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Chapter

Non-myeloid Cell Phagocytosis
Ben A. Calvert and Amy L. Ryan

Abstract

As professional phagocytes, myeloid cells, including macrophages, dendritic 
cells, and neutrophils, are often the targets for investigation and analysis of 
phagocytosis. Phagocytosis, however, has also been observed in nonmyeloid cells, 
including epithelium, mesenchymal, and smooth muscle cells. Colloquially known 
as nonprofessional phagocytes, these nonmyeloid cells are capable of phagocytosis 
of pathogenic material and efferocytosis of apoptotic bodies. Cells, such as those 
found in the epithelium, are often the primary site for viral and bacterial infection 
and have evolved to possess strong anti-pathogenic machinery of their own. The 
processes by which nonmyeloid cells can engage in phagocytic functions have wide 
implications for tissue homeostasis and disease pathogenesis, including infection 
and colonization. This chapter will review the phagocytosis capabilities in these 
nonmyeloid cells.

Keywords: efferocytosis, epithelial cells, internalization, barrier, nonprofessional, 
opsonization, trigger phagocytosis, zipper phagocytosis

1. Introduction

As professional phagocytes, myeloid cells, including neutrophils, macrophages, 
monocytes, mast cells, and dendritic cells, are actively recruited to sites of tissue 
damage, infection, and inflammation playing a key role in host defense [1]. Of these, 
neutrophils and macrophages are perhaps the most widely studied in terms of their 
roles in phagocytosis [2–4]. However, there is increasing evidence that nonmyeloid 
cells, including epithelial [5, 6] endothelial [7–9], mesenchymal [7, 10–12], and 
smooth muscle cells [13–16], can also engage in phagocytosis, or phagocytic-like 
mechanisms when phagocytosis is not their principal function. Phagocytosis by 
nonprofessional phagocytes is often referred to as internalization or even can-
nibalism, especially in the case of efferocytosis of apoptotic neighboring cells [17]. 
Nonprofessional phagocytes were first distinguished from professional phagocytes 
as early as 1970 after Rabinovitch demonstrated particulate uptake in fibroblasts 
[18, 19], although reports had demonstrated particulate uptake in nonmyeloid cells 
almost 40 years prior [20]. Since this initial observation, many nonprofessional 
phagocytes have been identified to have the phagocytic capacity and the capacity to 
clear potentially dangerous pathogens [21]. Table 1 includes a summary of these cell 
types and the roles that they have been observed to play in phagocytosis. Compared 
to professional phagocytes, nonmyeloid cells engage in distinctively different 
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Nonmyeloid cell Cell subtype Phagocytosis Key findings Ref’

Epithelial Hu. respiratory Pathogen clearance P.aeruginosa internalization is independent of CFTR expression. [22]

Hu. bladder, lung, ileocecal Pathogen clearance Involvement of an N-glycosylated protein receptor required for 

internalization.

[23]

Hu. T84

monkey kidney

Pathogen clearance Ineffective phagolysosome maturation in epithelium. [24]

MDCK, Hu. 16HBE14o- Pathogen clearance via efferocytosis P.aeruginosa internalized via efferocytosis of apoptotic cells. [25]

Hu. A549 Pathogen clearance Containment of pathogen colonization by epithelium. [26]

Hu. A549 Pathogen clearance Less efficient than professional phagocytes. [27]

CHO cells Pathogen clearance Heparin/Heparan-dependent internalization of pathogen. [28]

Ms. mammary Efferocytosis Receptor mediated engulfment via PSR, CD36, vitronectin receptor 

alpha vbeta3, and CD91.

[29]

Hu. BEAS-2B

Ms. HBEC

Ms. MLE-12

Efferocytosis Uptake induces anti-inflammatory cytokine release via Rac1. [30]

Hu. Thymus Efferocytosis Uptake relies on PSR and SR-B1. [31]

Rt. bladder Efferocytosis Epithelial clearance of erythrocytes [32]

Hu. hepatic biliary Efferocytosis PSR-mediated clearance results in chemokine increase. [33]

Hu. A549 Efferocytosis Receptor-mediated recognition of apoptotic bodies. [34]

Rt. Kidney Efferocytosis KIM-1 recognition internalizes apoptotic bodies. [35]

CHO cells Efferocytosis LOX-1 recognition of apoptotic bodies. [36]

Ms. retinal pigment Efferocytosis Role of ABCF1 recognition in apoptotic bodies. [37]

Ms. HBEC Efferocytosis Efferocytosis by epithelium avoids IL-33-mediated inflammation. [38]

Hu. ARPE-19 Efferocytosis Increased efficiency over macrophages in apoptotic clearance. [39]

Ms. follicular Efferocytosis Clearance of apoptotic neighboring cells. [40]

Ms. colonic Efferocytosis Role for BAI-1 mediated uptake in controlling inflammation. [41]

Ms. retinal Phagocytosis (Photo receptor material) Gas6 & Protein S ligands for TAM-mediated phagocytosis. [42]
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Nonmyeloid cell Cell subtype Phagocytosis Key findings Ref’

Endothelial Hu. vascular Pathogen clearance Rho kinase in endothelial cells bind listeria and internalization 

mediated by formins.

