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Chapter

Fuzzy Photogrammetric Algorithm
for City Built Environment
Capturing into Urban Augmented
Reality Model
Igor Agbossou

Abstract

Cities are increasingly looking to become smarter and more resilient. Also, the use
of computer vision takes a considerable place in the panoply of techniques and algo-
rithms necessary for the 3D reconstruction of urban built environments. The models
thus obtained make it possible to feed the logic of decision support and urban services
thanks to the integration of augmented reality. This chapter describes and uses Fuzzy
Cognitive Maps (FCM) as computing framework of visual features matching in aug-
mented urban built environment modeling process. It is a combination of the
achievements of the theory of fuzzy subsets and photogrammetry according to an
algorithmic approach associated with the ARKit renderer. In this experimental
research work, part of which is published in this chapter, the study area was confined
to a portion of a housing estate and the data acquisition tools are in the domain of the
public. The aim is the deployment of the algorithmic process to capture urban envi-
ronments built in an augmented reality model and compute visual feature in
stereovision within FCM framework. The comparison of the results obtained with our
approach to two other well-known ones in the field, denotes the increased precision
gain with a scalability factor.

Keywords: fuzzy cognitive maps, fuzzy sets, photogrammetry, urban augmented
reality model, fuzzy stereovision matching constraints

1. Introduction

The use of advanced scientific computation methods and techniques is classic in
geography, land use and regional planning [1–8]. Indeed, the study and analysis of
geographical spaces such as cities for example, which themselves have acquired the
qualification of complex system [1, 2, 5, 9–14] are an illustration of this classic usage
[15–24]. Among these scientific computational approaches is also fuzzy inference
logic [21, 22, 25, 26]. As part of the research work reported in this chapter, we relied
on the scientific achievements of fuzzy inference systems [27–30] to integrate into our
methodological approach Fuzzy Cognitive Maps (FCM) [31–34] in the process of
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visual features matching computation. It’s applied through the collection of captured
photography of urban built environment to build an augmented urban reality model
[35–40].

Thereby, thematic analyzes of built urban environments require the acquisition of
3D urban landscape data, street furniture and several other real visual data. The data
to be processed are bi-dimensional (2D) images captured from the tri-dimensional
(3D) scene. The objects in 3D are generally composed of related parts that joined from
the whole object. In computer graphics, we usually use a specialized software, for
instance, Maya [41] or Blender [42, 43] to interactively create models or procedural
3D modeling [44–48] which creates a mathematical representation of a 3D object. It is
common to use a few photographs as references and textures to generate models using
a modeling tool. When it comes to 3D modeling and urban spaces [49–51], the more
systematic introduction of photographs as input to generate a photorealistic 3D model
of a built environment is called « Image-based Modeling” [52] and can generate
models for objects physically existing. More importantly, such a modeling process can
be automated, and therefore can be scaled up for applications [52]. More fundamen-
tally, how to recover the lost third dimension of objects from a collection of 2D images
is one of the main objectives of computer vision [53] and the technical challenge
resolved in this work. Fortunately, the relations in 3D are preserved in 2D [42, 44,
45, 47, 54]. Hence, we can exploit this fact by considering specific and basic elements
which are related to other elements in the 2D images. Those specific and basic ele-
ments are stereo correspondence features: epipolar [55], similarity [56], smoothness
[57], ordering [58] and uniqueness [59].

Indeed, the use of photogrammetry, which is a technique that consists of taking
measurements in a scene, using the parallax obtained between images acquired from
different points of view, proves to be an excellent approach for producing captures
that conform to the reality [53]. To better manage the parallax during the 3D recon-
struction, we combined fuzzy classification algorithm [8, 60, 61] to the photogram-
metric processing within the framework of the well-established soft computing
technique called Fuzzy Cognitive Map (FCM) [62–67]. Our Fuzzy Photogrammetric
Algorithm Kernel (FPAK) applied to 3D reconstruction from images precisely
becomes the meeting point of computer graphics and vision, with the finalized 3D
representation of urban built environment.

