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Chapter

Dynamic Equations on Time Scales
Sabrina Streipert

Abstract

An extension of differential equations to different underlying time domains are so
called dynamic equations on time scales. Time scales calculus unifies the continuous
and discrete calculus and extends it to any nonempty closed subset of the real num-
bers. Choosing the time scale to be the real numbers, a dynamic equation on time
scales collapses to a differential equation, while the integer time scale transforms a
dynamic equation into a difference equation. Dynamic equations on time scales allow
the modeling of processes that are neither fully discrete nor fully continuous. This
chapter provides a brief introduction to time scales and its applications by incorpo-
rating a selective collection of existing results.

Keywords: time scales, existence, uniqueness, linear, applications

1. Introduction

The modeling of processes using differential equations is a well-established
method in multiple branches of sciences. Dependent on the model assumptions, the
form of the differential equation can range from a comparably simple ordinary dif-
ferential equation to more advanced formulations using nonlinear, higher order, and
partial differential equations. Reasons to consider difference equations include com-
putational benefits and, even more fundamental, a discrete modeling perspective. For
example, when describing a zero-coupon bond where the invested amount at time t,
Mt, receives interest r at the end of each year but remains unchanged during each
year, the recursive model Mtþ1 ¼ 1þ rð ÞMt captures the change of the investment
from time t to time tþ 1. Difference equations are also a common tool to describe
processes on a macro scale in time, for example, when describing non-overlapping
generations. Even though the number of individuals may vary throughout the gen-
eration period, one may only be interested in the individuals at the beginning of each
generation time, i.e., the size of each cohort. There are however processes that
cannot be described accurately using differential or difference equations. For exam-
ple, when modeling species that are reproducing continuously during certain months
of the year before laying eggs right before hibernating. Another example are plant
populations that grow continuously during some months of the year and plant their
seeds prior to dying out. In [1], Robert May gives examples of insects that exhibit
such hybrid continuous–discrete behavior.
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Instead of introducing a set of simplifying assumptions and possibly discontinuous
model parameters that impact the model analysis, dynamic equations on time scales can
provide a simple alternative to describe such processes. Time scales calculus was intro-
duced by Stefan Hilger in 1988 [2]. It unifies the continuous and discrete calculus and
extends it to any nonempty closed subset of the real numbers called a time scale,
denoted by . By introducing differentiation and integration on , the classical theory
of differential equations can be extended to time scales, which allows the modeling of
processes that are not changing continuously nor solely discretely in time. These
so-called dynamic equations are essentially the time scales analogue of differential and
difference equations and have gained increasing interest due to their potential in appli-
cations. Choosing the time scale to be the real numbers, a dynamic equation transforms
into a differential equation and by choosing the time scale to be the integers, a
corresponding difference equation is obtained. Thus, instead of studying differential
equations and difference equations separately, time scales provides also a tool to inves-
tigate both by analyzing the corresponding dynamic equation. This is specifically inter-
esting since certain difference equations exhibit significantly different behavior as their
continuous analogues, see for example the “logistic map” and the “logistic differential
equation”. By analyzing a dynamic equation on time scales, the effect of the underlying
time domain onto the behavior of solutions may be revealed.

2. Time scales fundamentals

In this subsection, the basic definitions of time scales calculus are introduced based
on the introductory book [3].

Definition 1. A time scale, denoted by , is a nonempty closed subset of .
Examples of a time scale are ,, h, q0 ¼ 1, q, q2, q3,…

� �
q> 1ð Þ, a, b½ �∪ c, df g

where a< b and a, b, c, d∈, and the Cantor set. It therefore contains the popular
cases of the continuous, the discrete, and the quantum calculus.

Operators that aid the description of a time scale are the “forward jump operator”,
denoted by σ tð Þ, the “backward jump operator”, denoted by ρ tð Þ, and the “graininess
function”, denoted by μ tð Þ. These operators are defined for t∈ as

σ tð Þ≔ inf s∈ : s> tf g, ρ tð Þ≔ sup s∈ : s< tf g, μ tð Þ≔ σ tð Þ � t: (1)

Since  is closed, σ, ρ :  !  and μ :  ! ½0;∞Þ. Table 1 provides values of the
corresponding operators for different examples of time scales.

Using these operators, any t∈ can be classified as:
• right-scattered (left-scattered), if σ tð Þ> t (ρ tð Þ< t), and

• right-dense (left-dense), if σ tð Þ ¼ t (ρ tð Þ ¼ t).

 σ tð Þ ρ tð Þ μ tð Þ

 t t 0

 t þ 1 t � 1 1

q0 qt t
q t q� 1ð Þ

Table 1.
The description of the time scales functions σ, ρ, μ for the examples of , , and q0(q> 1).
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We say that a point t∈ is isolated, if it is right- and left-scattered. We say that a
point t∈ is dense, if it is right- and left-dense. Note that for  ¼ , every point is
dense and, for  ¼ , every point is isolated.