[43]

Ms. Hepatic sinusoidal Efferocytosis IL-1 enhanced scavenging of apoptotic bodies. [44]

Ms. Endothelium Efferocytosis SCARF1 mediated clearance of apoptotic bodies. [45]

Bovine Aortic Efferocytosis LOX-1 recognition of apoptotic bodies. [36]

Hu. umbilical vein Phagocytosis platelet clearance PS recognition on platelets-mediated phagocytosis. [46]

Ms. (brain) microvascular Phagocytosis myelin clearance IgG opsonization is required for endothelial cell clearance, inducing 

endothelial-mesenchymal transition.

[47]

Mesenchymal Hu. MRC5 cells Pathogen clearance Actin-dependent uptake. LAMP-1 mediated phagolysosome 

maturation.

[27]

Hamster embryonic 

fibroblasts

Pathogen clearance

Efferocytosis

ConA-dependent zipper phagocytosis. [48]

Ms. ESCs Efferocytosis Inefficient (relative to macrophages) but effective clearance of 

apoptotic bodies.

[11]

Hu. BM-MSCs Efferocytosis Observation of mesenchymal stem cell efferocytosis enhancing 

inflammation.

[10]

Smooth muscle Hu. vascular Efferocytosis PS-PSR mediated phagocytosis. [16]

Pigeon vascular Phagocytosis (cholesterol) First identification of smooth muscle cell-derived foam cells. [49]

Ms. aortic Phagocytosis (cholesterol) Smooth muscle cells differentiate to a macrophage phenotype after 

cholesterol loading.

[50]

Hepatic Hu. primary Stellate cells

Hu. Hep G2 cells

Efferocytosis Apoptotic clearance causes fibrogenic response. [51]

Rt. hepatocytes Phagocytosis (lecithin-coated 

particles)

Exogenous substance uptake by hepatocytes. [52]
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Nonmyeloid cell Cell subtype Phagocytosis Key findings Ref’

Other Rt. Sertoli cells Efferocytosis PS mediated clearance. [53]

Hu. Mesangial Kidney Efferocytosis CD36 independent clearance of apoptotic bodies. [54]

Ms. neuronal progenitor Efferocytosis Identifies neuronal precursors as nonprofessional phagocyte. [55]

Rt. chondrocytes Phagocytosis (cartilage fragments) CD163+ chondrocytes have phagocytic role in arthritis. [56]

Hu.: Human, CFTR: Cystic Fibrosis Transmembrane Conductance Regulator, Ms.: Mouse, PSR: Phosphatidylserine Receptor, CD: Cluster of Differentiation, HBEC: Human Bronchial Epithelial 
Cells, Rac1: Ras-related C3 botulinum toxin substrate 1, SR-B1: The scavenger receptor, class B type 1, Rt.: Rat, KIM-1: Kidney Injury Molecule-1, LOX-1: lectin-like oxLDL [oxidized low-
density lipoprotein] receptor 1, ABCF1: ATP-binding cassette sub-family F member 1, IL: Interleukin, BAI-1: Brain-specific angiogenesis inhibitor, Gas6: Growth arrest-specific 6, SCARF1: 
Scavenger receptor class F member 1, IgG: Immunoglobulin G, LAMP-1: Lysosomal-associated membrane protein 1, PS: Phosphatidylserine, ESCs: Embryonic Stem Cells, BM-MSCs: Bone Marrow 
Mesenchymal Stem Cells.

Table 1. 
Key studies in nonmyeloid cell phagocytosis.
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mechanisms to recognize, engulf, and destroy pathogens through phagocytosis. 
Nonprofessional phagocytes are demonstrably less efficient and lack factors such as 
Pattern Recognition Receptors (PRRs) capable of recognizing Pathogen Associated 
Molecular Patterns (PAMPs), as well as reactive oxygen species (ROS) and degrada-
tion enzymes required for effective clearance and degradation [19]. Nonmyeloid 
cells, however, provide a significant contribution toward the clearance of exogenous 
pathogens, cellular debris, and apoptotic bodies via phagocytosis, and what they 
lack in efficiency, can make up for in cell number [5, 57]. This chapter will focus on 
the specific functions of nonprofessional phagocytes, highlighting their differences 
from professional phagocytes and their specific and important contribution to tissue 
homeostasis.

