzo[a]chromeno[2,3-c]phenazin-1-one
16-(4-Ethoxyphenyl)-2,3,4,16-tetrahydro-1H-
benzo[a]-chromeno[2,3-c]phenazin-1-one16-(4-
Isopropylphenyl)-2,3,4,16-tetrahydro-1H-benzo-[a]
chromeno[2,3-c]phenazin-1-one
16-(2-Chlorophenyl)-2,3,4,16-tetrahydro-1H-benzo[a]-
chromeno[2,3-c]phenazin-1-one
16-(2-Methoxyphenyl)-2,3,4,16-tetrahydro-1H-
benzo-[a]chromeno[2,3-c]phenazin-1-one
16-(3-Methoxyphenyl)-2,3,4,16-tetrahydro-1H-
benzo-[a]chromeno[2,3-c]phenazin-1-one
16-(3-Chlorophenyl)-2,3,4,16-tetrahydro-1H-benzo-[a]
chromeno[2,3-c]phenazin-1-one
16-(3-Fluorophenyl)-2,3,4,16-tetrahydro-1H-benzo-[a]
chromeno[2,3-c]phenazin-1-one

Synthesis by 
condensation 
reaction of benzo[a]
phenazine-5-ol

antioxidant and 
anticancer activities 
against HeLa and 
SK-BR-3 cell lines

[75]

Phenazine-1-carboxamide Isolated from 
Pseudomonas sp. strain 
PUP6

cytotoxic activity 
against lung 
(A549) and breast 
(MDA-MB-231) 
cancer cell lines

[85]
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Phenazines derivatives Obtaining Applications Reference

phenazine-1,6-dicarboxylic acid
phenazine-1-carboxylic acid

Produced by 
Lactococcus BSN307 
strain

antifungal activity 
against Aspergillus 

niger, Penicillium 

chrysogenum as well
as Fusarium 

oxysporum

cytotoxicity against 
cancer cell lines 
HeLa and MCF-7 
and normal H9c2 
cells

[86]

phenazine-1-carboxamide Isolated from the 
bacterium Pantoea 

agglomerans naturally 
present in soil

cytotoxicity on the 
cancer cell lines 
A549, HeLa, and 
SW480

[87]

Pyrano[3,2-a]phenazine derivatives:
3-amino-10-((1-aryl-1H-1,2,3-triazol-5-yl)
methyl)-20-oxospiro[benzo[a] pyrano[2,3-]
phenazine-1,30-indoline]-2-carbonitrile

Synthesized 
from 2-amino-3-
hydroxyphenazine

cytotoxicity against 
HCT116, MCF7, 
HepG2 and A549 
cancer cell lines in 

vitro

[76]

Riminophenazine Synthesized from 
clofazimine and 
TMP-phenazines

in vitro 
antiplasmodial, 
cytotoxic, and 
oxidative activities 
against HeLa cells

[88]

N-((tert-Butyldimethylsilyl)
oxy)-9-chlorophenazine-1- carboxamide
9-Chloro-N-hydroxyphenazine-1-carboxamide
9-Chlorophenazine-1-carboxamide
9-Chloro-N-cyanophenazine-1-carboxamide
9-Chloro-N-(1H-tetrazol-5-yl)
phenazine-1-carboxamide
9-Chlorophenazine-1-carbonitrile
2-((2,5-Dichlorophenyl)amino)-3-nitrobenzoic acid
6,9-Dichlorophenazine-1-carboxylic acid
Methyl 6,9-dichlorophenazine-1-carboxylate
6,9-Dichlorophenazine-1-carboxamide
6,9-Dichloro-N-(methylsulfonyl)
phenazine-1-carboxamide
9-Bromo-6-methoxyphenazine-1-carboxylic acid
7-Bromo-9-methoxyphenazine-1-carboxylic acid
6,9-Dimethoxyphenazine-1-carboxylic acid
9-Bromo-6-methoxy-N-(methylsulfonyl)
phenazine-1-carboxamide
9-Bromo-N-cyano-6-methoxyphenazine-1-carboxamide
Methyl 7-bromo-9-methoxyphenazine-1-carboxylate
9-Bromo-7-methoxyphenazine-1-carboxylic acid (25) 
and
7-methoxyphenazine-1-carboxylic acid
Methyl 9-bromo-7-methoxyphenazine-1-carboxylate
Methyl 7-methoxyphenazine-1-carboxylate
N-(Methylsulfonyl)phenazine-1-carboxamide
N-Methyl-N-(methylsulfonyl)
phenazine-1-carboxamide
N-Cyano-9-fluorophenazine-1-carboxamide
9-Fluoro-N-(methylsulfonyl)
phenazine-1-carboxamide
9-Methyl-N-(methylsulfonyl)phenazine-1-carboxamide
Methyl 9-methoxyphenazine-1-carboxylate
9-Chloro-N-methyl-N-(methylsulfonyl)
phenazine-1-carboxamide