The rest of the chapter is organized as follows: Section 2 presents background of
FCM and its mathematical formalization we adopted [22]. Section 3 expose the core of
this chapter: materials and methods. Section 4 presents with the experimental results
obtained. The conclusion of the chapter puts lights on the future.

2. FCM background

Well-developed modeling methodology for complex systems that allow to describe
the behavior of a system in terms of concepts, Fuzzy Cognitive Maps (FCM) are
powerful tools for modeling dynamic systems that was introduced by Kosko [32, 68,
69]. The resulting model describes expert knowledge (semantic concepts and/or
computed values for example) of complex systems with high dimensions and a variety
of factors. The scientific community is expressing a growing interest about the theory
and application of FCMs in complex systems, and their validity and usefulness has
been proved in various fields [22, 62–67, 70, 71]. FCMs are fuzzy causality
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backpropagation approach of modeling which combine fuzzy logic, nonlinear com-
puting, semantic and neural networks.

2.1 Theoretical foundation of FCM

FCMs are fuzzy signed directed graphs with feedback. They are appropriate to
encode knowledge thanks to concepts organized and causally linked to each other
with weightings. Each concept is materialized by a network node. Different FCM
networks have been used as a decision modeling tool under different approaches
[63–67, 72]. FCMs are based on the theory of fuzzy logic and fuzzy subsets, thus
improving the ability of cognitive maps to present and model qualitatively and quan-
titatively dynamic nonlinear systems. So, FCM is a soft computing modeling tech-
nique used for dynamic causal knowledge acquisition and process reasoning. Under its
most general approach, each concept represents an entity, a state, a variable, or a
feature of the system. An FCM embeds the topology of a fuzzy signed direct graph and
a nonlinear neural networks feedback dynamic [26, 33, 61]. Concepts are equivalent to
neurons which state value is not binary but belongs to a fuzzy subset. The value wij of
the directed edge from causal concept Ci to concept Cj measures how much Ci causes
Cj. Value wij belongs the fuzzy causal interval [�1, +1], wij = 0 indicates no causality;
wij > 0 indicates causal increase, this means that Cj increases as Ci increases and vice
versa, Cj decreases as Ci decreases; wij < 0 indicates causal decrease or negative
causality. Cj decreases as Ci increases and Cj increases as Ci decreases.

Depending on the direction and size of this effect, and on the threshold levels of
the dependent concepts, the affected concepts may subsequently change their state as
well, thus activating further concepts within the network. Because FCMs allow feed-
back loops, newly activated concepts can influence concepts that have already been
activated before. As a result, the activation spreads in a nonlinear fashion through the
FCM net until the system reaches a stable limit cycle or fixed point.

2.2 FCM representation

To illustrate the description made above of FCMs, we will consider one, composed
of 5 concepts and 10 causality links in total as shown in Figure 1. Concepts variables
are represented by nodes, such as C1, C2, C3, C4 and C5.

In the relation C1 ➔ C2, C1 is said to impact C2. So, C1 is the causal variable,
whereas C2 is the effect variable, and the intensity of the causality is expressed by the
value of w12. Also, in the relation C2 ➔ C1, C2 is said to impact C1, and the intensity of
the causality is expressed by the value of w21. Each concept is characterized by a

Figure 1.
Simple fuzzy cognitive map model illustration.
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number Ai that results from its computed value through the transformation of the real
value of the hole system’s variables.

There are 3 possible types of causal relationships between concepts:

• wij > 0 which indicates positive causality between two concepts.

• wij < 0 which indicates negative causality between two concepts.

• wij = 0 which indicates the absence of causality between two concepts.

The value of wij indicates how strongly concept Ci influence concept Cj. The sign of
wij indicates whether the relationships between concept Ci and Cj is direct or inverse.
The direction of causality indicates whether concept Ci causes concept Cj or vice versa.
These parameters must be considered when a value is assigned to weight wij.