2. Pathogen-induced phagocytosis

The active role of the host cell in the process of pathogen internalization,  involving 
cytoskeletal rearrangements after pathogen recognition, ultimately distinguishes 
nonprofessional phagocytosis from infection [7, 19, 57]. There may be a few excep-
tions to this rule, such as Rotaviruses, known to gain infectious entry into the cell 
using the zipper mechanism, described below [58]. Internalization of the pathogen 
is, however, only the initial stage in the bigger mechanism of phagocytosis. The 
pathogen-containing internalized vesicle, otherwise known as the early phagosome, 
requires subsequent fusion with lysosomes in order to achieve pathogen killing [59]. 
The early phagosome matures by fusion with internal endocytic vesicles [59], recruit-
ing factors, such as Rab5 [60], a small GTPase important for the maturation of the 
phagosome, and early endosome antigen 1 (EEA1) [61]. Rab5 remains transiently 
expressed in the early phagosome, directing the fusion of early endosomes [62, 63]. 
The schematic in Figure 1 depicts the process of endosome formation, maturation, 
and role of Rab proteins in phagocytosis. Rab5 has been extensively studied and 
understood in myeloid cells during professional phagocytosis and has also been 
shown to be constitutively expressed in nonmyeloid cells, including epithelial cells 
[64–66], fibroblasts [66], and smooth muscle cells [67], controlling the phagocytic 
processes. Rab5 is considered a master regulator of early endosome formation and 
trafficking to the early phagosome. Rab5 expressing early phagosomes initiates the 
process of pathogen killing or apoptotic recycling by creating a mildly acidic micro-
environment (pH 6.1) within the phagosome and engaging in relatively low levels 
of hydrolysis [68]. Rab conversion is a term used to convey phagosome maturation 
beyond the early phagosome. Maturation involves the recruitment of Rab7, function-
ally replacing Rab5 in the phagosome [69]. Rab7, like Rab5, is a member of the GTPase 
family that manages the maturation of phagosomes and recruits other factors, such 
as the RAB7 interacting lysosomal protein (RILP), necessary for later phagosome 
fusion with lysosomes [70]. Formation of a late-stage phagosome also requires the 
recruitment of Lysosomal-Associated Membrane Process-1(LAMP-1), necessary for 
lysosomal fusion [27, 71] Rab7 functionally interacts with RILP [70, 72], resulting in 
lysosomal fusion with the late-stage phagosome. Consequently, the phagolysosome 
structure is formed, creating a more acidic environment (pH 5.5) and generating 
a cocktail of degradation enzymes and ROS in effort to kill invading pathogens or 
break down apoptotic bodies [57]. While the process leading to the formation of the 
phagolysosome is similar, the recognition of the pathogen by nonmyeloid cells and 
internalization can occur through one of several known pathways. These pathways, 
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including efferocytosis, zipper phagocytosis, trigger phagocytosis, and opsonization, 

are discussed in more detail below. 

  2.1 Efferocytosis 

 Efferocytosis of apoptotic cells is the primary phagocytosis mechanism utilized by 
nonmyeloid cells. Recognition of apoptotic bodies is, therefore, critical for the clear-
ance of apoptotic cells, and tissues have evolved ligand-receptor-based recognition as 
part of the initial engagement ultimately triggering efferocytosis of the apoptotic cell 
[ 7 ,  73 ,  74 ]. The primary component of this mechanism is the recognition of phospha-
tidylserine expressed in apoptotic cells [ 75 ]. During early apoptosis, phosphatidyl-
serine molecules translocate to the cells’ surface, anchoring to the membrane, where 
they act as an “eat-me” signal to localized phagocytes, both professional and nonpro-
fessional [ 76 ]. Phosphatidylserine can be recognized by several receptors, including 
integrins αvβ3  and αvβ5  [ 9 ,  29 ,  34 ]. CD36 [ 29 ,  34 ], CD91 [ 29 ], and even bio-specific 
phosphatidylserine receptors [ 16 ,  77 ]. Other ligands have been proposed to induce 
receptor-mediated efferocytosis of apoptotic cells by neighboring nonprofessional 
phagocytes, including Apoptosis Inhibitor of Macrophage (AIM) recognition by 
Kidney Injury Molecule-1 (KIM-1) [ 78 ] and milk fat globule-epidermal growth factor 
8 (MFG-E8) by integrin αvβ3 [ 79 ].  