Example 2.1. El Nino events can be described using a time scale. El Nino events
between 2002 and 2017 have been observed in the time intervals 2002–2003,
2004–2005, 2006–2007, 2009–2010, and 2014–2016 [4], which suggests the
corresponding time scale (Figure 1, Table 2)

 ¼ ∪ 5
i¼0 ai, aiþ1½ �

with a0, a1, a2, … , a5ð Þ ¼ 2002, 2004, 2006, 2009, 2014, 2015ð Þ.

The following notation is commonly used for t∈,

σn tð Þ ¼ σ∘σ∘… ∘σð Þ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

n�times

tð Þ, ρn tð Þ ¼ ρ∘ρ∘… ∘ρð Þ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

n�times

tð Þ:

2.1 Functions on time scales

We can now consider scalar functions on time scales, that is, f :  ! , and
discuss their properties. We define the subset κ as follows: If  has a left-scattered
maximum m∈, then 

κ ¼ n mf g, else κ ¼ .
Definition 2. f:  !  is called regressive, if, for all t∈

κ,

1þ μ tð Þf tð Þ 6¼ 0

and is called positively regressive, if, for all t∈
κ,

1þ μ tð Þf tð Þ>0:

The following are properties of f :  !  that later identify integrability.
Definition 3. f :  !  is called regulated provided its right-sided limit exists (as a

finite value) for all right-dense points and its left-sided limit exists (as a finite value)
for all left-dense points.

t∈ σ tð Þ μ tð Þ ρ tð Þ

t1 ∈ 2004, 2005ð Þ σ t1ð Þ ¼ t1 μ t1ð Þ ¼ 0 ρ t1ð Þ ¼ t1

t2 ¼ 2005 σ t2ð Þ ¼ t3 μ t2ð Þ ¼ 1 ρ t2ð Þ ¼ t2

t3 ¼ 2006 σ t3ð Þ ¼ t3 μ t3ð Þ ¼ 0 ρ t3ð Þ ¼ t2

Table 2.
The functions σ, ρ, μ for the time points t1, t2, t3 ∈ based on Figure 1.

Figure 1.
Part of the time line containing points in the time scale . Curly lines identify intervals within . Here,
t1 ∈ 2004, 2005ð Þ, t2 is the last point in the interval 2004, 2005½ �, and t3 ¼ 2006 is the first point in 2006, 2007½ �.
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Even though every regulated function on a compact interval is bounded, in
general, max

a≤ t≤ b
f tð Þ and min

a≤ t≤ b
f tð Þ do not need to exist for regulated f :  ! .

Definition 4. f :  !  is called rd-continuous if f is continuous at all right-dense
points and its left-sided limit exists (as a finite value) for all left-dense points. The set
of rd-continuous functions is denoted by Crd ¼ Crd ð Þ ¼ Crd ,ð Þ.

Note that, if f :  !  is continuous, then f is rd-continuous. If f is rd-continuous,
then f is regulated.

The set of rd-continuous and regressive (positively regressive) functions is
denoted by R ¼ R ð Þ ¼ R ,ð Þ (Rþ ¼ R

þ
ð Þ ¼ R

þ
,ð Þ).

Beside the classical addition and subtraction of functions, time scales calculus
introduces the so-called “circle plus”, denoted by ⊕ , and “circle minus”, denoted by
⊖ . These operations are defined for f , g :  !  as follows

f ⊕ gð Þ tð Þ ¼ f tð Þ þ g tð Þ þ μfgð Þ tð Þ

and, for g∈ R, f⊖ gð Þ tð Þ ¼
f tð Þ � g tð Þ

1þ μgð Þ tð Þ
:

A useful property is that if f , g∈R (Rþ), then f ⊕ g, f⊖ g∈R (Rþ) implying that
the (positively) regressive property is being carried over. Furthermore, R, ⊕ð Þ forms
an Abelian group with the inverse elements of f ∈R given by ⊖ f .

For  ¼ , the operators ⊕ and ⊖ correspond to the classical addition and
subtraction.

2.2 Differentiation

Definition 5. Let f :  !  and t∈
κ. If there exists fΔ tð Þ∈ such that for all

ε>0, there exists δ>0 such that

∣f σ tð Þð Þ � f sð Þ � fΔ tð Þ σ tð Þ � sð Þ∣ ≤ ε∣σ tð Þ � s∣ for all s∈ t� δ, tþ δð Þ∩,

then we call fΔ tð Þ the delta (or Hilger) derivative of f at t∈
κ.

If fΔ tð Þ exists for all t∈
κ, we say that f is delta differentiable (or short: differen-

tiable) and the function fΔ :  !  is called delta derivative of f on 
κ.

If f is differentiable at t∈
κ, then

f σ tð Þð Þ ¼ f tð Þ þ μ tð Þ fΔ tð Þ:

The following notations are used equivalently

f σð Þ tð Þ ¼ f ∘σð Þ tð Þ ¼ f σ tð Þð Þ:

The definition of a delta derivative can be extended to consider higher order
derivatives. We say that f is twice delta differentiable with the second (delta)

derivative fΔΔ, if fΔ is (delta) differentiable on 
κ2 ¼ 

κð Þκ.
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Note that the definition of delta derivatives focuses on the change forward in time.
A corresponding definition that focuses on the change backward in time is referred to
as nabla derivative, see for example [5].