2.3 Mathematical formalization of FCM

The operation of FCMs is based on an inferential process whose dynamics can be
formalized mathematically. A FCM model acts as a network of threshold or continu-
ous concepts [64, 66, 68, 69]. At this level, they differ from a simple neural network
because they are based on extracting knowledge from experts [33, 64, 73] and do not
require a data input layer. The nonlinear structure of each concept is expressed during
the dynamics of the whole system through backpropagation [74, 75]. Then, the value
Ai

t + 1 for each concept Ci at each time step is calculated [22, 65, 74] by the following
general rule:

Atþ1
i ¼ f

k1
X

n

j¼1

j 6¼i

W jiA
t
j þ k2A

t
i

0

B

B

@

1

C

C

A

(1)

The k1 expresses the influence of the interconnected concepts in the configuration of
the new value of the concept Ai and k2 represents the proportion of the contribution of
the previous value of concept in the computation of the new value. This formulation
assumes that a concept links to itself with a weight wii ¼ k2. Namely, At

i and Atþ1
i are

respectively the values of concept Ci at times t respectively t + 1. wji is the weight of the
interconnection from concept Cj to concept Ci and f is a threshold function defined in
Eq. (2). The unipolar sigmoid function is the most used threshold function [57, 65, 67]
where λ > 0 determines the steepness of the continuous function f. For the purposes of
this research, the value of λ is fixed at unity, i.e. 1. The sigmoid function ensures that the
calculated value of each concept will belong to the interval [0,1].

f xð Þ ¼
1

1þ e�λx
(2)

3. Materials and methods

Physical based rendering 3D simulation of large-scale urban built environment
processes is one of greatest challenges of modern computing techniques in urban
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studies and regional planning [17, 39, 47, 50]. In fact, urban systems are naturally
complex by own [1–5, 14]. Simulation allows us to understand the reasons and effects
of events and situations in a real system. Moreover, it allows us to predict the results
of actions on future states of the system. The level of detail [15, 39, 45, 50] between
simulation results and real system behavior depends on the model used. More-precise
models with large data may reflect reality in a more-precise manner; however, the
complexity directly influences the time required to compute model changes.

3.1 Urban study area

The model created in this study covers a portion of a new housing estate under
construction in the town of Belfort in France. The area of the development project for
building individual houses has 25 plots of 600 to 900 m2. Figure 2 provides an
overview of the area called “Jardins du MONT”.

Indeed, it is a real estate program whose architecture of the houses is contempo-
rary, of high quality and of superior range located less than 10 minutes by car, bus, or
bike from the city center of Belfort. We are also less than 10 minutes’ walk from the
heart of the “Techn’Hom” business park (GE, Alstom...), one of the economic lungs of
the town, with an exceptional view of Belfort, its fortifications and the surroundings,
all integrated in a green, calm and privileged urban setting.

The general framework of our research work includes 3D spatial analysis, the
temporal evolution of new housing estates and the deployment of smart cities, with
scientific tools in artificial intelligence. Also, it seemed legitimate to us to take an
interest in this portion of the city under construction to experiment with our approach
which is the subject of this chapter: create an augmented reality scene model of the
built environment through the combination of photogrammetry [76–81] and fuzzy
modeling techniques.

3.2 Sensor for data acquisition

In addition to the question of costs, the spatial scale of the data to be collected as
well as the expected quality dictate the choice of tools to be preferred. There are

Figure 2.
Urban study area “Jardins du MONT”, Belfort (France).
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several tools for Geodata collection [38, 49]: Total Stations, Global Navigation Satellite
System (GNSS) receivers, Light Detection and Ranging (LiDAR) scanner, Static Ter-
restrial Laser Scanning (STLS), Airborne Laser Scanning (ALS), Helicopter Laser
Scanning (HLS), Mobile Laser Scanning (MLS), Drone, Tablets and Smartphones. As
part of this experimental study, we use portable and mobile sensor which
smartphones are equipped with. And for good reason, the sensors of these modern
devices perfectly meet the requirements relating to the acquisition of data for photo-
grammetry [82]. Range (or depth) data is crucial for understanding and working with
the 3D scene projected onto a 2D plane forming an image. There are multiple ways to
obtain such information [83–87], either using a depth sensor or estimating depth. A
depth sensor is a device that provides the distance from the sensor to an element in the
scene, although it is possible to collect distance information using two or more RGB
cameras from a scene.