  Figure 1.
  Internalization models for pathogen-induced phagocytosis. For nonprofessional phagocytes, phagocytosis is induced 
by the pathogen. Two primary models are proposed: 1) trigger phagocytosis, caused when type 3 / type 4 secretion 
systems (T 3 SS/T 4 SS) cause cytoskeletal rearrangement, resulting in “ruffles” of the host cell membrane that 
engulfs and internalizes the pathogen and 2) zipper phagocytosis where the pathogen engages with a receptor 
complementary to ligands expressed on the pathogen. Following cytoskeletal rearrangement, further receptors 
engage with the pathogen in a “zipper” or “ratchet” like fashion, engulfing the pathogen into the phagosome. This 
figure was created with  BioRender.com .          
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2.2 “Zipper” phagocytosis

In the initial stages of nonmyeloid cell phagocytosis, one of the primary  processes 
is the “Zipper” mechanism [6, 80, 81]. The zipper mechanism was first coined in 1975 
by Griffin et. al to describe the phenomena of attachment of opsonized erythrocytes 
and macrophages [82, 83]. Essentially, the structure is opsonized by immunoglobulins 
and becomes engulfed by a sequential recognition by Fcγ receptors in a “zipper” like 
fashion [80, 81]. Since this initial observation, similar phagocytic mechanisms have 
been noted that do not require opsonin-Fcγ receptor-mediated recognition, includ-
ing mechanisms of phagocytosis by nonmyeloid cells. Instead, the pathogen engages 
with a component of the target cells’ external structure. Such structures are typically 
cell surface integrins, adhesins, or invasins [4, 6, 34, 84]. This interaction initiates 
microtubule and actin rearrangements within the host cell. Following engagement, a 
continuous and sequential binding of the host cells “target structures” to the corre-
sponding structures on the pathogen, leads to the complete engulfing and internaliza-
tion of the pathogen by the cell in a phagosome-like vesicle, similar to that observed 
with opsonized mediated phagocytosis (Figure 2, [7, 81]).

2.3 “Trigger” phagocytosis

In contrast to zipper phagocytosis, the “trigger mechanism” is a process where 
engagement of the pathogen with a pathogen recognition receptor is not a critical 
component of the process. Some engagement with cell surface ligands may occur to 
secure the pathogen to the cell [80]; however, the distinguishable difference in trigger 
phagocytosis is that the pathogen “injects” effectors into the host cell. The injected 
components known as type-III (T3SS) [85] and type-IV (T4SS) [86] secretion sys-
tems result in host cell cytoskeletal rearrangements localized to the site of pathogen 
contact. Rearrangement generates “ruffles” along the cell surface, which then fold 
over the pathogen and fuse, internalizing the pathogen (Figure 2) [80].

2.4 Antibody opsonization

Emerging data suggest a potential role for opsonin-mediated phagocytosis in 
nonmyeloid cells [87–93]. Classical membrane-bound Fcγ receptors, namely FcγRI, 
FcγRII, and FcγRIII, and their capacity to recognize immunoglobulins are more typi-
cally associated with myeloid cell-based professional phagocytosis [57]. A more poorly 
understood, and somewhat atypical, class of immunoglobulin receptor, known as the 
neonatal Fc receptor (FcRn), is expressed ubiquitously throughout multiple tissue 
types, including pulmonary epithelium [92], intestinal epithelium [87], microvascular 
endothelium [91], and the placenta [89]. It was initially thought that FcRn is expressed 
in fetal and neonatal tissues; however, it has since been demonstrated that expression 
is sustained throughout life [90]. The FcRn has a strong affinity for albumin [90] and 
IgG antibodies [88]. IgG-mediated phagocytosis via FcRn has been noted in myeloid 
cells [93], but evidence for phagocytosis in nonmyeloid cells via this receptor is lack-
ing. FcRn expression in nonmyeloid cells appears to be intracellular, thus lacking the 
capacity for extracellular surveillance [94]. Instead, it is thought that the primary func-
tion for FcRn is transcytosis of IgGs across endothelial and epithelial membranes, as 
opposed to opsonin-mediated phagocytosis. The fundamental machinery is, however, 
present in nonmyeloid tissues and models have even been proposed based on studies 
demonstrating IgG-mediated phagocytosis of extracellular myelin debris [7, 47].
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3. Epithelial cell phagocytosis