Chloro-substituted 
phenazines containing 
acid bioisosteres

in vitro antimicrobial 
activity against 
Gram-positive 
(methicillin-resistant 
Staphylococcus aureus, 
MRSA) and Gram-
negative (Escherichia 

coli) bacteria

[89]
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Udumula et al. [93] described the synthesis and biological evaluation of two phen-
azines natural products and a series of phenazines that show promising activities against 
methicillin-resistant Staphylococcus aureus associated with the CA-MRSA community 
with low minimum inhibitory concentration (MIC) values in the micromolar range [93]. 
The most active compound also showed good IC50 values against Human Keratinocyte 
Cell (HaCat) [93]. In work proposed by Krishnaiah et al. [89], the authors synthesized a 
series of phenazines, and the in vitro antimicrobial activity was evaluated against Gram-
positive bacteria (methicillin-resistant Staphylococcus aureus, MRSA) and Gram-negative 
bacteria (Escherichia coli) [89]. These studies have indicated that the molecules do not 
disrupt bacterial membranes, and activity is not directly linked to the reactive oxygen 
species generation [89]. Therefore, despite a large number of studies on this compound 
class, this review highlights the great photodynamic potential of compounds of this class 
that can be used in the control of microorganisms and cancer treatment [94].

Neutral Red (NR) cationic dyes have great potential as photosensitizers. The exciting 
characteristic of NR as a PS is its water solubility compared with the majority of pho-
tosensitive and absorption bands located in the range of 550–700 nm [22]. Concerning 
with few phenazines studies as photodrugs explored in the literature (Table 2), for 
instance, the NR phenazines compound, when incorporated into Gold Nanoparticles, 
contributed to the in vitro tumor cell lines reduction [22], or when in aqueous medium 
significantly reduced in vitro S. aureus colonies in photoinactivation assays [98, 103].

Phenosafranin (PhS), another phenazines class compound, has the potential for use 
as a PS in PDT. It is well known that PhS absorbs strongly at 503–530 nm. Additionally, 
this dye presents a good photodynamic effect, namely low toxicity in the dark and higher 
toxicity under optical excitation [23]. PhS was incorporated into single-wall carbon 
nanotubes and showed satisfactory photodynamic effects against the BHK-21 cell line 
[42]. Furthermore, when encapsulated in liposomes (DMPC), PhS exhibited excellent in 
vitro activity against Human Cervical Carcinoma (HeLa) [23]. Another application for 
PhS found in the literature is in vitro photodynamic inactivation of S. aureus and E. coli. 
The bacterial cells were eradicated by ROS produced upon irradiation [102].

Sf, phenazine compound can also be used as a sensitizer in electron transfer reac-
tions in a homogeneous medium [104–106], semiconductors [106], polymeric medium 
[104] and as probes in the reverse micellar system [107, 108] due to its absorbs band 
in 500–550 nm [56, 109]. In addition, the antimicrobial photodynamic ability of Sf is 
exploited for the inactivation of microorganisms, such as Staphylococcus aureus and 
Escherichia coli [24, 43], Shigella flexneri, Bacillus subtilis [24], periodontopathogenic 
bacteria (biofilms in periodontal treatment) [97], and mitochondrial oxidation [95].

Among the compounds of this class, the most cited for PDT applications is Sf, 
which presents some photophysical studies with properties already defined. Sf has 
properties that allow its use as a PS in PDT, such as considerable singlet oxygen 
quantum yield (ΦΔ

1O2) [33], an amphiphilic character that confers more significant 
interaction with biological substrates, does not present toxicity to healthy cells and 
generates reactive oxygen species (ROS), which inactivate microorganisms [101]. 

Phenazines derivatives Obtaining Applications Reference

phenazine analogue (CPUL1) Synthesized 
from 2-amino-3-
hydroxyphenazine

antitumor activities 
in initial stage of Hep 
G2 cells

[90]

Table 1. 
Studies of phenazines derivatives compounds.
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Although Sf presents several favorable properties to be applied in PDT, it has been 
poorly explored for this purpose. For example, spectroscopic studies on the interac-
tion of Sf in liposomes L-egg lecithin phosphatidylcholine (PC) showed interaction. 
Still, the photodynamic effects of this formulation were not explored [57].