Due to its following features: wide color capture for photos and live photos, lens
correction, retina flash, auto image stabilization, burst mode, etc. we used the iPhone
13 Pro Max as a sensor for acquiring images to feed the model. Figure 3 illustrates it.

3.3 Data collection principles and quality requirements

When capturing images for augmented reality, we use a large part of the image
sensor. To be more precise, it’s an area of 3840 � 2880 pixels on the iPhone 13 Pro.
Then, we use a process called binning [88, 89]. It works as follows: Binning takes a
region of 2�2 pixels, averages the pixel values, and writes back a single pixel. This has
two significant advantages. First, image dimensions are reduced by a factor of two, in
this case, it downscales to 1920 � 1440 pixels. As a result of this, each frame consumes
way less memory and processing power. This allows the device to run the camera at up
to 60 frames per second and frees up resources for rendering. Secondly, this process
offers an advantage in low light environments, where the averaging of pixel values
reduces the effects of sensor noise.

Images captured by a camera are geometrically warped by small imperfections in
the lens. To project from the 2D image plane back into the 3D world, the images must
be distortion corrected, or made rectilinear. Lens distortion is modeled using a one-
dimensional lookup table of 32-bit float values evenly distributed along a radius from
the center of the distortion to a corner, with each value representing a magnification
of the radius. This model assumes symmetrical lens distortion [88].

Capturing scenes with iPhone is a computer vision technology that one can lever-
age to easily turn images of real-world objects into detailed 3D models. We begin by

Figure 3.
iPhone 13 pro max used as sensor for data acquisition.
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taking photos of the urban built environment from various angles with an iPhone. To
photograph all the area with the ability to match landmarks between images we must
move the camera around, taking photographs from different angles at different
heights.

To ensure landmarks matching between overlapping photographs, camera settings
must be consistent as possible from shot to shot. Figure 5 illustrates a sample of
captured data. The reading direction of the photos is indicated there: start-end.

The number of pictures need to create an accurate 3D representation varies
depending on the quality of the pairs of photographs making up the sequences in the
collection, the complexity and size of the built environment. In addition, adjacent
shots must have substantial overlap. So, we position sequential images, so they have a
70% overlap or more (0.7 ≤ overlap ≤0.9) as illustrated in Figure 4. Anything less
than 50% overlap between neighboring shots, and the 3D reconstruction process may
fail or result in a low-quality augmented reality model [15, 52]. Doing an aperture
setting narrow enough to maintain a crisp focus is recommended [53, 58]. The spatial
precision between the pairs of images and the chromatic density of the textures are a
guarantee of the quality of the images collected for the 3D reconstruction of built
urban environments. Accordingly, key factors ensuring good quality of input data
[15, 52, 53, 58, 90] are summarized in Table 1.

Our photographic database is made up of 800 photos taken in compliance with the
overlap constraints to feed the model. The entire collection is organized into 799
image pairs. A first step consists in sorting the truly calibrated image pairs according
to the constrained constraints of the stereovision image matching.

3.4 Image matching in stereovision within FCM framework

The image matching in stereovision [89, 91–94] is the process of identifying the
corresponding points in two images that are cast by the same physical point in the tri-
dimensional space. This can be carried out pixel by pixel or identifying significant
features in the images, such as edges, regions or interest points.