The primary function of epithelial cells is to form a barrier between the inter-
nal organs and the external environment. As such these tissues have evolved to be 
relatively efficient in anti-pathogenic mechanisms, including the secretion of anti-
microbial peptides, functional mucociliary clearance, and phagocytosis [6, 7]. The 
integumentary skin layer is perhaps the most obvious epithelial cell layer; however, 
the epithelium also lines internal organs and mucosal surface tissues, such as the 
respiratory tract, digestive system, genitourinary organs, and neuronal tissues, 
among others [95]. The physiological organization and structure of the epithelium 
can vary, even within the same organ system, for example, the pseudostratified epi-
thelium that lines the proximal airways progressively changes to a simple squamous 
epithelium that lines the alveolar airspace [96, 97]. Despite the multiple structural 
phenotypes, the primary function of any epithelium is to form a barrier, a protective 
layer of epithelial cells connected by tight junctions [98]. Tissue-resident myeloid 
cells, such as macrophages, are often labeled as the first line of defense when it comes 

Figure 2. 
Phagosome maturation. Phagosome maturation in nonmyeloid cells is like that of professional phagocytes, however 
less efficient. The phagocytosis process is outlined as; 1) internalization, resulting in the formation of the early 
phagosome, recruiting components such as Rab5 and EEA1. 2) Phagosome maturation, where Rab5 is replaced 
with Rab7 and factors such as RILP and LAMP 1 are recruited. 3) Lysosomal fusion, releasing factors such as 
degradation enzymes within the phagosome, which can result in pathogen killing and recycling of degraded 
products. This figure was created with BioRender.com.



9

Nonmyeloid Cell Phagocytosis
DOI: http://dx.doi.org/10.5772/intechopen.110583

to invading pathogens; however, it could be argued that epithelial cells provide that 
initial functional defense [6].

Efferocytosis appears to be a function of practically all tissues and cell types 
[7, 73]. Relative to professional phagocytes. The removal of damaged or dying cells 
can leave the barrier exposed and prone to further damage or infection. As such 
epithelial tissues have a remarkable capacity for repair to maintain barrier integrity 
and homeostasis [98]. It is well established that the primary mechanism to eliminate 
apoptotic epithelial cells is through extrusion into the external apical lumen [6, 99]; 
however, epithelial cells also engage in efferocytosis [7]. Efferocytosis is particularly 
important for subapical apoptotic bodies or if the epithelial lumen does not have a 
functional system for debris removal such as mucociliary clearance in the airways.

Apoptotic epithelia can express a wide array of “eat me” signals with the most 
common being phosphatidylserine [21, 29, 34]. Recognition of apoptotic cells by 
epithelia is somewhat less understood; however, uptake of apoptotic bodies and 
recognition by phosphatidylserine receptors on the epithelial cells are acknowledged 
to be an integral part of this process [34]. Some studies provide evidence that the 
process of efferocytosis observed in epithelia is distinct from that of professional 
phagocytes and even from other phagocytic processes [74]. Epithelial cells have a 
relatively strong expression of PRRs with innate capabilities of recognizing exog-
enous PAMPs [5, 6, 100, 101]. Activation of PRRs can induce strong inflammatory 
responses including cytokine release [102], however mucosal epithelial cells must 
maintain a bio-symbiotic relationship with natural bacterial flora and control the 
potential for excessive inflammatory stimulation [103]. To achieve this, many of 
the PRRs are either intracellular [103–106] to recognize pathogens in the process of 
infecting the epithelium or on the surface of a polarized epithelium restricted to the 
basolateral surface [101, 107] to detect pathogens that have breached the epithelial 
barrier. PRRs expressed on epithelial cells include the Toll-Like Receptors (TLRs), the 
C-type Lectin Receptors (CLRs), the NOD-like Receptors (NLRs), and the RIG-I-like 
receptors (RLRs) [6, 108, 109]. It has also been proposed that PRRs can also engage in 
zipper phagocytosis, as integral parts of internalizing pathogenic stimuli, in addition 
to internalization of the receptor itself to control excessive inflammatory responses 
[110–112]; however, it is unclear if this pathogen-induced internalization is consistent 
with zipper phagocytosis or even conserved in nonmyeloid cells, in principle it is a 
possibility. Often the overarching inflammatory response is studied in isolation from 
that of any possible phagocytosis response. However, it is important to recognize 
that there is significant overlap and control of one by the other. Indeed, it has been 
reported that signaling factors, such as Rac1, are necessary for phagocytosis and 
the subsequent control of anti-inflammatory cytokine release, key to inflammatory 
resolution [30]. Further insights into epithelial cell phagocytosis may well be found 
in the study of inflammatory cytokine biology.

