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Chapter

Introductory Chapter: Some
Preliminary Aspects of Inverse
Problem
Ivan I. Kyrchei

1. Introduction

Physical research in science can be divided into two groups. The first is that when by
complete description of a physical system, we can predict the outcome of some mea-
surements. This problem is called the modelization problem or the forward problem.
The second group of research consists of using the actual result of some observations to
infer the values of the parameters that characterize the system. It is the inverse problem,
which starts with the causes and then calculates the effects. The importance of inverse
problems is that they tell us about physical parameters that we cannot directly observe.

2. Primary equations of inverse problem

The inverse problem is that one wants to determine the model parameters p that
produce the observed data or measurements d. F stays for some measurement operator
that maps parameters in a functional spaceP, typically a Banach or Hilbert space, to the
space of dataD, typically another Banach or Hilbert space.

d ¼ Fp for p∈P and d∈D: (1)

Solving the inverse problem amounts to finding point(s) p∈P from knowledge of the
data d∈D such that Eq. (1) (or its approximation) holds. In the case of a measurement,
operator is linear and there is a finite number of parameters, Eq. (1) can be written as a
linear system, where F is the matrix that characterizes the measurement operator, andP

and d∈D are corresponding vector spaces. Such inverse problem is called linear.
Inverse problems may be difficult to solve for at least two different reasons:

1.Different values of the model parameters may be not consistent with the data;

2.Discovering the values of the model parameters may require the exploration of a
huge parameter space.

If it is acquired enough data to uniquely reconstruct the parameters, then the
measurement operator can be injective, which means

F p1
� �

¼ F p2
� �

) p1 ¼ p2 for all p1, p2 ∈P: (2)
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When F is injective, one can construct an inversion operator F�1 mapping the
range of F to a uniquely defined element P. In the case of a linear inverse problem,

F�1 is an inverse matrix. Further, the main features of the inverse operator are
characterized by stability estimates that quantify how errors in the available mea-
surements translate into errors in the reconstructions. It can be expressed as follows:

∥p1 � p2∥P ≤ α∥F p1
� �

� F p2
� �

∥D: (3)

Where α : ℝþ ! ℝþ stay for an increasing function, such that α 0ð Þ ¼ 0. This
function gives an estimate of the reconstruction error ∥p1 � p2∥P based on the error in

the data ∥F p1
� �

� F p2
� �

∥D. When the reconstructed parameters are acceptable, for
instance when α xð Þ ¼ Cx for some constant C, then the inverse problem is called well-
posed. When the reconstruction is contaminated by too large a noisy component, then
the inverse problem is ill-posed.

Injectivity of F means satisfying the two conditions for a well-posed problem
suggested by Jacques Hadamard [1], Existence and Uniqueness of solutions. Eq. (3) is
the third Hadamard’s condition, which is Stability of the solution or solutions.

Typically, inverse problems are ill-posed. Even when we have a linear inverse prob-
lem with invertible matrix F, it gives an ill-posed problem that can be solved by using
the Moore-Penrose inverse matrix [2, 3] and least squares solutions inducted by it.

The goal of many experiments is to infer a property or attribute from data that is
indirectly related to the unknown quantity. Parameter estimation problems usually
satisfy the first criterion of well-posed problems, since something is responsible for
the observed system response. Instead, they violate the third criterion and” almost”
violate the second criterion because many different candidate solutions exist that,
when substituted into the measurement model, produce very similar data. The condi-
tion of stability is often violated, because the inverse problem is represented by a
mapping between metric spaces, but inverse problems are often formulated in infinite
dimensional spaces. Therefore, limitations to a finite number of measurements, and
the practical consideration of recovering only a finite number of unknown parameters
may lead to the problems being recast in discrete form. In this case, the inverse
problem is typically ill-conditioned and a regularization can be used. One of the most
famous regularizations is the Tikhonov regularization [4]. The idea of Tikhonov
regularization may be introduced as follows. In its simplest form, it consists in
replacing the Eq. (1) with the second kind of equation

F ∗Fpþ αp ¼ F ∗ d (4)

where α is a positive parameter. It leads to that the problem of solving Eq. (4) is
well-posed.

Unlike parameter estimation, inverse problems often violate Hadamard’s first
criterion since an optimal design outcome may be specified that cannot possibly be
produced by the system. On the other hand, the existence of multiple designs (solu-
tions) that produce an acceptable outcome violates the second criterion. From these, it
follows inverse problems that are mathematically ill-posed due to an information
deficit. In the parameter estimation case, the measurements barely provide sufficient
information to specify a unique solution, and in some cases, the data could be
explained by an infinite set of candidate solutions. Information from measurement
data and prior information can be combined through Bayes’ equation to produce
estimates for the Quantities-of-Interest (QoI). In this approach, the measurements, d,
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and the QoI, x∈P, are interpreted as random variables that obey probability density
functions (PDFs). The PDFs are related by Bayes’ equation

P xjdð Þ ¼
P djxð Þ

P dð Þ
Ppr xð Þ (5)

where P djxð Þ is the likelihood of the observed data occurring for a hypothetical
parameter x, accounting for measurement noise and model error (“likelihood PDF”),
Ppr xð Þ defines what is known before the measurement takes place about a hypothetical
parameter x, (“prior PDF”), P xjdð Þ is the posterior PDF, which defines what is known
about x from both the measurements and prior information, and P dð Þ is the evidence,
which scales the posterior so that it satisfies the law of total probabilities.

Therefore, “the most general theory is obtained by using a probabilistic point of view,
where the a priori information on the model parameters is represented by a probability
distribution over the” model space”. A priori probability distribution is transformed into the
a posteriori probability distribution, by incorporating a physical theory (relating the model
parameters to some observable parameters) and the actual result of the observations (with
their uncertainties)” [5].
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