Theorem 2.2. [See [3, Theorem 1.16]] Let f :  !  and t∈
κ. Then, the

following holds:

i. If t is right-dense, then

fΔ tð Þ ¼ lim
s!t

f tð Þ � f sð Þ

t� s
,

provided that the limit exists (as a finite number).

ii. If f is continuous at the right-scattered point t, then

fΔ tð Þ ¼
f σ tð Þð Þ � f tð Þ

μ tð Þ
:

Applying Theorem 2.2 for the case of  ¼ , shows that the delta derivative is

consistent with the classical derivative, that is, fΔ tð Þ ¼ f tð Þ for t∈ ¼ . For  ¼ ,
the delta derivative collapses to the forward Euler operator, widely accepted as

the discrete analogue of a derivative, that is, fΔ tð Þ ¼ f tþ 1ð Þ � f tð Þ if  ¼ 

(see Table 3).

As in the continuous case, the differential operator is linear, that is, for α, β∈,
t∈

κ, and for (delta) differentiable functions f , g :  ! ,

αf þ βgð ÞΔ tð Þ ¼ α fΔ tð Þ þ βgΔ tð Þ:

The analogues of the product and the quotient rule on time scales take on slightly
different forms. For (delta) differentiable functions f , g :  ! , and t∈

κ,

fgð ÞΔ tð Þ ¼ fΔ tð Þgσ tð Þ þ f tð ÞgΔ tð Þ ¼ fΔ tð Þg tð Þ þ f σ tð ÞgΔ tð Þ

and, for g tð Þ, gσ tð Þ 6¼ 0,

f

g

� �Δ

tð Þ ¼
fΔ tð Þg tð Þ � f tð ÞgΔ tð Þ

g tð Þgσ tð Þ
:

For  ¼ , we have f σ ¼ f and gσ ¼ g so that the classical product and quotient
rule are retrieved. In the case of  ¼ , we have the correspondent rules consistent
with [6], namely

  ¼   ¼   ¼ qℕ0

fΔ tð Þ f 0 tð Þ Δf tð Þ f qtð Þ�f tð Þ
t q�1ð Þ

Table 3.
Derivatives for the examples of  ¼ ,  ¼ , and  ¼ qN0 (q> 1). Note that Δf tð Þ ¼ f t þ 1ð Þ � f tð Þ is the
forward Euler operator.
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Δ fgð Þ tð Þ ¼ Δf tð Þð Þg tþ 1ð Þ þ f tð Þ Δg tð Þð Þ ¼ Δf tð Þð Þg tð Þ þ f tþ 1ð Þ Δg tð Þð Þ:

If g tð Þ, g tþ 1ð Þ 6¼ 0, then

Δ
f tð Þ

g tð Þ

� �

¼
f

g

� �Δ

tð Þ ¼
Δf tð Þð Þg tð Þ � Δg tð Þð Þf tð Þ

g tð Þg tþ 1ð Þ
:

The modifications in the product and quotient rule highlight that some of the well
established differentiation rules only carry over to time scales calculus after some
adjustments. In fact, the product rule on time scales reveals that the useful property of
power functions f tð Þ ¼ tn for n∈0 is no longer the simple reduction of the power by
one, because

t2
� �Δ

¼ t � tð ÞΔ ¼ tþ σ tð Þ,

which may not be delta differentiable. This indicates already that the series repre-
sentation of functions requires further thought.

Also, considering the chain rule, we note that for  ¼ ,

Δ f ∘fð Þ tð Þ ¼ f σ tð Þ fΔ tð Þ þ f tð Þ fΔ tð Þ ¼ fΔ tð Þ f tð Þ þ f σ tð Þð Þ 6¼ 2f tð Þ fΔ tð Þ,

for f σ tð Þ 6¼ f tð Þ. Thus, the powerful chain rule, often utilized in solving differential
equations via a variable transformation, does not apply on time scales. In an attempt
to generalize the chain rule for functions on time scales a few identities have been
formulated. The next theorem provides such an expression based on works in [7, 8].
Other formulations can be found in [3].

Theorem 2.3. (See [3, Theorem 1.90]). Let f :  !  be continuously differentia-
ble and suppose g :  !  is (delta) differentiable. Then f ∘g :  !  is (delta) differ-
entiable and

f ∘gð ÞΔ tð Þ ¼

ð1

0
f 0 g tð Þ þ hμ tð ÞgΔ tð Þ
� �

dh

	 


gΔ tð Þ:

An interesting observation is that the operators, Δ and σ, do generally not com-

mute, that is, fΔ
� �σ

6¼ f σð Þ
Δ. Take for example  ¼ q0 with q> 1, then

fΔ
� �σ

tð Þ ¼
f q2tð Þ � f qtð Þ

μ qtð Þ
6¼

f q2tð Þ � f qtð Þ

μ tð Þ
¼ f σð ÞΔ tð Þ,

since μ qtð Þ ¼ qt q� 1ð Þ 6¼ t q� 1ð Þ ¼ μ tð Þ.