A common place for epithelial phagocytosis study can be found in the retinal epi-
thelium of the eye [113]. Separated by the blood-retina barrier [114, 115], the retinal 
epithelium is able to maintain a certain level of immune privilege from circulating 
leukocytes [116]. Whilst there is evidence for resident and infiltrating myeloid cells 
in these tissues [117], it is primarily the retinal epithelium that maintains homeostasis 
through phagocytic functions [113]. Aside from immune recognition, phagocytosis 
by the retinal epithelium is important for the biological process of photoreception 
[118]. The distal portions of photoreceptors in the eye, known as “Photoreceptor 
Outer Segments” (POS) are in direct contact with the retinal epithelium [119] and 
rich in membranous discs packaged with proteins known as opsins [120], which are 
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photosensitive. Exposure to light bleaches opsins to allow for signal transduction 
[121]. Extended exposure to these opsin-rich discs results in phototoxic damage and 
mature discs are shed from the distal tip to allow for the synthesis of new discs [113]. 
The retinal epithelium is perpetually “ensheathed” around the distal tips of photore-
ceptors [122], which upon shedding are phagocytosed into the retinal epithelium  
[119, 123]. The phagosome undergoes phagolysosomal maturation, including acidi-
fication and breakdown of the photoreceptor distal tips [113]. This entire process 
allows for the maintenance of long-term photoreceptors with short-lived distal tips 
by the retinal epithelial cells in an immune-privileged tissue. The retinal epithelium 
represents a prime example of a nonmyeloid cell performing specialized phagocytosis 
as a primary function in the homeostatic maintenance of its niche.

Internalization of pathogens by mucosal epithelium is well documented [5, 22–27]. 
Epithelial cells utilize both zipper and trigger mechanisms to internalize invading 
pathogens and engage in phagocytosis [6]. After internalization of the pathogen, the 
maturation of the phagosome in epithelia is akin to that of professional phagocytes 
[59], including markers of maturation, phagosome acidification, and lysosomal fusion 
[124]. The primary difference lies in the speed and efficiency when compared to pro-
fessional phagocytes [125]. Despite this lack of efficiency, the contribution of phago-
cytosis of epithelial cells is still remarkably significant when considering cell numbers 
and so the impact of epithelial cell phagocytosis in pathogen clearance should not be 
ignored, having distinctive implications in both homeostasis and disease.

4. Endothelial cell phagocytosis

Like epithelial cells, endothelial cells also form a physical barrier, specifically in 
the walls of fluid systems, such as the circulatory and lymphatic systems [126]. These 
barriers comprise squamous endothelial cells, which form a single cell layer lining the 
entire system [126]. Their primary functions are to maintain the barrier and act as a 
filtration system for fluid-containing cells or substances into, and out of, the circulatory 
system [127, 128]. Significant cross talk occurs between endothelial cells and profes-
sional phagocytes as the endothelium allows leukocytes to cross through the barrier 
into tissues during times of infection and stress [129]. The concept of endothelial cells 
acting as phagocytes is not new, with some reports dating back as early as the 1920s 
[130]. Such a process is important for the endothelium to maintain circulatory homeo-
stasis with effective phagocytic clearance mechanisms [129]. Phagocytosis is clearly an 
important function for endothelial cells to possess and execute efficiently, failure to do 
so can lead to serious complications such as stroke [131, 132]. Due to its importance, 
phagocytic clearance by endothelial cells has been termed “Angiophagy” [131, 132].

In situations of physical damage to endothelial tissue, endothelial cells can often be 
the first to encounter potentially pathogenic insults, particularly pathogens that enter 
circulation. Like epithelial cells, endothelial cells strongly express PRRs, including 
TLRs, NLRs, and RIG receptors [133–137]. During times of inflammation, endothelial 
cell PRR expression is increased [138], an important process for innate recognition of 
potentially invasive pathogens. It is also imperative for endothelial cells to recognize 
endogenous material, such as aged red blood cells, to both prevent and clear micro 
emboli blockages [139]. Endothelial cells express Lectin-like oxLDL receptor 1 (LOX-1), 
a transmembrane protein that is capable of recognizing these aged red blood cells 
that express phosphatidylserine [36]. Endothelial cells can also clear other cellular 
material, such as apoptotic cell bodies of circulating leukocytes, including that of 
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circulating professional phagocytes, such as neutrophils [140], and do so via recog-
nition of lactadherin [141]. Endothelial cells capable of recognizing and engulfing 
circulating cellular material is not just a function of cellular turnover homeostasis, but 
this is important in reducing coagulative activity.