Hence, the stereo correspondence problem can be defined in terms of finding pairs
of true matches, namely, pairs of edge segments in two images that are generated by

Figure 4.
Ideal overlap to respect when capturing built environment.
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the same physical edge segment in space. These true matches generally satisfy some
constraints:

1.epipolar, given two segments one in the left image and a second in the right one,
if we slide one of them along a horizontal direction, i.e. parallel to the epipolar
line, they would intersect (overlap) (Figure 4);

Figure 5.
Sample of captured urban built environment dataset

Factor Description Fuzzy threshold value

Range or depth Distance between camera and scene Low

Sensor quality The resolution of de sensor High

Overlap Superposition rate between two consecutive photographs 0.7 ≤ overlap ≤0.9

Image texture Texture and texture variance High

Table 1.
Key factors affecting photogrammetric input images quality.
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2.similarity, matched edge segments have similar properties or attributes;

3.smoothness, disparity values in a given neighborhood change smoothly, except at
a few depth discontinuities;

4.ordering, the relative position among two edge-segments in the left image is
preserved in the right one for the corresponding matches;

5.uniqueness, each edge-segment in one image should be matched to a unique
edge-segment in the other image.

A large parallax factor value causes the background to move more slowly com-
pared to the foreground. A small value makes the foreground and background move at
a similar pace. The parallax effect becomes more apparent as the value of parallax
factor increases.

According to FCM framework, causal concepts and their activation levels, the
system receives as inputs a pair of stereo images left, Il and right Ir. This pair is
processed to extract edge segments and their attributes; each pair of extracted features
vectors (!

Il
,!

Ir
Þ is to be matched, the vectors!

Il
and!

Ir
come from Il and Ir respec-

tively. For each pair (!
Il
,!

Ir
Þ the attribute difference vector!

x
is computed. In this

approach, a pair of edge attributes (!
Il
,!

Ir
Þ defines a causal fuzzy concept Ci,. The

Eq. (1) is applied and the initial activation level at the iteration t = 0 is derived from
!
x
as follows in Eq. (3):

A0
i ¼

1
1þ k!

x
k

(3)

where k!
x
k is defined as the Euclidean norm. This implies the application of the

similarity Gestalt’s principle. Hence, our FCM structure is built with as many concepts
as pairs of edge attributes, from Li and Lr, are available. The algorithm is synthesized
as follows in Table 2.

The correspondence results within the pairs for each of the characteristics are
recorded in Table 3 in number of pairs according to the number of iterations:

It is noted that from iteration n°20 the results remain stable. To test the consolida-
tion of these, we have pushed the number of iterations to 35 without any disruption of
stability.

In view of these results of this correspondence calculation phase, only the 744 pairs
of photographs respecting the five constraints (epipolar, similarity, smoothness
ordering and uniqueness) have been selected to now feed the scene of the augmented
urban reality model.

4. Experimental results

We present in this section, the first significant results of the construction of an
Urban Augmented Reality (UAR) scene model resulting from the combination of
photogrammetry and fuzzy modeling techniques for future analyses. In our
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incremental validation process, we rely on two major works [64, 87, 93, 95] to assess
the performance of our method and its robustness for large-scale deployment.

4.1 The urban augmented reality model scene

Based on the 744 image pairs, the total number of photographs therefore amounts
to 745. The prodigiously increased computing capacities of mobile devices open
opportunities for augmented reality applications. The FPAK we developed a enables
the conversion of urban built environment photos into Urban Augmented Reality
(UAR) model as illustrated with Figure 6. To achieve AUR, we use the kernel in
conjunction with Apple ARKit [96] and RealityKit [97] frameworks. The use of
RealityKit framework let implement high-performance 3D simulation and rendering.
It leverages information provided by the ARKit framework to seamlessly integrate
virtual urban built environment into the real world. In turn, the kernel mainly focuses
on considering the imprecision of blind spots inherent in the overlapping of shots
during the acquisition of photographs to be used as raw materials for the work of

Number of iterations Epipolar Similarity Smoothness Ordering Uniqueness

10 788 791 685 778 746

15 790 792 734 783 767

20 791 796 744 785 779

25 791 796 744 785 779

30+ 791 796 744 785 779

Table 3.
Image matching in stereovision within FCM framework results.