2.3 Integration

Definition 6. A continuous function f :  !  is called pre-differentiable with
(region of differentiation) D, provided that D⊂

κ, κnD is countable and contains no
right-scattered elements of , and f is (delta) differentiable at each t∈D.

Theorem 2.4. (See [3, Theorem 1.70]). Let f :  !  be regulated. Then there exists a
function F :  !  which is pre-differentiable with region of differentiation D such that
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FΔ tð Þ ¼ f tð Þ for all t∈D:

The function F is called an pre-antiderivative of f tð Þ.

If FΔ tð Þ ¼ f tð Þ for all t∈
κ, then F is called antiderivative of f .

We define the indefinite integral of a regulated function f by
Ð
f tð ÞΔt ¼ F tð Þ þ C,

where C∈ is an arbitrary integration constant and F is a pre-antiderivative of f . The

Cauchy integral is defined by
Ð b
a f tð ÞΔt ¼ F bð Þ � F að Þ for all a, b∈.

Theorem 2.5. (See [3, Theorem 1.74]). Every rd-continuous function f has an
antiderivative. In particular, if t0 ∈, then F defined by

F tð Þ≔

ðt

t0

f sð ÞΔs for all t∈

is an antiderivative of f .
For  ¼ , the integral is consistent with the Rieman integral (see Table 4).

The integral operator is linear so that for f , g∈Crd and a< b, a, b∈, and α, β∈,

ðb

a
αf þ βgð Þ sð ÞΔs ¼ α

ðb

a
f sð ÞΔsþ β

ðb

a
g sð ÞΔs:

With the definition of integration on time scales, we have the machinery to intro-
duce a series representation for time scales functions. In [9], see also [3], a time scales
analogue of polynomials that allows a corresponding Taylor series expression was
introduced using the recursive formulation

g0 t, sð Þ ¼ h0 t, sð Þ � 1 for all t, s∈,

and, for every k∈0,

gkþ1 t, sð Þ ¼

ðt

s
gk σ τð Þ, sð ÞΔτ for all s, t∈,

and

hkþ1 t, sð Þ ¼

ðt

s
hk τ, sð ÞΔτ for all s, t∈:

Now, hΔk t, sð Þ ¼ hk t, sð Þ and gΔk t, sð Þ ¼ gk σ tð Þ;sð Þ for k∈ and t,s∈Tκ. Two Taylor series
representations can be formulated for a time scales function f, one that uses the time
scales polynomials gk and one that uses the polynomials hk, see Section 1.6 in [3] for
more details.

  ¼   ¼   ¼ q0 I

Ðt

s

f τð ÞΔτ
Ðt

s

f τð Þdτ
Pt�1

τ¼s
f τð Þ

Pk

n¼0
sqk q� 1ð Þf qks

� �
P

τ∈ a, b½ Þ∩

μ τð Þf τð Þ

Table 4.
Integrals for the examples of  ¼ ,  ¼ , and  ¼ qN0 (q> 1), and isolated time scales I, for which all points
in I are assumed to be isolated. In all cases, s, t∈ and s< t. In the case of  ¼ q0 , we assume t ¼ qks.
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3. Linear dynamic equations

This chapter provides a brief introduction to first order dynamic equations and
provides a selected summary of [3], extended by applications. A first order dynamic
equation is of the form

yΔ tð Þ ¼ f t, y, yσð Þ, (2)

for y :  ! 
n and f : � 

n � 
n ! 

n with n∈1 ¼ 1, 2, 3, …f g. A first order
initial value problem (short: IVP) is then given by (2) with an initial condition
y t0ð Þ ¼ y0 ∈

n for t0 ∈. A function y :  ! 
n is called a solution of (2) if y satisfies

the equation for all t∈
κ.

We call (2) linear if

f t, y, yσð Þ ¼ f 1 tð Þyþ f 2 tð Þ, or f t, y, yσð Þ ¼ f 1 tð Þyσ þ f 2 tð Þ,

where f 1, f 2 :  ! 
n.We say the linear dynamic equation is homogeneous, if f 2 � 0.

3.1 Scalar case

We first focus on the scalar case of (2), that is, f :  ! . Based on the above
definition of linearity, there are two forms a linear, homogeneous, first order dynamic
equation can have:

yΔ ¼ p tð Þy, (3)

yΔ ¼ p tð Þyσ, for p:  !  (4)

Note that for  ¼ , yσ ¼ y and therefore y0 ¼ p tð Þyσ ¼ p tð Þy so that both, (3) and
(4), are the time scales analogues of y0 ¼ p tð Þy.