Angiophagy, as a phagocytic process, can be considered distinct from other 
mechanisms such as efferocytosis, as a specialized method of clearing vascular 
occlusions, which may or may not have “eat-me” recognition molecules. In several 
organ systems, angiophagy of large particulates, such as blood clots and fibrin, has 
been observed by endothelial cells in microvascular capillary structures, releasing 
the phagocytosed particles into the basolateral parenchyma [132, 142]. While the 
overall result remains consistent, angiophagy efficiency can vary between different 
organs [142]. The biomechanical processes of angiophagy are not well understood. 
Studies have demonstrated that projections of the endothelial cell wall known as 
“lamellipodia” extend into the occluded lumen after extensive cellular remodel-
ing [142]. Engulfment of the occluding body occurs within a few hours, relatively 
quickly when compared to the entire angiophagy process, which can take several 
days. Post engulfment, the occluding body is trafficked to the underlying tissue 
where it can be further processed, often by myeloid cells [142]. A more comprehen-
sive characterization, beyond engulfment in angiophagy, is lacking although mecha-
nisms of phagocytosis are certainly present. Further reports have demonstrated that 
microparticles are internalized and retained intracellularly without any impact on 
barrier integrity [143].

A common endpoint of phagocytosis in some professional phagocytes is antigen 
presentation. After a functional inactivation of the pathogen, components of the 
pathogen are “presented” on the cellular surface of the phagocyte and used to activate 
specific lymphocytes, to initiate adaptive immune responses. This specialized func-
tion of antigen presentation is typically associated with dendritic cells but is also 
observed in other myeloid cells. Interestingly, antigen presentation has been observed 
in endothelial cells [144, 145], and even express MHCII, typically restricted to 
professional antigen-presenting cells, as a result of inflammatory stimulation [146]. 
As endothelial cells are not professional antigen-presenting cells and lack migrating 
capabilities important for effective antigen presentation, it is somewhat unclear as to 
why endothelial cells have developed antigen-presentation capabilities. It has been 
postulated to be important for T-cell-specific trafficking to sites of infection and 
stress [144]. Either way, strong phagocytosis machinery is required to process and 
present antigens on the cell surface.

Phagocytosis for endothelial cells is an important homeostatic process that allows 
luminal vasculature to remain clear of blockages and underlying tissues to remain 
clear of potentially pathogenic infection. The process of angiophagy to allow the 
extravasation of occlusions, and restoring luminal perfusion is arguably unique to 
endothelial cells as a process that even myeloid cells do not possess. Further work on 
the capabilities of endothelial cell phagocytosis could well lead to a better understand-
ing and even treatment options for serious acute macro and microvascular disease.

5. Mesenchymal stem cell phagocytosis

Mesenchymal stem cells (MSCs) are multipotent cells capable of regeneration and 
differentiation into multiple cell types [147]. They reside in a wide number of tissues and 
give rise to cells and tissues necessary for growth, development, and tissue repair. MSCs 
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are frequently referred to as adult stem cells, along with hematopoietic stem cells (HSCs), 
which of course give rise to professional phagocytes. Adult stem cells, such as MSCs, 
are multipotent and distinguished from embryonic stem cells (ESCs) or laboratory-
generated induced pluripotent stem cells (iPSCs), which are pluripotent with a differ-
entiation capacity to generate cells of all three germ layers. MSCs are stromal cells, and 
distinct from their HSC counterparts, it is therefore perhaps surprising that an advanced 
cellular function such as phagocytosis has been observed. Several reports, however, have 
demonstrated that MSCs are indeed capable of phagocytosis. This was first reported in 
2000 by Wood et. al, who demonstrated the ability of mesenchymal cells to clear apop-
totic cells through efferocytosis in the absence of macrophages in PU.1 knock-out mice 
[11] and later established in 2010 when Tso et. al confirmed efferocytosis-like clearance 
of apoptotic cells by MSCs [10]. Since then, other reports have corroborated this finding 
in a variety of situations, confirming MSCs capabilities of efferocytosis and clearance 
of apoptotic cells [12, 148]. What is also surprising is the inflammatory response when 
apoptotic bodies are recognized by mesenchymal cells, including NF-κB signaling 
pathway activation [12], and MSCs can express a number of distinctive markers more 
closely associated with immune cells [149]. Furthermore, MSCs are capable of secreting 
antimicrobial peptides [150, 151] to aid in pathogen killing and clearance.