1. Initialization Load each concept with its activation level At¼0
i through the Eq. (3);

Set:

δ = 0.05, the minimum value of change in classification approach

tmax = 50, maximum of iterations

α = 0.9, which is the limit indicator of concepts looping in the q network.

nc: integer, the number of concepts from a total of q representing pairs of edge

attributes that change their activation level at each iteration. The activation

mechanism is that defined in Eq. (1)

2. FCM process t = 0
while (t < tmax and nc/q < α) {

t t þ 1; nc 0
for (each concept Ci) {
update At

i according to Eq. (1)

if jAtþ1
i � At

i j> α
� �

f

nc ncþ 1
}

}
}

3. Output The activation levels At
i for all concepts updated.

Table 2.
Process of image matching in stereovision within FCM framework.

10

Advances in Fuzzy Logic Systems



implementing augmented reality scenes. In addition, it provides a flexible architecture
that fosters the development augmented reality applications about research in theo-
retical and quantitative geography like UAR.

4.2 Datasets and input quality analytics

The quality of data (accuracy, precision, and resolution) taken by sensors as
smartphones is determined by many factors related to both the capture technique and
the physical environment. Ideal physical conditions should favor diffused and homo-
geneous lighting and all protruding urban objects should have enough space around
them. In addition, when taking photos, special attention should be paid to the follow-
ing object/environment characteristics: sufficient texture detail and minimal reflective
surfaces.

To select from the entire set of photographic data, the images meeting these
criteria as well as those set out in Table 1, a valuation of the threshold values (high,
and low) based on a fuzzy set as shown in Figure 7.

To ensure the quality of the input data, the input image quality sorting process
consisted of sifting through the 1028 raw images captured for the entire study area.
Indeed, the 800 photos organized in 799 pairs to constitute the input database are the
result of the application of this cleaning process. Also, although variations in the
quality of photogrammetric data are attributable to factors beyond the control of the
operator, several steps can be taken to increase the likelihood that the data collected
will achieve the desired quality. The following three points of vigilance are in order: 1)
Consider the expected data collection conditions (e.g., weather, lighting), the quality
of the camera and the lens. 2) Using the target range and camera specifications,
calculate the desired spacing between successive frames to ensure adequate overlap.
The interval [0.7–0.9] is the optimum since the value of 0.7 already gives excellent
results. 3) After data collection, review and remove any poor quality/blurry images by
manual or automatic means.

Figure 6.
Experimental UAR model for 3D spatial analysis.

Figure 7.
Fuzzy set assigned to input image quality factor.
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4.3 Performance analytics and originality

To evaluate and measure the performance of our FPAK approach associated with
the ARKit rendering engine, the results obtained are compared with two other
approaches [64, 87, 93, 95] on the same basis of the five constraints referenced in
Table 2.

The first comparison model is the Deterministic Simulated Annealing (DSA)
metaheuristics optimization algorithm. In Pajares and Cruz [95], this strategy for
stereovision matching was exploited with satisfactory results. It is a comprehensive
approach belonging to the category of methods that incorporate explicit
smoothing assumptions and determine all disparities simultaneously by applying a
energy minimization process. The limits of this approach are felt when the input
database exceeds 82 pairs of stereo images and whose convergence is only reached
after 30 iterations [87].

The second comparison model is based on the so-called relaxation labeling
approach (RELB). This is a technique proposed by Rosenfeld et al. [98] to account for
uncertainty in sensory data interpretation systems and to find the best matches. It uses
contextual information as an aid to the classification of a set of interrelated objects by
allowing interactions between possible classifications of related objects. In the
stereovision paradigm, the problem is to assign unique labels (or matches) to a set of
features in an image from a given list of possible matches.