Sf incorporated into a silica matrix as a heterogeneous delivery system indicated 
that Sf has the potential for oxidation with singlet oxygen production [110]. Recent 
studies report Sf is incorporated into copolymer micelles [101]. This formulation 
ensured the Sf monomerization and preserved its physicochemical and photodynamic 
properties [33]. The use of triblock copolymers in the Sf incorporation guaranteed 
better results in PDT applications when compared to aqueous solutions [33].

Some authors evaluated the bactericidal effect of a serum combined with the 
action of Sf [24]. The authors did not use carrier systems, considering only the impli-
cations observed for the PS, not taking into account the self-aggregation processes 
characteristic of a PS in an aqueous medium. The photoefficacy of Sf in aqueous 
media was evaluated as an acaricide against female Hyalomma dromedarii ticks using 
in vitro immersion bioassays [99].

Similarly, Sasnauskiene et al. [95] evaluated the stimulated production of ROS by 
Sf in the inner space of mitochondria. The authors do not consider the self-aggregat-
ing effects resulting from the gradual release of PS in an aqueous medium [95].

Li et al. [96] explored the damage of bovine serum albumin (BSA) caused by Sf 
under ultrasonic irradiation [96]. The authors used Sf in an aqueous medium, a condi-
tion in which Sf tends to form self-aggregates that drastically reduce the 1O2 formation. 
Therefore, we propose the use of low-cost biocarrier systems, Pluronic® class. This tri-
block copolymer was used to solubilize Sf and maintain its photophysical properties [33]. 
Such attributes favored the prevention and treatment of mastitis via PDT [33, 100, 101].

Table 2 presents some photochemotherapeutic antimicrobial studies of phen-
azines found in the literature.

Compound Delivery system Application Illumination 

condition

Effect Reference

Sf Aqueous solution
(1 mMdm−3)

Bactericidal 
effect of serum 
combined with 
the action of PS

White non 
mutagenic light 
(5Wcm−2)/90 min

The strains are 
sensitive to the 
photodynamic 
action

[24]

Sf Aqueous solution
(in PBS 
0.7 μg mL−1)

Stimulated 
production 
of ROS in the 
inner space of 
mitochondria

LED at 
λ = 509 ± 5 nm (29 
Wm−2)/0.5–15 min

Damage induced 
apoptosis

[95]

PhS Single-wall 
carbon 
nanotubes 
modified

BHK-21 cell line 
(from mouse 
fibroblasts)

Visible light 
irradiation (Hg 
lamp)

Low toxicity in the 
dark and higher 
toxicity in the 
presence of light

[42]

Sf Bovine Serum 
Albumin pH 7.4 
(in Tris–HCl-
NaOH buffer 
solution)

Study of the 
damage caused 
by ROS in 
bovine serum 
albumin

Controllable 
Serial-Ultrasonic 
apparatus 
(frequency 59 kHz 
and power 50 W

Damage of Bovine 
Serum Albumin 
under ultrasonic 
irradiation in the 
presence of Sf.

[96]

Sf Aqueous solution 
(PBS containing 
7% ethanol)

Oral-pathogenic 
species (Gram-
positive and 
Gram-negative)

Laser Light 
(20 J cm−2)

Significant 
antibacterial impact 
on different oral 
pathogenic species

[97]
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Compound Delivery system Application Illumination 

condition

Effect Reference

Sf Gold 
nanoparticles 
incorporated 
into a copolymer 
emulsion

Staphylococcus 
aureus and 
Escherichia coli,

28 W white light 
source

The bacterial count 
reduced (>4 ± 0.3 
log kill)

[43]

NR Monob 
rominated NR

Aqueous solution
(in PBS pH 7.4)

Staphylococcus 
aureus

Light dose 
7.6–30.2 J cm−2

Photoantimicrobial 
effect (>3 log10) 
killing

[98]

Sf Aqueous solution Hyalomma 
dromedarii

Spot white-light 
source (power 
100 W)

Reduction of 
ovipositing, eggs 
per female, tickets 
laying viable eggs 
and hatched eggs

[99]

NR Gold 
Nanoparticles 
and Sodium 
thioglycolate

NIH-3 T3 
fibroblast 
(noncancerous) 
and 4 T1 tumor 
cell lines

Twin Flex Laser 
LED MM optics 
λ = 440 nm; 
220 mW

Reduction of cell 
viability

[22]

PhS-
Chlorambucil 
conjugate

Encapsulated 
liposomes 
(DMPC)

HeLa (human, 
cervical 
carcinoma)

Excellent cell 
contrast facilitating 
its use as a 
theranostic anti-
cancer drug

[23]

Sf Pluronic® F127 

and P123 4% 

(w/V)

In vitro: 

Staphylococcus 

aureus, Escherichia 

coli, Streptococcus 

agalactiae, 

Corynebacterium 

bovis

In vivo: prevent 

mastitis in Dutch 

dairy cows.