If p∈R, then (3) is called regressive and if �p∈R, then (4) is called regressive.
The unique solution to (3) with initial condition y t0ð Þ ¼ 1 for some t0 ∈ is

denoted by y tð Þ ¼ ep t, t0ð Þ and is called the time scales exponential function. The
unique solution to (4) with initial condition y t0ð Þ ¼ 1 is y tð Þ ¼ e⊖ �pð Þ t, t0ð Þ.

Table 5 contains the time scales analogues of the exponential function for the
dense time scale  ¼ , the discrete time scale  ¼ , and the quantum time scale
 ¼ q0 .

 Dynamic Eq. (3) ep t, t0ð Þ

 y0 ¼ p tð Þy
exp

Ðt

t0

p sð Þds

( )

 Δy ¼ p tð Þy
Qt�1

i¼t0
1þ p ið Þð Þ

qℕ0 yΔ ¼ p tð Þy
Q

s∈ t0 ,t½ Þ∩
1þ s q� 1ð Þp sð Þð Þ

Table 5.
The exponential function for the continuous, discrete, and quantum time scale (q> 1), assuming p∈R.
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The Table 5 reveals a crucial aspect of the time scales exponential function,
namely that the positivity property, known for the traditional exponential function,
does not uphold on time scales. Take for example,  ¼  and p ¼ �3, then p∈R as

1þ p ¼ �2 6¼ 0, but ep t, 0ð Þ ¼ �2ð Þt which is negative for odd values of t. If however

p∈R
þ, then ep t, t0ð Þ>0, restoring the positivity property. Note that if  ¼ , then

any function p∈R
þ since 1þ μ tð Þp tð Þ ¼ 1>0.

Some of the properties of the time scales exponential function are consistent with
the convenient properties in the continuous case. If p, q∈R and t, s∈, then

i. e0 t, sð Þ ¼ 1, ep t, tð Þ ¼ 1,

ii. ep⊕ q t, sð Þ ¼ ep t, sð Þeq t, sð Þ,

iii. e⊖ p t, sð Þ ¼ ep s, tð Þ ¼ 1
ep t, sð Þ,

iv. ep t, rð Þep r, sð Þ ¼ ep t, sð Þ,

v. ep σ tð Þ, sð Þ ¼ 1þ μ tð Þp tð Þð Þep t, sð Þ.

Theorem 3.1. [See [3, Theorem 2.39]] If p∈R and a, b, c∈, then

ðb

a
p tð Þep t, cð ÞΔt ¼ ep b, cð Þ � ep a, cð Þ

ðb

a

p tð Þep c, σ tð Þð ÞΔt ¼ ep c, að Þ � ep c, bð Þ:

As an application of linear, homogeneous, first order dynamic equations, one may
consider the Malthusian growth model. In “An essay on the principle of population”
from 1798, Thomas Robert Malthus proposed an exponential law of population growth
with the corresponding differential equation

P0 ¼ rP, P t0ð Þ ¼ P0,

where P is the population at time t, r is the inherent growth rate, and P0 is the initial
population level at time t0 ∈. This linear, homogeneous, first order differential equa-

tion has the solution P tð Þ ¼ er t�t0ð ÞP0. Assuming a positive initial population level P0 >0,
it follows that for a positive growth rate r>0, the population increases exponentially. If

instead r<0 and P0 >0, then the population goes extinct as lim t!∞e
r t�t0ð ÞP0 ¼ 0.

Despite its simplicity and the unrealistic behavior of unbounded population levels for
r > 0, the Malthusian model can sometimes serve short-term predictions.

Let us now consider the corresponding time scales model (3) with initial condition
P t0ð Þ ¼ P0 >0 and inherent growth rate r>0, that is, PΔ = rPwith P t0ð Þ ¼ P0 for t0 ∈.
The respective solution is then P tð Þ ¼ er t, t0ð ÞP0, which is unbounded for r;P0 >0, see
Figure 2. Thus, for r;P0 >0, the behavior of the solution is consistent with the solution
in the continuous case. However, for r<0, the population does not have to go extinct
but can result in biologically unmeaningful behavior as solutions can become negative.

Using the time scales exponential function that solves a linear, homogeneous, first
order dynamic equation, we can use the variation of constants formula to obtain the
solution to a linear, nonhomogeneous, first order dynamic equation.
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Theorem 3.2. [See [3, Theorems 2.74 & 2.77]] Suppose p∈R, f ∈Crd; t0 ∈ and
y0 ∈ then the unique solution to

yΔ ¼ p tð Þyþ f tð Þ, y t0ð Þ ¼ y0

is given by

y tð Þ ¼ ep t, t0ð Þy0 þ

ðt

t0

ep t, σ sð Þð Þf sð ÞΔs:

Furthermore, the unique solution to

yΔ ¼ �p tð Þyσ þ f tð Þ, y t0ð Þ ¼ y0

is given by

y tð Þ ¼ e ⊖p t, t0ð Þy0 þ

ðt

t0

e ⊖p t, sð Þf sð ÞΔs:

Example 3.3. Suppose that the life span of a certain species is one time unit.
Suppose that just before the species dies out, eggs are laid that are hatch after one time
unit. The species is therefore only alive on  ¼ ∪∞k¼0 2k, 2kþ 1½ �, see also [3, Example
1.39] and [10]. Suppose further that during the specie’s, life cycle, the species reduces
due to external factors with rate d ∈ (0, 1) and at the end of the life cycle t ¼ 2kþ 1,
the individuals alive in (2k, 2kþ 1) lay eggs that result in the reproduction rate r>0.
The corresponding dynamic equation for the species N(t) at time t, is then

NΔ tð Þ ¼ p tð ÞN tð Þ, with p tð Þ ¼
�d t∈ 2k, 2kþ 1½ Þ

r t ¼ 2kþ 1

	

and initial conditionN 0ð Þ ¼ N0. We note that even though p tð Þ is discontinuous at
t ¼ 2kþ 1, p tð Þ∈R. Theorem 3.2 gives the population at time t∈ 2m, 2mþ 1½ � as

Figure 2.
The behavior of the solution to PΔ ¼ rP with P t0ð Þ ¼ P0 where r = 0.45, t0 = 1, and P0 = 0.1, for  ¼ ,  ¼ 

and  ¼ 1:3ℕ0 . The solid line represents the solution in the continuous case, the open circle represents the solution in
the discrete case, and the stars represent the solution in the quantum calculus case with q=1.3.
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N tð Þ ¼ N0ep t, t0ð Þ ¼ N0ep t, 2mð Þ
Ym�1

k¼0

ep 2kþ 1, 2kð Þep 2kþ 2, 2kþ 1ð Þ
� �

¼ N0 exp

ðt

2m
� dds

	 

Ym�1

k¼0

exp

ð2kþ1

2k
� dds

	 


1þ rð Þ

( )

¼ N0e
�d t�mð Þ 1þ rð Þm:

Example 3.4. Newton’s law of cooling suggests that the temperature of an object at
time t, T tð Þ, changes dependent on the temperature of its surrounding, Tm.
Then, T0 tð Þ ¼ �κ T � Tmð Þ, where κ is the heat transfer coefficient. Suppose that an
object with initial temperature T0 is cooled in a lab environment. Due to safety
regulations, once the lab assistant leaves the work space, the object can only be
exposed to an environment that preserves the current temperature of the object. The
cooling of the object can be modeled using time scales with the underlying time
domain to be the working hours of the lab assistant. Assume that the lab assistant’s
working hours, and therefore the time scale, is of the form  ¼ ∪∞i¼0 ai, bi½ �∪ ci, di½ �,
where the interval ai, bi½ � are the working hours prior to lunch, and ci, di½ � are the
working hours of the lab assistant after lunch of day i. One way of modeling this
scenario on time scales is

TΔ ¼ �p tð Þ T � Tmð Þ, p tð Þ ¼
κ t∈ ai, bi½ Þ∪ ci, di½ Þ

0 t∈ bi, dif g

	

with initial temperature T t0ð Þ ¼ T0 for t0 ∈. Since p tð Þ is rd-continuous and
regressive, the theorems above can be applied despite the discontinuity of p tð Þ.

Example 3.5. The following example is from [11], where a Keynesian-Cross
model with lagged income is considered. Here, the aggregated income y changes
according to

yΔ ¼ δ dσ tð Þ � y½ �, t≥ t0 ∈,

where d tð Þ is the aggregated demand at time t and δ∈ 0, 1ð Þ is the “adjustment
speed”. Since d tð Þ can be expressed as the addition of aggregated consumption (c),
aggregated investment (I), and governmental spending (G), we have
d tð Þ ¼ c tð Þ þ I þG for I,G∈ 0,∞ð Þ. Under the assumption that aggregated
consumption is itself linear in the aggregated income, we have c tð Þ ¼ aþ by tð Þ with
a, b>0 so that the model reads as

yΔ ¼ δ aþ byσ þ I þG� y½ �:

Under the assumption that p tð Þ: ¼ 1� δbμ tð Þ 6¼ 0, we can apply yσ ¼ yþ μyΔ, and
express the dynamic equation as

yΔ ¼
δ aþ I þ Gð Þ

p tð Þ
þ
δ b� 1ð Þ

p tð Þ
y:

which is a linear, non-homogeneous, first order dynamic equation. It is left as an
exercise to apply the techniques of this subsection to derive an explicit solution to this
dynamic equation.
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Example 3.6. Let us consider a time scales analogue of the popular logistic growth
model y0 ¼ ry 1� y

K

� �
, namely,

yΔ ¼ ryσ 1�
y

K

� �

, y t0ð Þ ¼ y0, (5)

with growth rate r > 0, and carrying capacity K > 0, and initial population size
y t0ð Þ>0 at time t0 ∈ . Even though this is an example of a nonlinear dynamic

equation of first order, we can apply the substitution z ¼ 1
y for y 6¼ 0, to obtain the

linear dynamic equation

zΔ ¼
�yΔ

yyσ
¼ �rzþ

r

K
, z t0ð Þ ¼

1

y0
:

For �r∈R, the solution is then given by Theorem 3.2. Using also Theorem 3.1 and
resubstituting yields

y tð Þ ¼
y0K

e�r t, t0ð Þ K � y0
� �

þ y0
: (6)

It can be easily checked that y t0ð Þ ¼ y0 and that y solves (5), see also [12].