MSCs do possess a certain level of PRRs, including TLRs [152] and NOD-like 
receptors [153]; however, reports are lacking that definitively demonstrate exog-
enous pathogen phagocytosis although have suggested its plausibility [154]. Similar 
to endothelial cells, MSCs are capable of MHC-II type antigen presentation [155], 
considered to be unique to professional phagocytes, and these antigen-presenting 
MSCs are capable of presenting and activating T cells [156, 157]. This would suggest 
that phagocytosis of pathogens, to present antigens via MHC-II is possible; however, 
this has yet to be confirmed. The primary function is therefore that of a supporting 
role for professional phagocytes as opposed to being primary phagocytes themselves.

6. Smooth muscle cell phagocytosis

Smooth muscle is found in multiple organ systems and can provide a variety of 
roles, often important for the physical functions of the organ or tissue in which they 
reside. Unlike skeletal muscle, smooth muscle involuntarily can maintain its tone over 
extended periods of time [158]. The functional cellular units of smooth muscle are 
described as nonstriated, in that they lack the sarcomeres that their skeletal striated 
counterparts possess. Smooth muscle cells are rich in actin and myosin which allows 
for efficient contraction [159]. It would be easy to describe smooth muscle cells 
(SMCs) as monofunctional and homogenous; however, it would appear that they 
have stromal-like properties and are capable of further differentiation into multiple 
“macrophage-like” phenotypes capable of phagocytosis [160]. The concept of phago-
cytosis by SMCs was first suggested observed in 1971 by Campbell and colleagues 
[161], and later confirmed by Garfield et. al in 1975, who demonstrated uptake of 
yeast and latex beads by guinea pig smooth muscle [14]. Like other nonprofessional 
phagocytes, SMCs express the phosphatidylserine receptor and functionally recog-
nize phosphatidylserine-rich apoptotic bodies, resulting in efferocytosis [13, 16]. Like 
the other nonprofessional phagocytes discussed in this chapter, SMC phagocytosis has 
been studied and implicated in diseases, where pathological phagocytosis is consid-
ered to play a major role, such as atherosclerosis [162, 163]. In fact, SMC phagocytosis 
has been a focus of investigation in atherosclerosis.
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Atherosclerosis is the buildup of plaques in the subendothelial tissues of arterial 
macrovascular walls [164]. These plaques can obstruct blood flow through the arte-
rial lumen, which can result in a series of vascular-related diseases. Atherosclerotic 
plaques comprise of “foam cells,” which have phagocytosed low-density lipopro-
teins, which they are seemingly unable to efficiently process and resolve. Foam cells 
as active phagocytes are myeloid in origin, more specifically they are macrophages 
derived from monocytes [165] recruited into the subendothelial tissues as a result of 
vascular damage. However, foam cells of atherosclerotic plaques can also be derived 
from SMCs [49, 166], with some reports even suggesting the majority of foam cells 
in atherosclerotic legions to be of SMC origin [167]. Such SMCs resemble an undif-
ferentiated precursor capable of a phenotypic switch under varying conditions 
[168]. The specific conditions that trigger SMCs to switch to a macrophage-like foam 
cell are not well known, although it appears to be KLF-4 dependent [169]. SMCs 
have a high abundance of LRP1, a key scavenger receptor for lipoproteins [170]. 
LRP1 activation will result in an influx of lipoproteins into the cell, generating a 
“foam cell” phenotype [171]. It is the inefficiency of SMC-derived foam cells as 
phagocytes that appears to be a significant factor in atherosclerosis. Despite the rec-
ognition that phagocytosis, or lack thereof, by SMCs is clearly playing a significant 
role in the pathophysiology of atherosclerosis, little is known about the internaliza-
tion mechanism compared to the process of autophagy [172]. Studies to date have 
mainly focused their efforts to recreate SMC-derived foam cells and compare them 
to foam cells of macrophage origin in attempts to highlight key differences, instead 
of addressing the specific mechanisms relating to phagocytosis in SMC-derived 
foam cells.

7. Conclusions

Historically most investigations with regard to phagocytosis have focused on the 
role of myeloid cells as professional phagocytes. In this review, we have discussed 
nonmyeloid cell types, where roles in phagocytosis have been established. It is 
becoming increasingly evident that many tissue types are capable, to some extent, 
of phagocytosis [173]. Indeed, there are even situations of specialized phagocytic 
function, such as that observed in the retinal epithelia and angiophagy in vascular 
endothelial cells. Despite nonprofessional phagocytes being less effective when it 
comes to pathogen recognition, internalization, phagosome maturation, and patho-
gen killing, they still provide a significant contribution to phagocytosis, and, in more 
immune-privileged tissues, phagocytosis by nonprofessional phagocytes is imperative 
to maintain physiological functions.
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