In vitro studies: 

Green LED 

λ = 520 nm 

(7.2 mW cm−2)

In vivo studies: 

Green LED 

λ = 520 nm 

(12.7 mW cm−2)

In vitro studies of 

the Sf-F127 and 

Sf-P123 systems 

proved to be efficient 

in inactivating the 

bacteria that cause 

bovine mastitis. In 

vivo studies prevent 

bovine mastitis

[33]

NR Mono 

brominated NR

Aqueous solution

(in PBS pH 7.4)

Staphylococcus 

aureus

Parathom lamp 

(OSRAM-5 W) 

8.4 mW cm−2 

(15–30 min)

2–3 log of killing [98]

Sf Stimuli-responsive 

hydrogel by F127 

Pluronic® and 

Carbopol (C934P)

Mastitis 

treatment

In vitro studies: 

Green LED 

λ = 520 nm 

(7.2 mW cm−2)

In vivo studies: 

Green LED λ = 520 

(12.7 mW cm−2)

In vitro: efficiency in 

the inactivation of 

pathogens that cause 

mastitis. In vivo: Sf 

is highly efficient for 

mastitis treatment.

[100]

Sf Pluronic® F127 4% 

(w/V)

In vitro: 

Staphylococcus 

aureus, 

Escherichia coli

Green LED λ = 520

(7.2 mWcm−2)

The bacteria were 

sensitive to the 

photodynamic 

action of Sf

[101]

PhS polyhedral 

oligomeric 

silsesquioxane

Aqueous solution 

(in PBS pH 7.4)

Staphylococcus 

aureus and 

Escherichia coli

LED-based light 

source λ = 522 nm 

(10.6 mW cm−2)

Bacterial cells were 

eradicated by ROS 

produced upon 

irradiation

[102]

Table 2. 
Studies of phenazine class compounds in photodynamic applications.
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Table 2 shows a few amounts of work on this class of compounds and the way 
performed majority in vitro, which the scientific community can still better explore 
for applications in PDT. Combining the biocompatibility of the copolymer micelles 
and the non-toxicity of phenazines compounds, the continuity of pre-clinical studies 
for developing new photoactive-based phenazine formulations has been motivated 
for applications in different species of animals. These formulations can treat a wide 
range of diseases associated with different types of pathogenic microorganisms such 
as bacteria, fungi, viruses, and parasites. In this way, recent research has still been 
developed for the first time in vivo. It is in the submission phase of (unpublished) 
promising results concerning the prevention and treatment of mastitis. This review 
seeks to address the lack of literature on the approach of phenazines as a potential PS 
for PDT application. It is hoped that this work could offer some valuable information 
in developing new types of DDS systems.

7. Conclusion

Several products are used to control microorganisms and treat diseases like cancer; 
however, they present disadvantages such as cost and lack of effectiveness against 
resistant microorganisms. Photosensitization has recently gained attention benefit-
ing from the use of a wide range of PS associated with a light source. The oxygen 
species produced by photoexcitation of a PS attack cancer cells or microorganisms 
non-selectively. Phenazine compounds showed promising phototoxicity, and their 
applicability has still been poorly investigated in the prevention and treatment of 
diseases caused by microorganisms and diseases related to abnormal cell growth, such 
as cancer. Furthermore, incorporating PS into polymeric micelles produced efficient, 
biocompatible formulations with better stability than aqueous systems.
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Appendices and nomenclature

PDT  Photodynamic Therapy
aPDT  antimicrobial Photodynamic Therapy
PS  photosensitizing compounds
ROS  reactive oxygen species
3O2  molecular oxygen
1O2  singlet oxygen
O2

−  superoxide
H2O2  hydrogen peroxide
ΦΔ

1O2  singlet oxygen quantum yield
LDL  low-density proteins
FDA  Food and Drug Administration
DDS  drug delivery systems
IC  internal conversion
ISC  intersystem crossing
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