Note that for  ¼ , (5) collapses to the Verhulst model y0 ¼ ry 1� y
K

� �
and the

solution (6) reads in this case as

y tð Þ ¼
y0K

e�r t�t0ð Þ K � y0
� �

þ y0
,

which coincides with the classical solution.

3.2 Linear systems

Let us now consider (2) with f: � 
n � 

n ! 
n for n∈ ¼ 1, 2, 3, …f g. In order

to extend the solution methods for linear first order dynamic equations that were intro-
duced in the previous section for scalar functions, the definitions of rd-continuity and
delta differentiability have to be first extended to matrix valued functions A :  ! 

m�n.
This adjustment is mostly proposed element-wise. More precisely, A is rd-continuous on
 if aij is rd-continuous on  for all 1≤ i≤ n, 1≤ j≤m. The class of all such rd-continuous
m� n-matrix-valued functions on  is then denoted by Crd ,m�nð Þ. Similarly, we say
that A is delta differentiable (or short: differentiable), if aij is delta differentiable for all
1≤ i≤ n, 1≤ j≤m. Similar to the scalar case, the following identity holds for any matrix-
valued (delta) differentiable function A,

Aσ tð Þ ¼ A tð Þ þ μ tð ÞAΔ tð Þ:

The property of regressive is however not defined elementwise. Instead, we say that
A∈

n�n is regressive if In þ μ tð ÞA tð Þ is invertible for all t∈
κ, where In ∈

n�n is the
identity matrix. The class of rd-continuous and regressive functions is denoted by
R ,n�nð Þ (or shortR).

Note that even if all entries of A are regressive, A does not have to be regressive.
Take for example  ¼  with

A ¼
a11 a12

a21 a22


 �

¼
0 �2

�2 3


 �

:
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Then all entries are regressive as 1þ aij 6¼ 0 for all 1≤ i, j≤ 2 but det I þ Að Þ ¼ 0.
As for the scalar case, differentiation is linear, that is,

αAþ βBð ÞΔ tð Þ ¼ αAΔ tð Þ þ βBΔ tð Þ

for differentiable m� n-matrix-valued functions A,B, and α, β∈.
We consider

yΔ ¼ A tð Þy (7)

to be the system analogue of (3). If A is n� n matrix valued function, then, the
unique solution to (7) with yðt0Þ ¼ In, where In is the n� n identity matrix, is denoted

by y tð Þ ¼ eA t, t0ð Þ. If A∈
n�n and  ¼  then eA t, t0ð Þ ¼ eA t–t0ð Þ, and if  ¼ , then

eA t, t0ð Þ ¼ I þ Að Þt–t0 . The analogue of (4) in higher dimensions is

yΔ ¼ �A∗ tð Þyσ,

where A∗(t) is the conjugate transpose of A(t).
Theorem 3.7. (See [3, Theorems 5.24 & 5.27]). LetA∈R ,n�n,n�nð Þ and suppose

that f:  ! 
n is rd-continuous. Let t0 ∈ and y0 ∈

n. Then, the initial value problem

yΔ ¼ A tð Þyþ f tð Þ, y t0ð Þ ¼ y0

is given by

y tð Þ ¼ eA t, t0ð Þy0 þ

ðt

t0

eA t, σ τð Þð Þf τð ÞΔτ:

The unique solution to

yΔ ¼ �A∗ tð Þyσ þ f tð Þ, y t0ð Þ ¼ y0

is given by

y tð Þ ¼ e⊖ A ∗ t, t0ð Þy0 þ

ðt

t0

e⊖ A ∗ t, τð Þf τð ÞΔτ:

Example 3.8. In [13], the authors consider the Cucker-Smale type model on an
isolated  (i.e., every t∈ is isolated) with sup ¼ ∞ and sup μ tð Þ : t∈f g<∞,

xΔi ¼ vi

vΔi ¼
1

N

XN

j¼1

aij v j � vi
� �

,
(8)

where aij ∈
þ
0 ¼ 0,∞½ Þ and i∈ 1, 2, … ,Nf g represents the impact of agent’s j

opinion onto the agent’s i opinion. The variable xi represents the state of agent i, and
vi is the consensus parameter of agent i. The original Cucker-Smale model, see [14],
is a discrete time system discussing the flock behavior of birds, where vi
represents the velocity of bird i and xi is its position. The weights aij quantify the
way the birds influence each other.