The objective is to assign to each feature (edge segment) a value
corresponding to the disparity in a way consistent with certain predefined
constraints according to probabilities assigned to the five constraints in the studies
[64, 93]. Here, the maximum number of input image pairs is increased to 90 for
convergence from the 35th iteration. The results of performance comparison are
synthetized in Table 4.

Although pioneering works [64, 87, 93, 95] have paved the way for the fuzzy
modeling of the constraints inherent in image matching in stereovision applications,
the originality of our work is assessed at three distinct levels. First, our method fits
perfectly with a professional rendering engine such as ARKit. Second, the five con-
straints are modeled as concepts within the framework of FCMs. And third, the
calculations did not require additional models as in the case of the DSA or RELB based
approach. In doing so, the entire modeling chain constituted a fuzzy inference system.

5. Conclusion and future directions

Computer-vision-based API (Application Programming Interface) such as ARKit
enable landscape and urban physical feature capture on mobile devices like iPhone
with a physically based rendering. They open new possibilities for applications, such
as Virtual Geographic Environment (VGE) modeling for 3D spatial analysis. In this
chapter, we explored one process of capturing urban built environment into an Urban
Augmented Reality Model (UARM) and urban layouts according to the well-
established soft computing framework Fuzzy Cognitive Map (FCM). It’s a novel
application of FCM which let us verify the performance and the robustness of our
approach as compared to other existing methods.

Moreover, visualization of the urban development plan using UAR model gives
one of the best augmented spatial models for urban planning simulation and 3D spatial
analysis. In fact, the paradigm of augmented reality simplifies the process of project
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Algorithm Stereovision matching constraints for UAR modeling

Epipolar Similarity Smoothness Ordering Uniqueness Maxi pairs

of stereo

images

Iterations

need for

Convergence

FPAK Mapped as coefficients
aggregated in the causal
weight between concepts

Simple
difference
vector

Mapped as coefficients
aggregated in the causal
weight between concepts

Mapped as coefficients
aggregated in the causal
weight between concepts

Applied by selecting
the highest causal
concept values

799+ 20

DSA Mapped as an energy
minimized by Simulated

Annealing

Support
Vector

Machines

Mapped as an energy
minimized by Simulated

Annealing

Mapped as an energy
minimized by Simulated

Annealing

Applied by selecting
the highest state

value

82 30

RELB Mapped under the
overlapping concept

Bayes
probability
density

estimation

Probabilistic relaxation Probabilistic relaxation Applied by selecting
the highest
probabilities

90 35

Table 4.
Synoptic performance comparison of FPAK with DSA and RELB.
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planning, measurement computations, design updates, collection of on-site architec-
ture environment, safety training, etc.

Although UAR model uses multiple tools, it is the best visual aid to get
walkthroughs for analyzing the virtual urban development plans. There are specific
issues like high computational complexities, networking requirements and storage
complexities to be considered. However, in practice, the limitations regarding techni-
cal issues can be overcome (to possible extents) as a scope for future research. The
proposed method can further enhance the level of understanding of urban built
environment by incorporating cloud computing services. We could realize uploading
as well as synchronization of information contained in connected devices which feed
smart cities.

Thus, the Architecture, Engineering, Construction, and Facility Management
(AEC/FM) designs and construction site 3D visuals can be accessible, examinable, and
modifiable from any location, irrespective of the location.

Users from different locations can collaborate with each other by accessing these
cloud UARM services. The incorporation of cloud UARM for BIM’s (Building Infor-
mation Modeling) 3D visualization of construction layouts does elicit further investi-
gation.

The performance assessment is still in progress. So, for detecting a possible bias of
over- and underestimation of the five concepts of image matching due to ARKit, we
are investigating two metrics: Mean Absolute Error (MAE) and the non-parametric
Spearman’s Rank Correlation Coefficient (SRCC).
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