Note that since  is isolated, we can equivalently write (8) as

xi σ tð Þð Þ ¼ xi tð Þ þ μ tð Þvi tð Þ, vi σ tð Þð Þ ¼ vi tð Þ þ
μ tð Þ

N

XN

j¼1

aij v j tð Þ � vi tð Þ
� �

,
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or in form of a system in y ¼ x1, x2, … , xN, v1, v2, … , vNð ÞT,

yΔ ¼ By, B ¼
1

N

0N NIN

0N A�D,


 �

, (9)

where Að Þij ¼ aij for i, j∈ 1, 2, … ,Nf g, D ¼ diag d1, d2, … , dNð Þ with dk ¼
PN

j¼1akj,

0N is a matrix of dimension N �N with all entries being zero, and IN is the identity
matrix of dimension N �N.

If B∈R, then the solution to (9) with initial condition y(t0) = y0 is
y(t) = eB (t,t0) y0. In order for B∈R, NIN + μ(t)(A-D) must be invertible because

~B tð Þ ¼ I2N þ μ tð ÞB ¼
IN μ tð ÞIn

0N C tð Þ


 �

, C tð Þ ¼ IN þ μ tð Þ
1

N
A�Dð Þ,

and

det ~B tð Þ
� �

¼ det I2N þ μ tð ÞBð Þ ¼ det INð Þdet C tð Þð Þ:

We conclude this section by examples of nonlinear dynamic equations that can
be transformed into a system of linear dynamic equations of first order, so that
Theorem 3.7 provides its solution.

Example 3.9. Let  be again an isolated time scale, that is, every point in  is
isolated and inf μ tð Þ : t∈f g>0. Consider

xσ
k

¼
Kx

1� μ tð Þαð ÞK þ μ tð Þαx
, (10)

with initial values x
!
0 ¼ x0, x1, … , xk�1ð Þ∈ 0,∞ð Þk, K > 0, and –α ∈ 

þ. Eq. (10) is
a delayed Beverton-Holt model and can be used to model mature individuals of a
population, assuming that it takes k reproductive cycles for an individual to become
mature, where the length of a reproductive cycle starting at t is μ tð Þ. An application
may be populations where the lengths between breeding cycles is temperature depen-
dent. Model (10) has been considered in [15] (and, for  ¼ , in [16]), where the
authors applied the transformation y≔ K

x for x 6¼ 0 to obtain

YΔ ¼ A tð ÞY þ b tð Þ with A tð Þ ¼
1

μ tð Þ

0k�1 Ik�1

�μα �s


 �

, b tð Þ ¼
0k�1

α

� �

, (11)

where s ¼
k

1

� �

,
k

2

� �

,
k

3

� �

, … ,
k

k� 1

� �� �

and 0k�1 ∈
k�1�1 is vector of zeros.

Applying Theorem 3.7, to (11) yields the solution.
Example 3.10. In [17], the authors proposed the following nonlinear system of

dynamic equations to model the spread of a contagious disease,

SΔ ¼ �β tð ÞSσI � ν tð ÞSþ γ tð ÞI þ ν tð Þκ,

IΔ ¼ β tð ÞSσI � γ tð ÞI � ν tð ÞI:

In line with well-established epidemic models, the population was compartmen-
talized into susceptible S and infected I individuals. The model assumes that the
disease is spread by contact with an infected individual with a transmission rate of
β>0. The recovery rate is assumed to be γ >0 and recovered individuals rejoin the
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group of susceptible individuals. The death rate is ν tð Þ across the population and ν tð Þκ
newborns join the group of susceptibles.

By introducing a new variable w≔ Sþ I, wΔ ¼ �ν tð Þwþ ν tð Þκ. This first order,
linear, nonhomogeneous dynamic equation can be solved using Theorem 3.2, assum-
ing �ν tð Þ∈R. The solution is then w tð Þ ¼ e�ν t, t0ð Þ I0 þ S0 � κð Þ þ κ, so that, after
recalling that S ¼ w tð Þ � I, the dynamic equation in I can be expressed as

IΔ ¼ β tð Þ wσ � Iσð ÞI � γ tð ÞI � ν tð ÞI:

Although the dimension has been reduced to one, the dynamic equation is still
nonlinear. Defining however y ¼ 1

I for I 6¼ 0 yields again a linear dynamic equation,
namely

yΔ ¼ �β tð Þwσ tð Þ þ γ tð Þ þ ν tð Þð Þyσ þ β tð Þ:

Applying Theorem 3.2 gives the solution

y tð Þ ¼ e⊖ p t, t0ð Þy0 þ

ðt

t0

e⊖ p t, sð Þβ sð ÞΔs;

where p tð Þ ¼ β tð Þw σ tð Þð Þ � γ tð Þ þ ν tð Þð Þ is assumed to be an element of R.
Resubstituting yields then the solution I and using S ¼ w� I yields S.

For more epidemic models on time scales that are systems of first order nonlinear
dynamic equations, see [18–21]. While the dynamic Susceptible-Infected-Recovered
epidemic model introduced in [18] can be solved explicitly via variable transforma-
tions, in most cases, including [19], explicit solutions to nonlinear dynamic equations
are not available. In these cases, properties of solutions such as existence and unique-
ness are of fundamental interest. The interested reader is referred to [22, Section 2]
and [3, Section 8.2].
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